Stratified braid groups

Nick Salter
University of Notre Dame June 15, 2023

Stratified braid groups

$\operatorname{Conf}_{n}(\mathbb{C})$: space of unordered n-tuples $\left\{z_{1}, \ldots, z_{n}\right\} \subset \mathbb{C}$ of distinct points

Or, space of monic squarefree polynomials:

$$
\left\{z_{1}, \ldots, z_{n}\right\} \leftrightarrow p(z)=\left(z-z_{1}\right) \ldots\left(z-z_{n}\right)
$$

Object of interest today: a stratification on $\operatorname{Conf}_{n}(\mathbb{C})$.
Definition Fix a partition $\kappa=\left\{k_{1}, \ldots, k_{p}\right\}$ of $\mathrm{n}-1$.
Stratum $\operatorname{Conf}_{n}(\mathbb{C})[\kappa]$: polynomials $p(z) \in \operatorname{Conf}_{n}(\mathbb{C})$, roots of $p^{\prime}(z)$ have multiplicity κ.

Note: root of $p^{\prime}=$ critical point of p

Stratified braid groups

$\operatorname{Conf}_{4}(\mathbb{C})\left[1^{3}\right]$

$\operatorname{Conf}_{4}(\mathbb{C})[2,1]$

$\operatorname{Conf}_{4}(\mathbb{C})[3]$

Why?

- A naturally-appearing structure on the space of polynomials
- Can be studied from many different points of view:
- Singularity theory: discriminant complement
- Algebraic geometry: Hurwitz spaces, meromorphic differentials
- Geometry: translation surfaces
- Topology: fundamental groups, $\mathrm{K}(\pi, 1)$ spaces
- Hope that this is simple enough to actually make progress!

Goal of the talk: explain a little bit of these points of view and how they interact

Main questions

(1) What are the fundamental groups

$$
\mathscr{B}_{n}[\kappa]:=\pi_{1}\left(\operatorname{Conf}_{n}(\mathbb{C})[\kappa]\right) ?
$$

One description: subquotients of B_{n} given in terms of Hurwitz spaces
(2) Inclusion $\operatorname{Conf}_{n}(\mathbb{C})[\kappa] \rightarrow \operatorname{Conf}_{n}(\mathbb{C})$ induces hom.

$$
\rho: \mathscr{B}_{n}[\kappa] \rightarrow B_{n}
$$

What is the image?
Will present a complete answer.
(3) Is each $\operatorname{Conf}_{n}(\mathbb{C})[\kappa]$ a $K(\pi, 1)$?

Several points of view

Remainder of the talk: explain how both of these give pictures of $\operatorname{Conf}_{n}(\mathbb{C})[\kappa]$, and comment on how they explain fundamental group, monodromy, and more.

POV 1: Hurwitz spaces

As before: $\kappa=\left\{k_{1}, \ldots, k_{p}\right\}$ partition of $\mathrm{n}-1$.
$\operatorname{Hur}(\kappa)$: space of n -sheeted branched covers $f: \mathbb{C} \rightarrow \mathbb{C}$ with p cyclic branched points of orders $k_{1}+1, \ldots, k_{p}+1$.

POV 1: Hurwitz spaces

$\operatorname{Hur}(\kappa)^{\circ} \subset \operatorname{Hur}(\kappa): 0 \in \mathbb{C}$ is a regular value.

POV 1: Hurwitz spaces

$\operatorname{Hur}(\kappa)^{\circ} \subset \operatorname{Hur}(\kappa): 0 \in \mathbb{C}$ is a regular value.

POV 1: Hurwitz spaces

$\operatorname{Hur}(\kappa)^{\circ} \subset \operatorname{Hur}(\kappa): 0 \in \mathbb{C}$ is a regular value.

POV 1: Hurwitz spaces

Can join critical values as long as the critical points remain distinct.

POV 1: Hurwitz spaces

Can join critical values as long as the critical points remain distinct.
These are smaller Hurwitz spaces.
In terms of permutations, can join $\sigma \in S_{p}$ to τ iff the supports are disjoint.

POV 1: Hurwitz spaces

Theorem There is a decomposition

$$
\operatorname{Conf}_{n}(\mathbb{C})[\kappa]=\bigcup \operatorname{Hur}\left(\kappa^{\prime}\right)^{\circ}
$$

where κ^{\prime} ranges over all "admissible degenerations" of κ.

Corollary There is a presentation

$$
\mathscr{B}_{n}[\kappa] \cong \pi_{1}\left(\operatorname{Hur}(\kappa)^{\circ}\right) /\left\langle\left\langle\mu_{\kappa^{\prime}, i}\right\rangle\right\rangle
$$

where $\left\{\mu_{\kappa^{\prime}, i}\right\}_{i}$ comprise a set of meridians around components of $\operatorname{Hur}\left(\kappa^{\prime}\right)^{\circ}$ with a single degeneration

Note: in general, $\operatorname{Hur}\left(\kappa^{\prime}\right)^{\circ}$ has many components.

POV 2: translation surfaces

There is another way to study this space.

Correspondence: meromorphic differentials \leftrightarrow translation surfaces

Monodromy

Both pictures inform the monodromy question.
From Hurwitz POV, seeing generators is easy.

Monodromy

Both pictures inform the monodromy question.
From Hurwitz POV, seeing generators is easy.

Monodromy

Both pictures inform the monodromy question.
From Hurwitz POV, seeing generators is easy.

Monodromy

Both pictures inform the monodromy question.
From Hurwitz POV, seeing generators is easy.

Monodromy

Both pictures inform the monodromy question.
From Hurwitz POV, seeing generators is easy.

Monodromy

Clear from Hurwitz space picture: local monodromy at a critical point of order k is a rotation σ_{k} of $k+1$ points.

Simple braid calculation:
Given elements σ_{a}, σ_{b} on $a+1$ (resp. $b+1$) points, can do Euclidean algorithm to get $\sigma_{\mathrm{gcd} a, b}$.

Guess: monodromy $B_{n}[\kappa] \leqslant B_{n}$ is group Γ_{n}^{r} generated by elements σ_{r}, where $r=\operatorname{gcd}(\kappa)$.

But:
(1) How do you generate Γ_{n}^{r} ?
(2) What is Γ_{n}^{r} ? Is it finite-index in B_{n} ? Does it have another description?

Winding numbers

We answer these by looking at the translation surface picture.

Winding numbers

We answer these by looking at the translation surface picture.

We show that there is a welldefined notion of winding number of arcs, visible from the translation surface structure.

Crucial observation Any braid obtained by deforming our flat surfaces must preserve the winding numbers of all arcs.
Move an arc across a critical point of order k_{i} : WN changes by k_{i}.
Without tracking critical points, can only measure WN $\bmod r:=\operatorname{gcd}(\kappa)$.
Get "change of WN" (crossed) homomorphism $\phi_{r}: B_{n} \rightarrow(\mathbb{Z} / r \mathbb{Z})^{n}$.
$B_{n}[\kappa] \leqslant \operatorname{ker}\left(\phi_{r}\right)$

Monodromy

Theorem For n sufficiently large w.r.t. $r=\operatorname{gcd}(\kappa)$, the following are equivalent:

- The monodromy $B_{n}[\kappa] \leqslant B_{n}$,
- The group Γ_{n}^{r} generated by rotations σ_{r} of $r+1$ points, - The kernel of $\phi_{r}: B_{n} \rightarrow(\mathbb{Z} / r \mathbb{Z})^{n}$.

In particular, the index $\left[B_{n}: B_{n}[\kappa]\right]$ is finite.
Note also that $B_{n}[\kappa]=B_{n}$ if $r=1$; here we need $n \geq 5$.

One-sentence proof:
Develop a factorization algorithm to express braids in $\operatorname{ker}\left(\phi_{r}\right)$ as products of σ_{r}

Gauss-Lucas for equicritical families

As a final note, want to discuss a connection with a very classical story.

Theorem (Gauss-Lucas) The critical points of a polynomial p lie inside the convex hull of the roots.

Question: Fix a partition κ of $n-1$. What motions (braids) of $n+p$ points can you see in $\operatorname{Conf}_{n}(\mathbb{C})[\kappa]$? In other words, what is the monodromy $\rho: \operatorname{Conf}_{n}(\mathbb{C})[\kappa] \rightarrow B_{n+p}$?

Gauss-Lucas requires the "critical braid" to lie in the convex hull of the "root braid".

Our monodromy theorem says this is not sufficient when $r>1$, but in fact this is general.

Gauss-Lucas for equicritical families

Our monodromy theorem says this is not sufficient when $r>1$, but in fact this is general.

When tracking critical points, winding numbers lift from $\mathbb{Z} / r \mathbb{Z}$ to \mathbb{Z}.
And for instance, this braid is "convex" but violates the winding number condition.

