Stratified braid groups

Nick Salter University of Notre Dame June 15, 2023

Stratified braid groups

Conf_n(\mathbb{C}): space of unordered n-tuples $\{z_1, ..., z_n\} \subset \mathbb{C}$ of distinct points

Or, space of monic squarefree polynomials:

$$\{z_1, \dots, z_n\} \leftrightarrow p(z) = (z - z_1) \dots (z - z_n)$$

Object of interest today: a *stratification* on $\text{Conf}_n(\mathbb{C})$.

Definition Fix a partition $\kappa = \{k_1, ..., k_p\}$ of n-1. Stratum $\operatorname{Conf}_n(\mathbb{C})[\kappa]$: polynomials $p(z) \in \operatorname{Conf}_n(\mathbb{C})$, roots of p'(z) have multiplicity κ .

Note: root of p' = critical point of p

Stratified braid groups

$\operatorname{Conf}_4(\mathbb{C})[1^3]$

$\operatorname{Conf}_4(\mathbb{C})[2,1]$

- A naturally-appearing structure on the space of polynomials

- Can be studied from many different points of view:
 - Singularity theory: discriminant complement
 - Algebraic geometry: Hurwitz spaces, meromorphic differentials
 - Geometry: translation surfaces
 - Topology: fundamental groups, $K(\pi, 1)$ spaces
- Hope that this is simple enough to actually make progress!

Goal of the talk: explain a little bit of these points of view and how they interact

Main questions

(1) What are the fundamental groups

$$\mathscr{B}_n[\kappa] := \pi_1(\operatorname{Conf}_n(\mathbb{C})[\kappa])?$$

One description: subquotients of B_n given in terms of Hurwitz spaces

(2) Inclusion $\operatorname{Conf}_n(\mathbb{C})[\kappa] \to \operatorname{Conf}_n(\mathbb{C})$ induces hom.

$$\rho:\mathscr{B}_n[\kappa]\to B_n$$

What is the image?

Will present a complete answer.

(3) Is each $\operatorname{Conf}_n(\mathbb{C})[\kappa] \ge K(\pi, 1)$?

Several points of view

Remainder of the talk: explain how both of these give pictures of $\operatorname{Conf}_n(\mathbb{C})[\kappa]$, and comment on how they explain fundamental group, monodromy, and more.

POV 1: Hurwitz spaces

As before: $\kappa = \{k_1, \dots, k_p\}$ partition of n-1.

Hur(κ): space of n-sheeted branched covers $f : \mathbb{C} \to \mathbb{C}$ with *p* cyclic branched points of orders $k_1 + 1, \dots, k_p + 1$.

$\operatorname{Hur}(\kappa)^{\circ} \subset \operatorname{Hur}(\kappa): 0 \in \mathbb{C}$ is a regular value.

$\operatorname{Hur}(\kappa)^{\circ} \subset \operatorname{Hur}(\kappa): 0 \in \mathbb{C}$ is a regular value.

$\operatorname{Hur}(\kappa)^{\circ} \subset \operatorname{Hur}(\kappa): 0 \in \mathbb{C}$ is a regular value.

POV 1: Hurwitz spaces

Can join critical values as long as the critical points remain distinct.

POV 1: Hurwitz spaces

Can join critical values as long as the critical points remain distinct.

These are smaller Hurwitz spaces.

In terms of permutations, can join $\sigma \in S_p$ to τ iff the supports are disjoint.

Theorem

There is a decomposition

$$\operatorname{Conf}_n(\mathbb{C})[\kappa] = \bigcup \operatorname{Hur}(\kappa')^\circ$$

where κ' ranges over all "admissible degenerations" of κ .

There is a presentation

 $\mathcal{B}_{n}[\kappa] \cong \pi_{1}(\operatorname{Hur}(\kappa)^{\circ})/\langle\langle \mu_{\kappa',i}\rangle\rangle$

where $\{\mu_{\kappa',i}\}_i$ comprise a set of meridians around components of $Hur(\kappa')^{\circ}$ with a *single* degeneration

Note: in general, $Hur(\kappa')^{\circ}$ has many components.

POV 2: translation surfaces

There is another way to study this space.

Correspondence: meromorphic differentials ↔ *translation surfaces*

Clear from Hurwitz space picture: local monodromy at a critical point of order k is a rotation σ_k of k + 1 points.

Simple braid calculation:

Given elements σ_a, σ_b on a + 1 (resp. b + 1) points, can do Euclidean algorithm to get $\sigma_{gcd a,b}$.

Guess: monodromy $B_n[\kappa] \leq B_n$ is group Γ_n^r generated by elements σ_r , where $r = \gcd(\kappa)$.

But:

(1) How do you generate Γ_n^r ? (2) What is Γ_n^r ? Is it finite-index in B_n ? Does it have another description? We answer these by looking at the translation surface picture.

We answer these by looking at the translation surface picture.

We show that there is a welldefined notion of *winding number* of arcs, visible from the translation surface structure.

Crucial observation

Any braid obtained by deforming our *flat* surfaces *must preserve the winding numbers of all arcs.*

Move an arc across a critical point of order k_i : WN changes by k_i .

Without tracking critical points, can only measure WN mod $r := gcd(\kappa)$.

Get "change of WN" (crossed) homomorphism $\phi_r: B_n \to (\mathbb{Z}/r\mathbb{Z})^n$.

Monodromy

Theorem

For *n* sufficiently large w.r.t. $r = \text{gcd}(\kappa)$, the following are equivalent:

- The monodromy $B_n[\kappa]\leqslant B_n$,
- The group Γ_n^r generated by rotations σ_r of r+1 points,
- The kernel of $\phi_r: B_n \to (\mathbb{Z}/r\mathbb{Z})^n$.

In particular, the index $[B_n : B_n[\kappa]]$ is finite.

Note also that $B_n[\kappa] = B_n$ if r = 1; here we need $n \ge 5$.

One-sentence proof:

Develop a *factorization* algorithm to express braids in $\ker(\phi_r)$ as products of σ_r

As a final note, want to discuss a connection with a very classical story.

Theorem (Gauss-Lucas)

The critical points of a polynomial p lie inside the convex hull of the roots.

Question: Fix a partition κ of n - 1. What motions (braids) of n + p points can you see in $\operatorname{Conf}_n(\mathbb{C})[\kappa]$? In other words, what is the monodromy $\rho : \operatorname{Conf}_n(\mathbb{C})[\kappa] \to B_{n+p}$?

Gauss-Lucas requires the "critical braid" to lie in the convex hull of the "root braid".

Our monodromy theorem says this is not sufficient when r > 1, but in fact this is general.

Gauss-Lucas for equicritical families

Our monodromy theorem says *this is not sufficient* when r > 1, but in fact this is general.

When tracking critical points, winding numbers lift from $\mathbb{Z}/r\mathbb{Z}$ to \mathbb{Z} .

And for instance, this braid is "convex" but violates the winding number condition.

