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Plane curve singularities

Topologists tend to like manifolds. But 
singular spaces have very rich topology too!

Plane curve singularity:   
with  at origin. 

f : ℂ2 → ℂ
fx = fy = 0

e.g.  f(x, y) = x3 + y4

Now study the family of smooth level surfaces   (Milnor fibers)f −1(t)

An arena for algebraic geometry and topology to interact



Versal deformation spaces

Basic theme: deform singularities to simpler ones

For  :f(x, y) = x3 + y4

There exists a finite-dimensional “universal” deformation space Vf ≅ ℂμ

Vf = {fλ(x, y) = x3 + y4 + λ1xy2 + λ2y2 + λ3xy + λ4y + λ5x + λ6}

For “bad” choices of λ,   is singular:f −1
λ (0)

Discf = {λ ∈ ℂμ ∣ f −1
λ (0) singular}

Versal discriminant complement   supports  
the family of surfaces 

Vf∖Discf
λ ↦ f −1

λ (0)



Topology of versal discriminant complements

  is a very singular hypersurfaceDiscf

Conjecture (Arnol’d-Thom): 

But what is ?π

Lönne: computation of  for Brieskorn-Pham singularitiesπ
Artin group plus extra “triangle relations”

Deligne: For “ADE” singularities,  is a 
 for the associated Artin group  

Vf∖Discf
K(π,1)

 For an arbitrary plane curve singularity, 
 should be a  Vf∖Discf K(π,1)

In general, we have no idea!



Monodromy

One approach: find a quotient

Family of surfaces: monodromy homomorphism

ρf : π1(Vf∖Discf ) → Mod(Σ)

Question (Sullivan, 1970’s): For which singularities is   injective?ρf

Perron-Vannier: Injective for type A,D. (Type A: braid group) 

Wajnryb: Not injective for E6, E7, E8

Nothing further known since 1995!



Monodromy groups of singularities

Theorem (Portilla Cuadrado — S.):

For any isolated plane curve singularity of genus g≥5 other than 
types A/D, the monodromy group is a framed mapping class group.

Corollary:

For any isolated plane curve singularity of genus g≥7 other than 
types A/D, the monodromy homomorphism is not injective. 

We answer Sullivan’s question as a corollary.

Proof: 

Easy to show . But Randal-Williams showed that 
framed mapping class groups have  for g≥7.

H1(Vf∖Discf; ℚ) ≠ 0
b1

ℚ = 0



Framed mapping class groups

: stabilizer of Mod(Σ)[ϕ] ϕ

 acts on set of isotopy classes of framingsMod(Σ)

Nowhere-vanishing 1-form—> invariant framing ϕ

The form  is holomorphic and nonvanishing on each fiber .
dx

( fλ)y
f −1
λ (0)

Conclude: monodromy contained in  Mod(Σ)[ϕ]

Philosophical point: Milnor fibers are translation surfaces! 
There must be a rich story here, but no one has told it yet.



Idea of proof

Need to show that  surjects onto .ρf Mod(Σ)[ϕ]

Work of Calderon—S. provides technology for doing this: we find criteria 
under which a set of Dehn twists generate a framed mapping class group.

Dehn twists arise in monodromy via vanishing cycles.

Theory of divides gives a picture of Milnor fiber endowed 
with a distinguished finite set of vanishing cycles.

Ultimate idea: show that every singularity has a divide that satisfies the 
hypotheses for CS.



Example
f(X, Y ) = X3 + Y10

Step 1: Draw real points of a suitable perturbation



Example
f(X, Y ) = X3 + Y10

Step 2: Convert crossings to knotted annuli



Example
f(X, Y ) = X3 + Y10

Step 3: Convert arcs to twisted bands



Example
f(X, Y ) = X3 + Y10

Step 4: Identify vanishing cycles

Two kinds: associated to crossings, and to regions



Example
f(X, Y ) = X3 + Y10

Step 5: Quote Calderon-S:

The 18 Dehn twists depicted below generate a 
framed mapping class group on the surface Σ1

9



More on vanishing cycles

As a further corollary, we can answer the following question:

Which curves can be realized as 
vanishing cycles?

?

Corollary (PC-S): A nonseparating simple closed curve is a 
vanishing cycle if and only if it has zero winding 
number w.r.t. the canonical framing.

E.g. can’t be satisfied for all three curves above (Poincaré-Hopf).


