Holomorphic maps between configuration spaces

Nick Salter Joint with Lei Chen University of Notre Dame March 15, 2023 X: topological space

 $\operatorname{Conf}_n(X)$: space of unordered n-tuples of distinct points $\operatorname{PConf}_n(X)$: space of ordered n-tuples of distinct points When *X* is a smooth manifold, so are $\operatorname{Conf}_n(X)$ and $\operatorname{PConf}_n(X)$

Focus on case of surfaces. Then these are $K(\pi,1)$ spaces for *surface braid groups*.

One interesting family of questions:

Fix X, Y, m, n. Classify all maps $f: (P)Conf_m(X) \rightarrow (P)Conf_n(Y)$

"Superrigidity": expect maps to be induced from natural operations on the space level.

One interesting family of questions:

Fix X, Y, m, n. Classify all maps $f: (P)Conf_m(X) \rightarrow (P)Conf_n(Y)$

X any space

 $\pi_k : \operatorname{PConf}_n(X) \to \operatorname{PConf}_{n-1}(X)$ Forget the k^{th} point.

One interesting family of questions:

Fix X, Y, m, n. Classify all maps $f: (P)Conf_m(X) \rightarrow (P)Conf_n(Y)$

$$X = \mathbb{C}$$

 $\alpha: \operatorname{Conf}_n(\mathbb{C}) \to \operatorname{Conf}_{n+1}(\mathbb{C})$

Add a new point "near infinity"

One interesting family of questions:

Fix X, Y, m, n. Classify all maps $f: (P)Conf_m(X) \rightarrow (P)Conf_n(Y)$

$$X = \mathbb{C}$$

$$\beta: \operatorname{Conf}_n(\mathbb{C}) \to \operatorname{Conf}_{kn}(\mathbb{C})$$

"Cabling". Split each strand into its own k-stranded braid.

A very flexible procedure that yields a huge variety of maps

One interesting family of questions:

Fix X, Y, m, n. Classify all maps $f: (P)Conf_m(X) \rightarrow (P)Conf_n(Y)$

X smooth algebraic curve of genus $g \ge 2$ $p: Y \rightarrow X$ unbranched cover of degree d

 $\gamma : \operatorname{Conf}_n(X) \to \operatorname{Conf}_{dn}(Y)$

Now endow X with the structure of a Riemann surface.

Then (P)Conf_n(X) is a complex manifold (even a smooth variety) Refinement of main question:

When is
$$f: (P)Conf_m(X) \rightarrow (P)Conf_n(Y)$$

homotopic to a holomorphic map?

Both "forget" and "lift along cover" are holomorphic

Fun challenge: is "add near infinity" holomorphic?

The holomorphic landscape

The table below summarizes our work on this problem.

PConf	g(Y) = 0	1	≥ 2
g(X) = 0	Full classification	All constant	All constant
1	??	Full classification	All constant
≥ 2	??	Full classification	Reduction to "effective de Franchis" problem

The holomorphic landscape (II)

And here is our work in the impure setting.

Conf	g(Y) = 0	1	≥ 2
g(X) = 0	Partial classification (see also Lin)	All constant	??
1	??	Abundant: lifting	??
≥ 2	??	??	Abundant: lifting

Our classification results involve "twisting"

C 1			
	nit.		
		IU I	

Let
$$f: (\mathbf{P})\mathrm{Conf}_m(X) \to (\mathbf{P})\mathrm{Conf}_n(Y)$$
 and $A: (\mathbf{P})\mathrm{Conf}_m(X) \to \mathrm{Aut}(Y)$ be holomorphic.

The twist f^A : (P)Conf_m(X) \rightarrow (P)Conf_n(Y) is given by the formula $f^A(\zeta) = A(\zeta)(f(\zeta))$

$$\begin{split} &X=Y=\mathbb{C}.\\ &\text{Take }A(z_1,\ldots,z_n)=-\frac{z_1+\ldots+z_n}{n}\in\mathbb{C}\leqslant\text{Aut}(\mathbb{C}).\\ &\text{Then id}^A \text{ normalizes center of mass to 0.} \end{split}$$

Note: twisting can change homotopy class! The twist of a constant map can be interesting.

More precise statements

Theorem:

- For $m \ge 5$ and $n \le 2m$, up to twisting, every holomorphic $f: \operatorname{Conf}_m(\mathbb{C}) \to \operatorname{Conf}_n(\mathbb{C})$ is either constant, the identity, or a "root map".
- Lin previously established case m = n.
- Our techniques extend to show that no cabling map can be holomorphic.

Let *X*, *Y* be compact Riemann surfaces of genus 1. Then every nonconstant holomorphic $h: \operatorname{PConf}_m(X) \to \operatorname{PConf}_n(Y)$ is induced by an isomorphism $X \cong Y$ and is a twist of a forgetful map.

More precise statements

Theorem:

Let *X*, *Y* be compact Riemann surfaces of genus ≥ 2 (not necessarily the same) and let $h: \operatorname{PConf}_m(X) \to \operatorname{PConf}_n(Y)$ be holomorphic.

Then up to twisting, either $X \cong Y$ and h is a forgetful map, or else h factors via a forgetful $p : \operatorname{PConf}_m(X) \to X$ and a holomorphic $f : X \to \operatorname{PConf}_n(Y)$.

"Effective de Franchis problem": given X, Y, what is the maximum number of distinct holomorphic $f_i : X \to Y$ (no requirement that graphs be disjoint). Quite open! General bounds exponential in g(X), g(Y).

Theorem:

Let X, Y be compact Riemann surfaces of genera $g(X), g(Y) \ge 2$, and let $f: X \to \text{PConf}_n(Y)$ be holomorphic. Then $n \le 4g(X)g(Y)$.

General theme: promotion of group-theoretic rigidity to space level.

Start with a list of possible maps on π_1 (e.g. by Chen-Kordek-Margalit).

Then analyze which can arise holomorphically.

Use Teichmüller theory (Imayoshi-Shiga), as well as classical complex analysis (Picard, uniformization, max. modulus)

Dimension reduction: fix $\zeta = \{z_1, \dots, z_{n-1}\}$, take $z_n \in X \setminus \zeta$.