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Stratified braid groups

Object of interest today: a stratification on .Confn(ℂ)

: space of unordered n-tuples 
 of distinct points 

Confn(ℂ)
{z1, …, zn} ⊂ ℂ

Or, space of monic squarefree polynomials:

{z1, …, zn} ↔ p(z) = (z − z1)…(z − zn)

Definition Fix a partition  of n-1.κ = {k1, …, kp}
Stratum : polynomials , 
roots of  have multiplicity .

Confn(ℂ)[κ] p(z) ∈ Confn(ℂ)
p′ (z) κ

Note: root of  = critical point of p′ p



Stratified braid groups

Conf4(ℂ)[13]

Conf4(ℂ)[2,1]

Conf4(ℂ)[3]



Why?

- A naturally-appearing structure on the space of polynomials

- Can be studied from many different points of view:

Goal of the talk: explain a little bit of these  
points of view and how they interact 

- Hope that this is simple enough to actually make progress!

- Singularity theory: discriminant complement 
- Algebraic geometry: Hurwitz spaces, meromorphic differentials 
- Geometry: translation surfaces 
- Topology: fundamental groups, K(π,1) spaces



Main questions

(3) Is each  a ?Confn(ℂ)[κ] K(π,1)

(1) What are the fundamental groups

(2) Inclusion  induces hom. Confn(ℂ)[κ] → Confn(ℂ)

 ?ℬn[κ] := π1(Confn(ℂ)[κ])

ρ : ℬn[κ] → Bn

What is the image?

One description: subquotients of  given in terms of Hurwitz spaces Bn

Will present a complete answer.

🤷 



Several points of view

(13)

(12)

(34)

f

Remainder of the talk: explain how 
both of these give pictures of 

, and comment on 
how they explain fundamental 
group, monodromy, and more.

Confn(ℂ)[κ]



POV 1: Hurwitz spaces

: space of n-sheeted branched covers  
with  cyclic branched points of orders . 
Hur(κ) f : ℂ → ℂ

p k1 + 1,…, kp + 1

As before:  partition of n-1.κ = {k1, …, kp}

(13)

(12)

(34)

f



:  is a regular value.Hur(κ)∘ ⊂ Hur(κ) 0 ∈ ℂ
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Can join critical values as long as the critical points remain distinct.

POV 1: Hurwitz spaces
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(13)
(34)

f

(12)

POV 1: Hurwitz spaces

Can join critical values as long as the critical points remain distinct.

These are smaller Hurwitz spaces. 

In terms of permutations, can join  to  iff the supports are disjoint.σ ∈ Sp τ

✅



Note: in general,  has many components.Hur(κ′ )∘

Corollary There is a presentation

ℬn[κ] ≅ π1(Hur(κ)∘)/⟨⟨μκ′ ,i⟩⟩

where  comprise a set of meridians around 
components of  with a single degeneration   

{μκ′ ,i}i
Hur(κ′ )∘

POV 1: Hurwitz spaces

Theorem There is a decomposition

Confn(ℂ)[κ] = ⋃Hur(κ′ )∘

where  ranges over all “admissible degenerations” of . κ′ κ



POV 2: translation surfaces

There is another way to study this space.

∫
df
f

Correspondence: meromorphic differentials  translation surfaces↔



Monodromy
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z1 z2 z3 z4

Both pictures inform the monodromy question.

From Hurwitz POV, seeing generators is easy.
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Monodromy

Clear from Hurwitz space picture: local 
monodromy at a critical point of order  
is a rotation  of  points.

k
σk k + 1

Given elements  on  (resp. ) 
points, can do Euclidean algorithm to get .

σa, σb a + 1 b + 1
σgcd a,b

Guess: monodromy  is group  generated by elements 
, where .

Bn[κ] ⩽ Bn Γr
n

σr r = gcd(κ)

(1) How do you generate ? 
(2) What is ? Is it finite-index in ? Does it have another description?

Γr
n

Γr
n Bn

But:

Simple braid calculation:



We answer these by looking at the translation surface picture.

Winding numbers



We answer these by looking at the translation surface picture.

We show that there is a well-
defined notion of winding 
number of arcs, visible from the 
translation surface structure.

Winding numbers

Get “change of WN” (crossed) homomorphism .ϕr : Bn → (ℤ/rℤ)n

Move an arc across a critical point of order : WN changes by . ki ki

Without tracking critical points, can only measure WN mod .r := gcd(κ)

Crucial observation Any braid obtained by deforming our flat surfaces 
must preserve the winding numbers of all arcs.

Bn[κ] ⩽ ker(ϕr)



Monodromy

Theorem For  sufficiently large w.r.t. , 
the following are equivalent:

n r = gcd(κ)

In particular, the index  is finite.[Bn : Bn[κ]]
Note also that  if ; here we need .Bn[κ] = Bn r = 1 n ≥ 5

One-sentence proof:

Develop a factorization 
algorithm to express braids 
in  as products of ker(ϕr) σr

- The monodromy , 
- The group  generated by rotations  of  points, 
- The kernel of .

Bn[κ] ⩽ Bn
Γr

n σr r + 1
ϕr : Bn → (ℤ/rℤ)n



Gauss-Lucas for equicritical families

As a final note, want to discuss a connection with a very classical story.

Theorem 
(Gauss-Lucas)

The critical points of a polynomial  
lie inside the convex hull of the roots.

p

Question: Fix a partition  of . What motions (braids) of 
 points  can you see in ? In other words, 

what is the monodromy ? 

κ n − 1
n + p Confn(ℂ)[κ]

ρ : Confn(ℂ)[κ] → Bn+p

Gauss-Lucas requires the “critical braid” to lie in 
the convex hull of the “root braid”.

Our monodromy theorem says this is not sufficient 
when , but in fact  this is general.r > 1



Gauss-Lucas for equicritical families

When tracking critical points, winding numbers lift from  to .ℤ/rℤ ℤ

And for instance, this braid is “convex” 
but violates the winding number condition.

Our monodromy theorem says this is not sufficient 
when , but in fact  this is general.r > 1


