On the non-realizability of braid groups by diffeomorphisms

Nick Salter, University of Chicago Joint with Bena Tshishiku March 11, 2016

Basic setup

X - topological space.

Diff(X): group of C^k diffeomorphisms of X (rel. boundary)

 $(S \subseteq X \text{ subset: Diff}(X,S) \text{ diffeos rel. } S)$

 $Diff_0(X,S)$: diffeos isotopic to id. rel. S

We study $Mod(X,S) = Diff(X,S)/Diff_0(X,S)$

Key examples

Example: $X = \Sigma_g$

 $\operatorname{Mod}(\Sigma_g)$: mapping class group of surface

Main concern today: $X = D^2$, $S = \{n \text{ points}\}\$

 $Mod(X,S) = B_n$ (braid group on n strands)

The basic question

Does the map $\pi: \mathrm{Diff}(X,S) \to \mathrm{Mod}(X,S)$ admit a section, i.e. a map

$$\sigma: \operatorname{Mod}(X,S) \to \operatorname{Diff}(X,S)$$

for which $\pi \circ \sigma = id$?

We say that Mod(X,S) is *(not) realizable by diffeomorphisms* if the answer is yes (resp. no).

Morita's non-lifting theorem

The case of $\operatorname{Mod}(\Sigma_q)$ is well-understood.

Theorem (S. Morita, 1987):

 $Mod(\Sigma_g)$ is not realizable by C^2 diffeomorphisms, for all $g \ge 18$

The idea

Use cohomology.

Existence of section implies a diagram

$$H^*(\operatorname{Mod}(\Sigma_g)) \xrightarrow{\pi^*} H^*(\operatorname{Diff}(\Sigma_g)) \xrightarrow{\sigma^*} H^*(\operatorname{Mod}(\Sigma_g))$$

for which $\sigma^* \circ \pi^* = 1$

In particular, π^* is an injection.

The contradiction

Morita constructs an element $e_3 \in H^6(\operatorname{Mod}(\Sigma_g))$

He applies the Bott vanishing theorem from foliation theory to show that $\pi^*(e_3) = 0$

Today's question

Is B_n realizable by diffeomorphisms?

Following Morita, would like to understand

$$\ker \pi^* : H^*(B_n) \to H^*(\operatorname{Diff}(D^2, S))$$

Problem!

Theorem (Nariman, 2015):

 $\pi^*: H^*(B_n) \to H^*(\mathrm{Diff}(D^2, S))$ is an injection.

Alternative approaches

Many proofs of Morita's theorem by now.

Bestvina-Church-Souto: Milnor-Wood inequality.

Franks-Handel:
Use dynamics to produce fixed points.
Use these fixed points to construct
homomorphisms that can't exist.

Main Theorem (I)

This last approach inspires our method.

Theorem (S., Tshishiku, 2015):

For $n \geq 5$ the braid group is not realizable by diffeomorphisms. More generally, the "surface braid group" $B_n(\Sigma_g^b)$ is not realizable by diffeomorphisms for $n \geq 5$ if b > 1, and for $n \geq 6$ otherwise.

Main Theorem (II)

By exploiting the hyperelliptic mapping class group, we obtain a new and quite simple proof of Morita's theorem in the best possible range:

Theorem (S., Tshishiku, 2015):

For all $g \geq 2$, the mapping class group $\operatorname{Mod}(\Sigma_g)$ is not realizable by C^1 diffeomorphisms.

Outline of proof (I)

Diffeos realizing elements of B_n must fix points in S.

Exploit this to manufacture homomorphisms $f: B_n \to A$ with A abelian.

Use dynamics/geometry to show these are highly non-degenerate.

Exhibit subgroups G of B with $H^1(G,\mathbb{Z})=0$

Steps 2 and 3: constructing homomorphisms

Derivative map: $D_x: B_n \to GL_2^+(\mathbb{R})$

Analyze centralizers: image must be abelian.

If trivial, use *Thurston stability:*

Theorem (Thurston, 1974):

Let G be f.g. acting via C^1 diffeomorphisms on \mathbb{R}^n with a global fixed point x. If $D_x : G \to GL_n(\mathbb{R})$ is trivial, there is a map $f : G \to \mathbb{R}$ with nontrivial image.

Step 4: "bad" braid subgroups

Fact: For $n \geq 5$, the commutator subgroup $[B_n, B_n]$ is finitely generated, and $H^1([B_n, B_n], \mathbb{Z}) = 1$

Proof: Just do it! Vaguely reminiscent of other arguments in the theory of diffeomorphism groups.

From braids to surfaces

To prove Theorem 2, exploit the map

$$f: B_{2g+2} \to \operatorname{Mod}(\Sigma_g)$$

Outline of proof (II)

To use previous methods: need fixed points

im(f) commutes with hyperelliptic involution ι

 $\sigma(\iota)$ has 2g+2 fixed points (Lefschetz)

Outline (cont'd)

Basic principle of group actions:

im(f) preserves these points.

Obtain map $\phi: B_{2g+2} \to S_{2g+2}$

We show this map has to be the standard one.

Thus we can find fixed points, proceed as before.

Questions

- Study other subgroups of mapping class groups. When is a general $G \leq \operatorname{Mod}(\Sigma_g)$ realizable by diffeomorphisms?
- In particular, are there surface subgroups of $\operatorname{Mod}(\Sigma_g)$ that are not realizable? 3-manifold subgroups?
- Are there dynamical approaches to other lifting problems, e.g. for finding a section of $\operatorname{Mod}(\Sigma_{q,*}) \to \operatorname{Mod}(\Sigma_q)$

Thanks!