Plane curve singularities and mapping class groups

Nick Salter Represents joint work with Aaron Calderon and Pablo Portilla Cuadrado Columbia University October 4, 2020

Plane curve singularities

Topologists tend to like manifolds. But singular spaces have very rich topology too!

An arena for algebraic geometry and topology to interact

Plane curve singularity: $f : \mathbb{C}^2 \to \mathbb{C}$ with $f_x = f_y = 0$ at origin.

e.g.
$$f(x, y) = x^3 + y^4$$

Now study the family of *smooth* level surfaces $f^{-1}(t)$ (Milnor fibers)

Versal deformation spaces

Basic theme: *deform* singularities to simpler ones

There exists a *finite-dimensional* "universal" deformation space $V_f \cong \mathbb{C}^{\mu}$

For $f(x, y) = x^3 + y^4$:

$$V_f = \{ f_{\lambda}(x, y) = x^3 + y^4 + \lambda_1 x y^2 + \lambda_2 y^2 + \lambda_3 x y + \lambda_4 y + \lambda_5 x + \lambda_6 \}$$

For "bad" choices of λ , $f_{\lambda}^{-1}(0)$ is singular:

 $Disc_f = \{\lambda \in \mathbb{C}^{\mu} \mid f_{\lambda}^{-1}(0) \text{ singular}\}$

Versal discriminant complement $V_f \setminus Disc_f$ supports the family of surfaces $\lambda \mapsto f_{\lambda}^{-1}(0)$

Topology of versal discriminant complements

 $Disc_f$ is a very singular hypersurface

Deligne: For "ADE" singularities, $V_f \setminus Disc_f$ is a $K(\pi, 1)$ for the associated Artin group

Conjecture (Arnol'd-Thom): For an *arbitrary* plane curve singularity, $V_f \setminus Disc_f$ should be a $K(\pi, 1)$

But what is π ?

Lönne: computation of π for *Brieskorn-Pham* singularities

Artin group plus extra "triangle relations"

In general, we have no idea!

One approach: find a quotient

Family of surfaces: *monodromy* homomorphism

$$\rho_f : \pi_1(V_f \setminus Disc_f) \to Mod(\Sigma)$$

Question (Sullivan, 1970's): For which singularities is ρ_f injective?

Perron-Vannier: Injective for type A,D. (Type A: braid group)

Wajnryb: Not injective for E₆, E₇, E₈

Nothing further known since 1995!

Theorem (Portilla Cuadrado — S.):

For any isolated plane curve singularity of genus $g \ge 5$ other than types A/D, the monodromy group is a *framed mapping class group*.

We answer Sullivan's question as a corollary.

Corollary:

For *any* isolated plane curve singularity of genus $g \ge 7$ other than types A/D, the monodromy homomorphism is not injective.

Proof:

Easy to show $H^1(V_f \setminus Disc_f; \mathbb{Q}) \neq 0$. But Randal-Williams showed that framed mapping class groups have $b_{\mathbb{Q}}^1 = 0$ for g ≥ 7 .

 $Mod(\Sigma)$ acts on set of isotopy classes of framings

 $\operatorname{Mod}(\Sigma)[\phi]$: stabilizer of ϕ

Nowhere-vanishing 1-form—> invariant framing ϕ

The form $\frac{dx}{(f_{\lambda})_y}$ is holomorphic and nonvanishing on each fiber $f_{\lambda}^{-1}(0)$.

Conclude: monodromy *contained* in $Mod(\Sigma)[\phi]$

Philosophical point: Milnor fibers are translation surfaces! There must be a rich story here, but no one has told it yet. Need to show that ρ_f surjects onto $Mod(\Sigma)[\phi]$.

Work of Calderon—S. provides technology for doing this: we find criteria under which a set of Dehn twists generate a framed mapping class group.

Dehn twists arise in monodromy via vanishing cycles.

Theory of *divides* gives a picture of Milnor fiber endowed with a distinguished finite set of vanishing cycles.

Ultimate idea: show that every singularity has a divide that satisfies the hypotheses for CS.

Step 1: Draw real points of a suitable perturbation

Step 2: Convert crossings to knotted annuli

Step 3: Convert arcs to twisted bands

Step 4: Identify vanishing cycles

Two kinds: associated to crossings, and to regions

Step 5: Quote Calderon-S:

The 18 Dehn twists depicted below generate a framed mapping class group on the surface $\Sigma_{\rm q}^1$

More on vanishing cycles

As a further corollary, we can answer the following question:

Which curves can be realized as vanishing cycles?

Corollary (PC-S): A nonseparating simple closed curve is a vanishing cycle if and only if it has zero winding number w.r.t. the canonical framing.

E.g. can't be satisfied for all three curves above (Poincaré-Hopf).