Holomorphic maps between configuration spaces

Nick Salter

Joint with Lei Chen

University of Notre Dame
March 15, 2023

Configuration spaces...

X : topological space
$\operatorname{Conf}_{n}(X)$: space of unordered n -tuples of distinct points
$\operatorname{PConf}_{n}(X)$: space of ordered n -tuples of distinct points
When X is a smooth manifold, so are $\operatorname{Conf}_{n}(X)$ and $\operatorname{PConf}_{n}(X)$

Focus on case of surfaces. Then these are $K(\pi, 1)$ spaces for surface braid groups.

. and the maps between them

One interesting family of questions:

```
Fix \(X, Y, m, n\). Classify all maps \(f:(\mathrm{P}) \operatorname{Conf}_{m}(X) \rightarrow(\mathrm{P}) \operatorname{Conf}_{n}(Y)\)
```

"Superrigidity": expect maps to be induced from natural operations on the space level.

. and the maps between them

One interesting family of questions:

> Fix X, Y, m, n. Classify all maps $f:(\mathrm{P}) \operatorname{Conf}_{m}(X) \rightarrow(\mathrm{P}) \operatorname{Conf}_{n}(Y)$

Example: $\quad X$ any space

$$
\pi_{k}: \operatorname{PConf}_{n}(X) \rightarrow \operatorname{PConf}_{n-1}(X)
$$

Forget the $k^{\text {th }}$ point.

and the maps between them

One interesting family of questions:

> Fix X, Y, m, n. Classify all maps $f:(\mathrm{P}) \operatorname{Conf}_{m}(X) \rightarrow(\mathrm{P}) \operatorname{Conf}_{n}(Y)$

Example: $\quad X=\mathbb{C}$ $\alpha: \operatorname{Conf}_{n}(\mathbb{C}) \rightarrow \operatorname{Conf}_{n+1}(\mathbb{C})$

Add a new point "near infinity"

. and the maps between them

One interesting family of questions:

> Fix X, Y, m, n. Classify all maps $f:(\mathrm{P}) \operatorname{Conf}_{m}(X) \rightarrow(\mathrm{P}) \operatorname{Conf}_{n}(Y)$

Example: $\quad X=\mathbb{C}$

$$
\beta: \operatorname{Conf}_{n}(\mathbb{C}) \rightarrow \operatorname{Conf}_{k n}(\mathbb{C})
$$

"Cabling". Split each strand into its own k-stranded braid.

A very flexible procedure that yields a huge variety of maps

. and the maps between them

One interesting family of questions:

> Fix X, Y, m, n. Classify all maps $f:(\mathrm{P}) \operatorname{Conf}_{m}(X) \rightarrow(\mathrm{P}) \operatorname{Conf}_{n}(Y)$

Example: $\quad X$ smooth algebraic curve of genus $\mathrm{g} \geq 2$ $p: Y \rightarrow X$ unbranched cover of degree d
$\gamma: \operatorname{Conf}_{n}(X) \rightarrow \operatorname{Conf}_{d n}(Y)$

Configuration spaces as varieties

Now endow X with the structure of a Riemann surface.
Then $(\mathrm{P}) \operatorname{Conf}_{n}(X)$ is a complex manifold (even a smooth variety)
Refinement of main question:

When is $f:(\mathrm{P}) \operatorname{Conf}_{m}(X) \rightarrow(\mathrm{P}) \operatorname{Conf}_{n}(Y)$
 homotopic to a holomorphic map?

Both "forget" and "lift along cover" are holomorphic

Fun challenge: is "add near infinity" holomorphic?

The holomorphic landscape

The table below summarizes our work on this problem.

PConf	$g(Y)=0$	1	≥ 2
$\mathbf{g (X) = 0}$	Full classification	All constant	All constant
$\mathbf{1}$??	Full classification	All constant
≥ 2	??	Full classification	Reduction to "effective de Franchis" problem

The holomorphic landscape (II)

And here is our work in the impure setting.

Conf	$g(Y)=0$	1	≥ 2
$g(X)=0$	Partial classification (see also Lin)	All constant	??
1	??	Abundant: lifting	??
≥ 2	??	??	Abundant: lifting

Twisting

Our classification results involve "twisting"
Definition: Let $f:(\mathrm{P}) \operatorname{Conf}_{m}(X) \rightarrow(\mathrm{P}) \operatorname{Conf}_{n}(Y)$ and $A:(\mathrm{P}) \operatorname{Conf}_{m}(X) \rightarrow \operatorname{Aut}(Y)$
be holomorphic.
The twist $f^{A}:(\mathrm{P}) \operatorname{Conf}_{m}(X) \rightarrow(\mathrm{P}) \operatorname{Conf}_{n}(Y)$ is given by the formula $f^{A}(\zeta)=A(\zeta)(f(\zeta))$

Example: $\quad X=Y=\mathbb{C}$.
Take $A\left(z_{1}, \ldots, z_{n}\right)=-\frac{z_{1}+\ldots+z_{n}}{n} \in \mathbb{C} \leqslant \operatorname{Aut}(\mathbb{C})$.
Then id^{A} normalizes center of mass to 0 .

More precise statements

Theorem: For $m \geq 5$ and $n \leq 2 m$, up to twisting, every holomorphic $f: \operatorname{Conf}_{m}(\mathbb{C}) \rightarrow \operatorname{Conf}_{n}(\mathbb{C})$ is either constant, the identity, or a "root map".

- Lin previously established case $m=n$.
- Our techniques extend to show that no cabling map can be holomorphic.

Let X, Y be compact Riemann surfaces of genus 1 . Then every nonconstant holomorphic $h: \operatorname{PConf}_{m}(X) \rightarrow \operatorname{PConf}_{n}(Y)$ is induced by an isomorphism $X \cong Y$ and is a twist of a forgetful map.

More precise statements

Theorem: Let X, Y be compact Riemann surfaces of genus ≥ 2 (not necessarily the same) and let
$h: \operatorname{PConf}_{m}(X) \rightarrow \operatorname{PConf}_{n}(Y)$ be holomorphic.
Then up to twisting, either $X \cong Y$ and h is a forgetful map, or else h factors via a forgetful $p: \operatorname{PConf}_{m}(X) \rightarrow X$ and a holomorphic $f: X \rightarrow \operatorname{PConf}_{n}(Y)$.
"Effective de Franchis problem": given X, Y, what is the maximum number of distinct holomorphic $f_{i}: X \rightarrow Y$ (no requirement that graphs be disjoint). Quite open! General bounds exponential in $g(X), g(Y)$.

Theorem: Let X, Y be compact Riemann surfaces of genera $g(X), g(Y) \geq 2$, and let $f: X \rightarrow \operatorname{PConf}_{n}(Y)$ be holomorphic. Then $n \leq 4 g(X) g(Y)$.

Proof techniques

General theme: promotion of group-theoretic rigidity to space level.

Start with a list of possible maps on π_{1} (e.g. by Chen-Kordek-Margalit).

Then analyze which can arise holomorphically.

Use Teichmüller theory (Imayoshi-Shiga), as well as classical complex analysis (Picard, uniformization, max. modulus)

Dimension reduction: fix $\zeta=\left\{z_{1}, \ldots, z_{n-1}\right\}$, take $z_{n} \in X \backslash \zeta$.

