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ABSTRACT. An r-spin structure is a choice of rth root of the canonical bundle of a
Riemann surface. Such structures arise in a variety of settings in geometry; in this
lecture series, we will focus on their role in two places at the interface of algebraic
geometry and topology: linear systems on algebraic surfaces (especially toric sur-
faces), and translation surfaces (also known as abelian differentials). In both these
settings, there are “topological monodromy groups” valued in the mapping class
group that encode important information about these families of Riemann surfaces
and their degenerations, and the presence of r-spin structures is reflected in the
underlying group theory. We will outline some recent developments in the theory of
these “higher spin mapping class groups” that allow us to understand monodromy
in the above problems, and ultimately to gain new insights into the behavior of these
families. No specialized knowledge of topology or the mapping class group will be
assumed. Portions of this work are joint with Aaron Calderon.

These notes are the source for a series of four lectures delivered at the winter school
on Cremona groups, geometric topology, and algebraic geometry in Cuernavaca,
Mexico in January 2020. They are intended as a companion to a series of recent
papers [Sal16, Sal19, Cal19, CS19, CS20] by various subsets of the author and A.
Calderon. We will refer to the relevant portions of the research papers throughout.

Assumed background. The author approaches this subject from the point of view of
topology and geometric group theory and confesses that his understanding of the
purely algebro-geometric aspects of the theory is not deep. Because of the nature of
the audience, we will devote some time to the basic theory of the mapping class group,
from which we draw heavily on the now-standard reference by Farb–Margalit [FM12].
The portions of the lectures dealing with abelian differentials necessarily only skim
the surface of this deep body of material, and we refer interested readers to the
survey of Wright [Wri15] for an honest introduction.
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1. MONODROMY PROBLEMS IN ALGEBRAIC AND FLAT GEOMETRY

The ultimate goal of these lectures is to explain how some developments in the
theory of “higher spin mapping class groups” leads to an understanding of a variety
of “monodromy problems”. In this first lecture we will attempt to introduce the
major characters in the story by way of motivating the subsequent excursion into the
theory of the mapping class group.

Standing conventions. All algebraic geometry takes place over C. We also have a
clash of terminology to resolve: do we take dimension over C (in which case we speak
of algebraic curves, toric surfaces, etc.), or do we take real dimension (in which case the
corresponding objects are surfaces and 4-manifolds)? We resolve to use terminology
consistent with context, and will use the former convention in algebro-geometric
settings and the latter when studying topology and the mapping class group.

1.1. Problem 1: monodromy and vanishing cycles in toric surfaces. A standard
reference for toric varieties is the book of Fulton [Ful93], but in these lectures we will
use very little of the theory and we will invoke what is needed as we go. A toric
variety is a variety X with an open dense embedding of an algebraic torus (C×)n, such
that the action of (C×)n extends to an action on X . We will focus on n = 2 - toric
surfaces.

Example 1.1. CP2 and CP1×CP1 are smooth toric surfaces. (C×)2 embeds in CP2 via

(z, w) 7→ [1 : z : w]

and into CP1 × CP1 via

(z, w) 7→ [1 : z]× [1 : w].

(C×)2 acts on CP2 via

(z, w) · [a : b : c] = [a : zb : wc]
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and on CP1 × CP1 by

(z, w) · [a : b]× [c : d] = [a : zb]× [c : wb].

In Lecture 4 we will learn how to construct ample line bundles on toric surfaces
using lattice geometry. For now you can imagine that the toric surface X is just CP2

and the line bundle L is O(d) for d > 0. The space Γ(L) of global sections gives rise
to the associated linear system of curves in X : given a section f ∈ Γ(L), you look
at the divisor Div(f). For (X,L) = (CP2,O(d)), a section f of O(d) is a degree-d
homogeneous polynomial, e.g. f = Xd + Y d + Zd, and the divisor is just the solution
set to this in CP2.

The divisor Div(f) depends only on the projective class of f , and hence we projec-
tivize. Set

UL := P(Γ(L)).

The first thing we must do if we want to study this family topologically is to stratify
the space according to the topological type of the curve. For now we are interested
only in the generic curve, which is smooth. The discriminant DL is a form on UL such
that V (DL) parameterizes non-smooth curves. Set

PL := UL \ (V (DL));

this is the parameter space of smooth sections of L. Accordingly, there is a tautological
family

XL := {(f, x) ∈ PL ×X | x ∈ V (f)}.

Topologically, the projection π : XL → PL endows XL with the structure of a surface
bundle: a fiber bundle over PL with fiber a topological surface. In the case (X,L) =

(CP2,L), the genus is
(
d−1

2

)
; for general L we will see a beautiful formula in Lecture 4

for the genus in terms of lattice point counts in polygons (it is no accident that
(
d−1

2

)
counts lattice points inside a right equilateral triangle of side length d− 3)!

Donaldson’s question. I came to study plane curves motivated solely by the hope
that this surface bundle would have some interesting topology that could be captured
by the mapping class group. At exactly the same time, Remi Crétois and Lionel Lang
were studying the same family (indeed the exact same problem!) in the larger context
of smooth toric surfaces. One of their main motivations was to better understand
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the topological theory of nodal degenerations of curves in toric surfaces. The basic
question here was posed by Donaldson [Don00]; here is a succinct formulation:1

Question 1.2 (Donaldson). Fix a linear system on a smooth toric surface (X,L). Which
simple closed curves can be vanishing cycles for nodal degenerations in L?

There is much to make sense of above. First, recall the notion of a nodal degeneration.
This is a family Cε of curves locally modeled on XY = ε. The curves Cε for ε 6= 0

are smooth, and the central fiber C0 = XY is said to have a node. Topologically, each
Cε is homeomorphic to a cylinder and is shaped like a hyperboloid. As ε → 0, the
“waist” of the hyperboloid shrinks until C0 is homeomorphic to a cone. This waist
curve is called the vanishing cycle for the nodal degeneration.

ε→ 0

FIGURE 1. A vanishing cycle.

To make honest sense of Donaldson’s question, we need to know what is precisely
meant by “which curves”, since different vanishing cycles live over different points
of L: how do we compare simple closed curves in different fibers? We solve this
by choosing a basepoint B ∈ PL, a smooth curve. A nodal degeneration is a path
α : [0, 1]→ UL such that α(0) = B,α(1) is a curve with a single node, and α(0, 1) ⊂
PL lies in the locus of smooth curves. Then the vanishing cycle cα for the nodal
degeneration α is a well-defined isotopy class of curve in B.

In Lecture 4 we will give a complete answer to Donaldson’s question. The answer
is formulated in terms of a gadget called a r-spin structure. We will postpone a precise
statement of the answer until we have defined these. For now, let me advertise one
small but intriguing consequence.

The important point to make now is the strategy of the argument, which also
serves as an outline for the remainder of the lectures.

1In his full question, Donaldson does not restrict his attention to the case of linear systems on toric
surfaces.
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FIGURE 2. For d ≥ 6, three vanishing cycles for nodal degenerations of
a degree-d plane curve cannot be arranged as shown.

(1) In Lecture 2 we will introduce the mapping class group Mod(Σg) of a topological
surface Σg. This is a “topological automorphism group” for Σg in the same
way that the symplectic group Sp(2g,Z) is a “homological automorphism
group” for H1(Σg;Z).

(2) Also in Lecture 2, we will define a topological monodromy representation ρL :

π1(PL) → Mod(Σg) (more generally, we will construct such a monodromy
representation for any topological surface bundle).

(3) Our goal will be to understand the image of ρL. In Lecture 4 we will see how to
read off the answer to Donaldson’s question from Im(ρL). As Mod(Σg) is rea-
sonably well-understood (in particular, there is a simple set of generators), it
would be wonderful if we could easily show ρL was surjective. Unfortunately,
this is rarely the case (but see the work of Crétois–Lang [CL18]).

(4) In Lecture 3, we discuss r-spin structures, and see that the monodromy rep-
resentations of (2) stabilize a certain r-spin structure φL. This means that ρL
is valued in a “r-spin stabilizer subgroup” Mod(Σg)[φL]. Thus to understand
Im(ρL), we need to understand the subgroup Mod(Σg)[φL]. If we want to
show that ρL surjects onto Mod(Σg)[φL], we first need to find a usable set of
generators. This is the heart of the entire argument; we give an outline of how
this is accomplished.

(5) Having identified a useful generating set for Mod(Σg)[φL], we still need to
exhibit them in Im(ρL). This was accomplished by Crétois–Lang in [CL18],
using methods of tropical geometry. We will say something about this in
Lecture 4.

1.2. Problem 2: abelian differentials. I am going to switch gears now and talk about
a seemingly-unrelated problem. The point, of course, is that these problems have
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much more in common than it seems at first! All of the work in these lectures on
abelian differentials is joint with Aaron Calderon.

We fix a genus g ≥ 3 and consider the (projectivized) Hodge bundle PΩg. This is
(at least morally) the vector bundle over the moduli space Mg whose fiber over
C ∈Mg is the space PΩ0(C) of (projective) holomorphic differentials (a holomorphic
differential is also called an abelian differential). A 1-form ω ∈ Ω0(C) has a divisor
Div(ω), i.e. the locus where ω vanishes. This induces a partition κ of 2g−2, according
to the multiplicities of the zeroes. The space we are interested in is a fixed stratum
Hκ: this is the set of differentials ω ∈ Ω0(C), varying over all C ∈ Mg, with Div(ω)

inducing the partition κ.
There is again a tautological family π : Xκ → Hκ, and the basic problem we seek to

answer is to compute the associated monodromy representation.2 The main reason
we are interested in this has to do with flat geometry. Here is a fact that I think is equal
parts wonderful and surprising:

Fact 1.3. Up to suitable equivalence relations, abelian differentials are in one-to-one cor-
respondence with Euclidean polygons with edges identified by translation (”translation
surfaces”).

That is, the following pictures are actually describing holomorphic one-forms!

FIGURE 3. Two abelian differentials on genus 2 surfaces, realized as
translation surfaces. The differential on the left has two zeroes of order
1, drawn in red and blue, and the differential on the left has a single
zero of order 2.

2As we will see in Lecture 4,Hκ can in fact be disconnected, and the monodromy representations
on different components can be quite different!
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The study of abelian differentials is a wonderful blend of algebraic geometry,
flat geometry, dynamics, and more. We cannot hope to give an introduction to the
geometric/dynamical aspects of the theory, and we refer the interested reader to
Wright’s survey article [Wri15]. The main thing we will exploit about this is the
fact that it is very easy to “write down” families of Abelian differentials, by instead
drawing families of translation surfaces.

We think that the study of the monodromy of strata is worthy of study in its own
right, but in Lecture 4 we will say more about some specific corollaries that fall out
of our calculation.

1.3. The common thread: r-spin structures. To conclude this lecture, we give a first
look at the structure that ties together Problems 1 and 2: r-spin structures. Here is a
first definition; three more will appear in Lecture 3 (c.f. Theorem 3.4).

Definition 1.4. Let X be a smooth algebraic curve with canonical bundle3 KX . An
r-spin structure is a line bundle L such that L⊗r = KX , i.e. an rth root of KX .

r-spin structures naturally appear in Problems 1 and 2. To explain how this
happens for toric surfaces, we consider the adjunction formula, which computes the
canonical bundle of a smooth section C of a line bundle L on X :

KC = (L ⊗KX) |C .

For example, in the case (X,L) = (CP2,O(d)), we have KCP2 = O(−3), and so the
canonical bundle of a smooth plane curve C of degree d is induced by restricting
O(d− 3) ∈ Pic(CP2) to C. Thus O(1) |C is an r-spin structure for r = d− 3.4 The key
point here is that the globally-defined line bundleO(1) restricts to an r-spin structure
on every smooth plane curve: smooth plane curves of degree d carry canonical (d−3)-spin
structures.

Something very similar is true for abelian differentials in a fixed stratumHκ. Recall
that κ = {κ1, . . . , κn} is the partition of 2g − 2 induced by the zeroes of ω ∈ Hκ. We
set

r = gcd{κ1, . . . , κn}.

3Recall that the canonical bundle of a smooth variety X is the top exterior power of the cotangent
bundle; in the case of X a curve this is just the cotangent bundle itself.

4As another suggestive remark, this d − 3 is the same d − 3 appearing in the lattice point count
formula alluded to above.
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By definition, a point (C, ω) ∈ Hκ has divisor Div(ω) =
∑
κipi for distinct points

pi ∈ C. Thus the divisor
1

r
Div(ω) =

∑ κi
r
pi

determines a canonical rth root of the canonical bundle, i.e. a canonical r-spin
structure.

2. INTRODUCTION TO MAPPING CLASS GROUPS, SURFACE BUNDLES, AND

MONODROMY

This goal of this lecture is to give a construction of the monodromy representation of a
surface bundle. We recall the setup. Let p : E → B be a Σg-bundle. We will define the
mapping class group of Σg, written Mod(Σg), or Modg for short, and a homomorphism

ρp : π1(B)→ Modg .

This is a topological refinement of the sort of monodromy one typically encounters in
algebraic geometry, where one looks at how π1(B) acts on the homology of the fibers.

A standing convention in the remainder of the lectures: we always take the genus
g to be at least 2.

2.1. The mapping class group. We first discuss the target group Modg. For a book-
length introduction to the subject we recommend A primer on mapping class groups by
Farb and Margalit [FM12].

In Lecture 1 we motivated the mapping class group as the group of “topological
automorphisms” of Σg, in a similar spirit to how Sp(2g,Z) is the group of “homologi-
cal automorphisms” of Σg. The most naı̈ve definition of “topological automorphism
group” of Σg would then be the group Diff+(Σg) of all (orientation-preserving) dif-
feomorphisms of Σg. This is unsuitable for our purposes, however. First, this group
is massive and it’s a hopeless task to say anything meaningful about its algebraic
structure. Secondly, this group records far too much information. To construct a mon-
odromy representation to Diff+(Σg) will require a choice of auxiliary “flat connection”
which doesn’t even exist for all surface bundles, and is non-unique even when it
does.

The solution we take is to forget the fine structure of Diff and just work with
diffeomorphisms up to isotopy. Recall that two diffeomorphisms f0, f1 are isotopic if
there exists a homotopy ft between f0 and f1 such that ft is a diffeomorphism for all
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t ∈ [0, 1]. Equivalently, an isotopy is a path in Diff+(Σg). This motivates our definition
of Modg:

Modg := π0(Diff+(Σg)) ∼= Diff+(Σg)/Diff0(Σg).

Here, Diff0(Σg) is the path-component of the identity, i.e. the subgroup of diffeomor-
phisms isotopic to the identity.

How much do we throw away when we ignore isotopy? The answer is, nothing
meaningful. In particular we still have well-defined actions on the standard topologi-
cal invariants of Σg, namely homology and homotopy. Below, recall that Out(G) is
the group of outer automorphisms of G, i.e. Aut(G)/ Inn(G), where Inn(G) is the group
of “inner” automorphisms (G acting on itself by conjugation).

Lemma 2.1. The mapping class group has a well-defined action on both π1(Σg) andH1(Σg;Z).
That is, there are homomorphisms

Π : Modg → Out(π1(Σg))

and
Ψ : Modg → Sp(2g,Z).

Remark 2.2. The theorem of Dehn-Nielsen-Baer asserts that Π is “almost an isomor-
phism”. If we extend the definition of Modg to allow our mapping classes to reverse
orientation (a group typically written Mod±g ), then Π : Mod±g → Out(π1(Σg)) is an
isomorphism. Thus Π(Modg) is the index-2 subgroup Out+(π1(Σg)) defined as those
outer automorphisms that preserve the “orientation” on π1(Σg).

Dehn twists. It is a basic fact that Sp(2g,Z) is generated by transvections, automor-
phisms of the form

Tv(x) = x+ 〈x, v〉v,
where 〈·, ·〉 denotes the symplectic (intersection) pairing on H1(Σg;Z). In fact, you
can write down a simple explicit collection of 2g + 1 transvections that generate,
in much the same way that you can show that SLn(Z) is generated by an explicit
collection of elementary matrices. There is an analogous statement for the mapping
class group, where we give a topological incarnation to a transvection as a so-called
Dehn twist.

We start by defining a Dehn twist on a cylinder: hold one end fixed, and apply a
full rotation to the other boundary component. See Figure 4. This is the local model
for a general Dehn twist. Let a ⊂ Σg be a simple closed curve, and enlarge a into a
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FIGURE 4. Left: the local model of a Dehn twist about the blue curve.
Right: Dehn twisting on a surface. The red curve has been smoothed
out by an isotopy.

cylinder Ca with core curve a. The Dehn twist Ta is the element of Modg represented
by performing a full twist on the cylinder Ca, leaving Σg \ Ca fixed. You can check
that the mapping class Ta is well-defined independently of the various choices made.
The theorem below is a fundamental result on mapping class groups. The finite
generation statement is due to Dehn and Lickorish, and the generating set is due to
Humphries.

Theorem 2.3 (Dehn–Lickorish, Humphries). For g ≥ 2, Modg is generated by the
collection of 2g + 1 Dehn twists shown in Figure 5

FIGURE 5. The Humphries generators for Modg, illustrated for g = 4.

Thus Dehn twists play a similar role to transvections in the theory of Sp(2g,Z). In
fact, they are very closely related:
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Fact 2.4. Let a ⊂ Σg be a simple closed curve. Then

Ψ(Ta) = T[a],

where the element T[a] ∈ Sp(2g,Z) is the transvection about the homology class [a] ∈
H1(Σg;Z).

Dehn twists are the fundamental building blocks of mapping classes. To give you
a taste of the subject, and to set the stage for Lecture 3, we present below some of the
basic relations satisfied by collections of Dehn twists.

Proposition 2.5 (Dehn twists and Artin groups).

(1) If simple closed curves a and b are disjoint, then the corresponding Dehn twists
commute: TaTb = TbTa.

(2) If simple closed curves a and b intersect transversely exactly once, then the corre-
sponding Dehn twists satisfy Artin’s braid relation: TaTbTa = TbTaTb.

If these relations look familiar, that’s because this is the same set of relations that
define the braid group Bn. This is a powerful fact (and is far from being an accident):
mapping class groups and braid groups are closely related. Group relations in the
braid group (e.g. the existence of a center) can be ported into the mapping class
group by embedding the generators of Bn as Dehn twists in the right configuration.
More generally, an Artin group is any group where all relations are of the above form.
Other Artin groups (those of “finite type”) have similar interesting relations in them
which will play a very important (if somewhat occluded) role in the guts of the main
theorem discussed in Lecture 3.

Change-of-coordinates. In linear algebra, we are used to the idea of changing bases
and working coordinate-free. There is a similar sort of principle at work in the
mapping class group which is worth briefly discussing here.

One of the basic facts in linear algebra is that any linearly-independent set can
be extended to a basis. This implies that GLn acts transitively on the set of “con-
figurations” of vectors of a given cardinality, where by “configuration” here we
simply mean the property of being linearly-independent. For surfaces, simple closed
curves play the role of vectors, but here “configuration” can mean any number of
things, typically referring to some prescribed pattern of intersection. Where linear
algebra uses the basis-extension lemma to take one configuration to another, change-
of-coordinates in the mapping class group uses the classification of surfaces. We give
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a simple illustration of this. Recall a simple closed curve c ⊂ Σg is nonseparating if
Σg \ c is connected; this is well-defined on the level of isotopy.

Lemma 2.6. Modg acts transitively on the set of isotopy classes of nonseparating simple
closed curves.

Proof. Let c and d be nonseparating. The surfaces Σg \ c and Σg \d are both connected,
both have Euler characteristic χ(Σg) and two boundary components (and are ori-
ented). By the classification of surfaces, there exists a diffeomorphism f : Σg \ c→
Σg \ d. This takes boundary components to boundary components and so can be
extended to a diffeomorphism of Σg to itself that takes c to d as required. �

More sophisticated incarnations of this principle are at work in essentially every
substantial theorem about the mapping class group; it is used ubiquitously to invoke
the existence of desired configurations of curves, e.g. on arbitrary subsurfaces, or
to guarantee the ability to extend configurations of curves to larger configurations,
etc. It is what allows us to work coordinate-free, i.e. without having to draw explicit
pictures of very complicated curves, or having to find and work with some elaborate
scheme for parameterizing simple closed curves. See [FM12, Section 1.3] for a more
in-depth discussion.

2.2. Surface bundles and monodromy. Recall that a surface bundle of genus g is a
fiber bundle

p : E → B

with fibers diffeomorphic to Σg. In Lecture 1 we met the surface bundles we will
eventually study: the family of smooth sections of a linear system on a smooth toric
surface, and the family of abelian differentials in a given stratum. How does one
actually study such things? Again we look to a “linear” analogue for inspiration.

The most straightforward analogue would be the theory of vector bundles. Here,
a central role is played by the characteristic classes of the bundle. While there is a
theory of characteristic classes for surface bundles (c.f. [Mor01, Chapter 4]), these
are fairly coarse invariants, and in any case, the theory is badly underdeveloped.5

5We understand the so-called “stable classes” very well thanks to the theorem of Madsen–Weiss.
But an Euler characteristic computation of Harer–Zagier reveals that only a vanishingly small portion
of the ring of characteristic classes of surface bundles are stable, and almost nothing is known about
these unstable classes.
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A better analogy is to theory of local systems (locally-constant sheaves). Here, the
monodromy of a flat vector bundle is a fundamental (indeed, complete) invariant.

(Optional) Monodromy of local systems. Let F be a local system over B with stalks
an abelian group A, and let b ∈ B be a basepoint. From this we seek to construct a
homomorphism

ρ : π1(B, b)→ Aut(A).

Since F is a local system, there exists a covering U of B such that F |U is the constant
sheaf A for U ∈ U . Hence if x, y ∈ U are points, there is a canonical identification of
stalks Fx ∼= Fy.

Let γ : [0, 1] → B be a loop based at B. We can partition [0, 1] into segments
0 = t0 < t1 < · · · < tn−1 < tn = 1 such that for each 1 6 i 6 n, there is a
containment γ(ti−1, ti) ⊂ U for some U ∈ U . Thus there are canonical isomorphisms
fi : Fγ(ti−1) → Fγ(ti), and composing, we get an automorphism

ρ(γ) := fn ◦ · · · ◦ f1 : Fb → Fb.

Moreover, it is straightforward to show that ρ(γ) truly depends only on the homotopy
class of γ.

A rigorous construction of the monodromy map for surface bundles would proceed
along these lines: we would show that all of the choices made along the way only
change the diffeomorphism we produce by an isotopy.

Monodromy for surface bundles. For expediency’s sake we will give a somewhat
ad-hoc definition of monodromy for surface bundles and will elide some subtleties.6

For a more comprehensive discussion, see [FM12, Section 5.6]. We start with the
simple case where B = S1.

Example 2.7 (Surface bundles over S1: the mapping torus construction). Let f ∈
Diff+(Σg) be chosen. Associated to this is the mapping torus Mf , a closed 3-manifold:

Mf = Σg × [0, 1]/(x, 1) ∼ (f(x), 0).

The projection onto the second coordinate defines a fibration p : Mf → S1. We make
the following (not difficult) assertions:

6For the careful reader: we are ignoring the fact that the monodromy representation is well-defined
only up to global conjugacy (that is, there is really only a Modg-conjugacy class of homomorphisms
ρ : π1B → Modg). To convert the discussion below into factual assertions, replace equality of mapping
classes with equality up to conjugacy throughout.
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(1) The diffeomorphism type of Mf as a 3-manifold depends only on the class
[f ] ∈ Modg. Moreover, mapping tori Mf1 and Mf2 are isomorphic as Σg-
bundles (i.e. via a diffeomorphism covering id : S1 → S1) if and only if there
is an equality f1 = f2 holding in Modg.

(2) Conversely, if p : M → S1 is a Σg-bundle over S1, then M has the structure of
a mapping torus: there is a bundle isomorphism M ∼= Mf for some uniquely-
specified f ∈ Modg.7

We define the monodromy of p : Mf → S1 to be the associated element f ∈ Modg.

We can use this fact to define the monodromy representation for an arbitrary
surface bundle. Let p : E → B be a Σg-bundle. Choose a basepoint b ∈ B. Let
γ : S1 → B be a loop based at b. We can pull E/B back along γ to obtain a surface
bundle Mγ over S1. By the above, there is an element fγ ∈ Modg. We define the
monodromy representation of p : E → B to be the homomorphism

ρ : π1(B, b)→ Modg; γ 7→ fγ.

It is not hard to see that ρ(γ) depends only on the homotopy class of γ and hence is
well-defined as a function, and to convince yourself that ρ is a homomorphism.

Examples. The monodromy of a surface bundle around a loop measures how the
fiber gets “twisted” as it moves along the loop. To close this lecture we give some
examples of how this works in practice.

Example 2.8 (Vanishing cycles and the Picard–Lefschetz formula). We return to the
nodal degeneration family Cε discussed in Lecture 1. We can view this as a surface
bundle over ∆∗ = {ε ∈ C | 0 < |ε| 6 1}. What is the monodromy of the loop
determined by t 7→ Ce2πit? The Picard-Lefschetz formula says that the homological
monodromy is given by the transvection Tv, where v ∈ H1(C1;Z) is the core curve of
the cylinder, i.e. the vanishing cycle. In light of Fact 2.4 it should not be surprising to
learn that the Modg-monodromy is the Dehn twist Ta about the vanishing cycle.

7We advise the reader that the classification of mapping tori up to mere diffeomorphism (i.e. not
preserving the surface bundle structure) is a much more subtle and rich problem. Thurston classified
the set of ways that a given 3-manifold M can be given the structure of a surface bundle [Thu86]. This
includes the following fascinating trichotomy: a given M either has zero structures as a mapping
torus, or else M ∼= Mf for a unique (up to conjugacy) f ∈ Modg, or else M ∼= Mfi for an infinite
collection of mapping classes fi ∈ Modgi , where the genera of possible fibers gi is necessarily unbounded. This
was one of the first facts about surface bundles that really grabbed my attention!
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To see how to compute the monodromy in this example, we follow the presentation
given by [AGZV12, pp. 2-5]. See Figure 6. We work with the equivalent model
Cε = V (X2 + Y 2 − ε) of a nodal degeneration. The projection onto the X-coordinate
represents Cε as a double cover of C, branched atX = ±

√
ε. We can view the cylinder

Cε as two copies of C glued together along a slit running between ε,−ε. As we orbit
the singularity once along the path ε(t) = e2πit, the slit makes only a half-rotation.
What was originally a curve running directly from top to bottom of the cylinder now
has been twisted once: this is a Dehn twist!

FIGURE 6. The monodromy of a vanishing cycle is a Dehn twist.

This is a very important example that lies at the heart of our study of vanishing
cycles in toric surfaces. It tells us that we can keep track of vanishing cycles by
keeping track of Dehn twists in our monodromy.

Example 2.9 (Shearing of translation surfaces). Consider the translation surface X0

depicted below at left. We consider two translation surfaces to be equivalent if one
can be cut up and rearranged (using only Euclidean translations) to give the other.
Thus the two translation surfaces X0 and X1 at left and right correspond to the
same point (C, ω) ∈ Hκ (here κ = {1, 1}). We can interpolate between X0 and X1

by the family Xt, and the assignment t 7→ Xt determines a loop in Hκ. What is the
monodromy of this loop? Convince yourself that the monodromy is the Dehn twist
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along the core curve of the cylinder indicated below. Such a deformation is called a
shear. These seem to play a fundamental role in the structure of π1(Hκ) (they do not
in general generate π1(Hκ), but they may generate a finite-index subgroup; it’s one of
many many things waiting to be understood about π1(Hκ)!).

shear

cut

rearrange

glue

FIGURE 7. The monodromy of a shear is a Dehn twist.

3. HIGHER SPIN STRUCTURES AND THEIR MAPPING CLASS GROUPS

In Lecture 1 we met two (families of) surface bundles: the family of smooth sections
of a line bundle on a toric surface, and the family of abelian differentials in a fixed
stratum. We also saw a first glimpse of the structure connecting these two: the
existence of canonical rth roots of the canonical bundles of the fibers, i.e. r-spin
structures. The purpose of this lecture is to explain how the presence of this structure
is reflected in the associated monodromy representations. In the first part of the
lecture, we will study r-spin structures themselves and recast them from a more
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topological point of view. Then in the second part, we use this new perspective to
study the stabilizer subgroups Modg[φ].

3.1. r-spin structures. To an algebraic geometer, the definition of an r-spin structure
given above (Definition 1.4) is perfectly satisfactory: it is just an rth root of the
canonical bundle. To a topologist, however, this leaves a lot to be desired. It is
not even clear if there is any topological meaning that can be assigned to an r-spin
structure, nor whether (as there ought to be) there is an action of the mapping class
group on the set of r-spin structures. In this section, we will see how r-spin structures
correspond to purely topological gadgets called Z/rZ winding number functions. These
were originally defined and investigated8 by Humphries–Johnson [HJ89].

Definition 3.1 (Z/rZ winding number functions). For a topological surface Σ, let
S(Σ) denote the set of isotopy classes of oriented simple closed curves on Σ. A Z/rZ
winding number function is a function

φ : S(Σ)→ Z/rZ

that satisfies the following axioms:

(1) (Reversibility) If c̄ is the same curve c endowed with the opposite orientation,
then φ(c̄) = −φ(c).

(2) (Twist-linearity) If a, b ∈ S(Σ), then

φ(Tb(a)) = φ(a) + 〈a, b〉φ(b).

(3) (Homological coherence) Let S ⊂ Σ be a subsurface with boundary compo-
nents c1, . . . , ck, each oriented so that S lies to the left. Then

k∑
i=1

φ(ci) = χ(S).

Remark 3.2 (r divides 2g − 2). We know that if L is an r-spin structure, then r must
divide 2g − 2 since degree of a line bundle is multiplicative. As a first hint as to
the connection between r-spin structures and Z/rZ winding number functions, we
show here that homological coherence implies that r | 2g − 2 for winding number
functions as well. Let c ⊂ Σg be a curve separating Σg into subsurfaces S ∼= Σ1,1 and
S ′ ∼= Σg−1,1. When we orient c with S to the left, homological coherence tells us that

8In a somewhat more general context.
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φ(c) = −1. Then reversibility and homological coherence tells us that φ(c) = 2g − 3

as well, since c also bounds S ′ to the right. Thus −1 = 2g − 3 in Z/rZ, i.e. r | 2g − 2.
As a sub-remark, this example illustrates an important fact about winding number

functions: they are not cohomology classes (at least on Σg itself)! The curve c is
null-homologous, but carries a nonzero φ-value. In Theorem 3.4 below we will
understand that φ is a cohomology class, just on a different space.

Remark 3.3. The terminology suggests that we should think of the value φ(c) as some
sort of “winding number” of the oriented curve c. One way to construct winding
number functions that makes this precise is as follows. Let ξ be a vector field on Σ

that has isolated zeroes p1, . . . , pn. If c is a C1-immersed curve on Σg \ {p1, . . . , pk},
then we can compute the winding number of the forward-pointing tangent vector
c′(t) with respect to ξ, giving us an integral winding number of c. You can check
(alternatively, appeal to the Poincaré-Hopf theorem) that the winding number of c
then changes by ordξ(pi) when c is isotoped across the zero pi. Thus, setting

r = gcd ordξ(p1), . . . , ordξ(pk),

we see that this procedure gives a well-defined Z/rZ-winding number function on
Σg.

Observe that this structure appears on an abelian differential. A differential (C, ω)

determines a vector field (at least up to a fiberwise action of R+) on C by taking
tangent vectors v with ω(v) ∈ R≥0, and r as we have defined it here agrees with the
definition of r we supplied in Lecture 1. Below we see that this is not a coincidence.

Theorem 3.4. Let C be a Riemann surface of genus g. Let UTC denote the unit tangent
bundle of C; this is an S1 bundle over C with fiber represented by a loop ζ (counterclockwise
rotation in the tangent space at a single point). Then for r | 2g − 2, the following sets are in
natural bijection:

(1) The set of r-spin structures on C (rth roots L of KC),
(2) The set of Z/rZ fiberwise connected covers of UTC up to a choice µ of primitive rth

root of unity,
(3) The coset of H1(UTC;Z/rZ) defined by the condition φ(ζ) = µ (identifying Z/rZ

with the group of rth roots of unity),
(4) The set of Z/rZ winding number functions on C.

Proof. We will provide a sketch of the main ideas.
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[(1) ⇐⇒ (2)] Let L be an r-spin structure. We adopt the following notation: for a
line bundle V over C, let E(V ) denote the total space of the bundle, and let E(V )◦

be obtained from E(V ) by deleting the zero section. As L⊗r = KC , there is a Z/rZ
cover E(L) → E(KC) which is unbranched when restricted to E(L)◦ → E(KC)◦.
Fiberwise, this is represented by the covering z 7→ zr. Thus an r-spin structure
determines a Z/rZ unbranched cover of E(KC)◦. The unit tangent bundle UTC is a
fiberwise deformation-retract of E(KC)◦, and so an r-spin structure gives rise to an
element of (2). The covers so arising all lift ζ to an arc in C connecting 1 to e2πi/r, thus
fixing a choice of primitive root of unity. It is not hard to see that different r-spin
structures give rise to distinct covers (if L,L′ are distinct, there must be some loop
γ ∈ C which has different holonomy for L and for L′ and hence the associated covers
assign different lifts to γ), and there are r2g of each, establishing the bijection.

[(2) ⇐⇒ (3)] This is basic covering space theory. For an abelian group A and a
space X , the set of A-covers of X is in bijection with H1(X;A). If γ ∈ X is a loop
and φ ∈ H1(X;A) is a class, the assignment γ 7→ φ(γ) ∈ A determines which sheet of
the cover γ lifts to, so that the choice of µ in (2) corresponds to the coset condition
φ(ζ) = µ in (3).

[(3) ⇐⇒ (4)] The direction (3) =⇒ (4) proceeds via the Johnson lift. Let c ∈ S(C)

be an oriented simple closed curve. A loop in UTC is the same data as a framed curve
on C; i.e. a curve c on C equipped with a choice of nonvanishing vector everywhere
along c. The Johnson lift of c ∈ S(C) is the loop ĉ ⊂ UTC obtained by framing c via
the forward-pointing tangent vector. If φ ∈ H1(UTC;Z/rZ) is an element of (3), we
define the function

φ : S(C)→ Z/rZ; c 7→ φ(ĉ),

i.e. by evaluating the cohomology class φ on the 1-cycle ĉ. The twist-linearity and
homological coherence properties now follow from the fact that φ is a cohomology
class on UTC.

The reverse direction (4) =⇒ (3) is due to Humphries–Johnson. They proceed
by showing that twist-linearity and homological coherence imply that φ (a Z/rZ
winding number function) is determined by its values on a set of 2g + 1 curves
determining a basis (under the Johnson lift) for H1(UTC;Z). �
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Remark 3.5. As alluded to in the proof, it is a priori known that sets (1), (2), (3) each
have cardinality r2g, and hence when r | 2g − 2, there are exactly r2g Z/rZ-winding
number functions on Σg as well.

3.2. The mapping class group action; stabilizers. Following Theorem 3.4, we will
view an r-spin structure as a Z/rZ winding number function. This allows us to
understand how the mapping class group acts on the set of r-spin structures. Modg
acts on the set of r-spin structures (via its action on winding number functions) from
the left via

(f · φ)(c) = φ(f−1(c)).

For a fixed r-spin structure φ, we define the spin structure stabilizer group as

Modg[φ] = {f ∈ Modg | f · φ = φ}.

Following the discussions in Lectures 1 and 2, we can now say that for both problems
we are studying, the monodromy representation is valued in a particular Modg[φ]. We
will eventually show that in both these cases, the monodromy surjects onto Modg[φ].
In order to do this, we need to give an explicit description of a generating set. That is
our objective for the remainder of the lecture, and indeed forms the technical heart of
the entire discussion.

Admissibility. To formulate the statement, we introduce a key idea. As discussed in
Lecture 2, Dehn twists are the basic building blocks of mapping classes. We would
like to understand the collection of Dehn twists that stabilize φ. To understand this,
we consider the twist-linearity formula. This tells us that if φ(a) = 0, then necessarily
φ(Ta(b)) = φ(b) for all b ∈ S(Σg), i.e. Ta ∈ Modg[φ]. And conversely, if φ(b) 6= 0 and b

is nonseparating, then you can find a curve c with 〈b, c〉 = 1, and then φ(Tb(c)) 6= φ(c).
In other words, c witnesses the fact that Tb does not preserve φ.

(As a remark, twist-linearity also implies that if a is a separating curve, then
Ta ∈ Modg[φ] since in that case 〈a, ·〉 is identically zero. Separating twists will play an
important role later on, but we will not consider them to be “admissible” in the sense
to be defined below).

Definition 3.6 (Admissible curve, admissible twist, admissible subgroup). A non-
separating curve a ⊂ Σg is said to be admissible (with respect to an implied φ) if
φ(a) = 0 (necessarily for either choice of orientation). The corresponding Dehn twist
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Ta ∈ Modg[φ] is called an admissible twist, and the group

Tφ = 〈Ta | a admissible〉 6 Modg[φ].

is called the admissible subgroup.

Since there are finitely many r-spin structures, the subgroup Modg[φ] is of finite
index in Modg. Many finite-index subgroups do not contain any Dehn twists at all (of
course every Γ 6 Modg contains powers of every Dehn twist), and even though Modg
itself is generated by Dehn twists, this absolutely does not directly imply that Modg[φ]

is generated by the Dehn twists it contains (the admissible twists). Remarkably, this
is true for spin structure stabilizer groups.

Theorem 3.7 (Generation by admissible twists). Let φ be an r-spin structure on Σg for
g ≥ 5. Then there is an explicit finite collection a1, . . . , ak of admissible curves such that

Modg[φ] = 〈Ta1 , . . . , Tak〉.

Moreover, if r = 2g − 2 we can take k = 2g and otherwise we can take k = 2g + 1.

Remark 3.8. There are more precise formulations of Theorem 3.7 that supply you
with exact configurations of twists that generate Modg[φ]; see [Sal19, Theorem 9.5]
and [CS19, Theorem B]. I am choosing to be imprecise here in the statement of
Theorem 3.7 for expediency’s sake, since giving precise formulations would be
tedious and ultimately not worth the expenditure in time. In subsequent work I’ll
invoke the precise formulations; you’ll just have to trust me when I assert that the
given collections of twists generate.

Example 3.9. To illustrate the theorem, Figure 8 shows some examples of the sorts of
generating sets produced by Theorem 3.7.

Remark 3.10 (Arf invariants and orbits of r-spin structures). The difference in the
structure of the configurations of curves in the second and third examples above is
explained as follows. If φ and ψ are r-spin structures in the same Modg-orbit, then
their stabilizers are conjugate subgroups in Modg and hence the generating sets “look
the same” (c.f. our discussion of the change-of-coordinates principle in Lecture 2).
The orbit structure of Modg on r-spin structures is classified by something called the
“Arf invariant”. In the interest of simplicity, I will attempt to avoid a discussion of
the Arf invariant, but see [Sal19, Sections 3.4, 4.2] and/or [CS19, Section 2.3].
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FIGURE 8. Three examples of the sorts of generating sets produced by
Theorem 3.7. The left generates the stabilizer of a 3-spin structure on a
surface of genus 10. The top right generates an 8-spin structure stabi-
lizer, and the bottom right generates a 4-spin stabilizer subgroup. In
each case, the spin structure is the one implicitly but uniquely specified
by the condition that each curve shown is admissible.

For now, it suffices to know that if r is odd, there is exactly one orbit and if r is
even there are exactly two. The different configurations in the examples above show
generating sets for different Arf invariants.

3.3. Proving Theorem 3.7. A full proof of Theorem 3.7 is quite involved: the original
version in [Sal19] occupies the bulk of a 61 page paper, and the improvements
needed for [CS19] took another 30 or so (though the second paper largely improves
arguments from the first instead of adding new ones). Nevertheless it is not difficult
to explain the argument in outline. It breaks up into two halves. In the first half, we
start with an explicit finite collection of admissible twists, and we show that this finite
collection of twists generates the full admissible subgroup Tφ. Then in the second
half we show that the admissible subgroup is the full stabilizer: Tφ = Modg[φ].
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Step 1: Generating admissible twists. The basic principle at work here is a common
tool in geometric group theory: we make use of an auxiliary simplicial complex (in
fact, just a graph). In this case, our goal is to show that the finite set {Ta1 , . . . , Tak}
generates all admissible twists. We achieve this by building the admissible curve graph
Cφ(Σg). The vertices in this graph correspond to admissible curves, and we join a, a′

by an edge if they are disjoint. Observe that Modg[φ] acts on this graph by simplicial
automorphisms, but that Modg does not.

Lemma 3.11. The admissible curve graph Cφ(Σg) is connected for all g ≥ 3.

Proof. (Sketch) We use the “hitchhiking principle”: we find a path between arbitrary
vertices a, b by first finding a path between them in a related graph that is known
to be connected, and then joining each pair of adjacent vertices in this auxiliary
graph by a path in Cφ(Σg). In this case, the auxiliary graph is the graph of genus 1

subsurfaces, known to be connected for g ≥ 3 by the “Putman trick” (c.f. [Put08]
or [Sal19, Theorem 7.1]). We enclose a, b inside genus 1 subsurfaces Sa and Sb and
connect these by a sequence of disjoint subsurfaces. Using the theory of winding
number functions, we can find admissible curves on every genus-1 subsurface, and
thus build our path of admissible curves by following the path of disjoint genus-1
subsurfaces. �

Morally, the proof of step 1 proceeds as follows: we develop methods to show that
if we start with a certain configuration of admissible curves in some localized region
R ⊂ Cφ(Σg), we can “expand out” one step, writing the admissible twists Ta for a any
curve in the 1-neighborhood of R as a product of the admissible twists in R. Since
Cφ(Σg) is connected, as we expand this way starting from our starting configuration,
we are guaranteed to eventually hit all admissible twists.9

Step 2: From admissible twists to the full stabilizer. Step 1 found a finite generating
set for the admissible subgroup Tφ. We now need to show that Tφ = Modg[φ]. The
way we do this is by examining both groups from the point of view of a filtration on

9For readers interested in reconciling this remark with the paper [Sal19], here are some guideposts.
The “methods” alluded to for expanding outwards in the complex of admissible curves is a reference
to the theory of “spin subsurface push subgroups” discussed in [Sal19, Section 8]. For the technical
reasons explained in [Sal19, proof of Proposition 8.2], we actually structure our argument around the
complex of genus 2 subsurfaces, which is connected only for g ≥ 5. This is the source of the stipulation
g ≥ 5 in Theorem 3.7.
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the mapping class group. This is called the Johnson filtration; here is a brief summary
of the relevant portion of the theory.

Definition 3.12 (Johnson filtration). We will only need to know about the first two
terms. The first term is the Torelli group Ig, defined as the kernel of the symplectic
representation Ψ : Modg → Sp(2g,Z). The second term is the Johnson kernel Kg.
In [Joh80], Johnson defined a homomorphism

τ : Ig → Vg,

where Vg is a certain finite-rank Z-module, and defined Kg as the kernel of τ . In a
subsequent paper [Joh85], he showed that Kg is generated by separating twists:

Kg = 〈Tc | c separating〉.

Remark 3.13. Recall that we observed from the twist-linearity formula that if c is
separating, the twist Tc preserves φ. Thus we have a containment Kg 6 Modg[φ].

To show that Tφ = Modg[φ], it suffices to show that they “look the same” from the
perspective of the Johnson filtration. This has three pieces. For the interested reader,
we note where to find the corresponding arguments in the papers [Sal19, CS19].

(1) Identify the image Ψ(Modg[φ]), and show that Ψ(Tφ) = Ψ(Modg[φ]) [Sal19,
Lemmas 5.4 and 6.4].

(2) Identify the image τ(Modg[φ]), and show that τ(Tφ) = τ(Modg[φ]) [CS19,
Lemma 6.5].

(3) Show that Kg 6 Tφ [CS19, Lemma 6.4].

We close the lecture with a brief comment on each of these steps. In each case, the
constructive step (constructing suitable elements in Tφ) has two main ingredients: a
more sophisticated version of the change-of-coordinates principle that takes φ into
account (this allows us to “work coordinate-free”), and a facility with relations in the
mapping class group (e.g. that allow us to express separating twists as products of
nonseparating twists).

(1) If r is odd then we can show directly that Ψ(Tφ) = Sp(2g,Z) by constructing
admissible curves in arbitrary homology classes and running the admissible
twists through Ψ. If r is even then Modg[φ] preserves a mod-2 spin struc-
ture, which is well-defined on the level of homology and hence Ψ(Modg[φ])

stabilizes this; we can again directly show that Ψ(Tφ) is as large as possible.
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(2) The image τ(Modg[φ]) turns out to be closely related to a classical portion of
the theory of the Torelli group - the Chillingworth homomorphism. Once this is
recognized, it’s not hard to complete the work of the step.

(3) This step is just lots and lots of applications of relations in the mapping class
group (chain relation, lantern relation, etc.). Things get substantially more
subtle in the case of r even (where there is an Arf invariant to worry about);
in a forthcoming paper [CS20], Aaron and I finally have written down the
“definitive” proof of this.

4. MONODROMY PROBLEMS (II): COMPUTATIONS AND CONSEQUENCES

Back in Lecture 1 we formulated the main problems we are interested in solving.
We found two classes of surface bundles (families of Riemann surfaces) for which
the monodromy

ρ : π1(B)→ Modg[φ]

was valued in a spin structure stabilizer group. We explained how the ultimate
goal was to be able to show that such ρ is surjective, for which we needed to have a
criterion for a collection of elements in Modg[φ] to generate. This was accomplished
in the previous lecture in Theorem 3.7. In this final lecture we will return to a study
of the families themselves. Our task is now to find a sufficient collection of elements
of Im(ρ) to satisfy Theorem 3.7; to do this we will need to understand more about the
families themselves.

4.1. Linear systems on toric surfaces. This will be an exposition of the work of
Crétois–Lang [CL18]. They found a method to write down a large finite collection of
Dehn twists in the image of the monodromy map for any linear system L on a smooth
toric surface X . Recall from Example 2.8 that Dehn twists arise as the monodromy
associated to a nodal degeneration. Thus, find lots of nodal degenerations and you’ve
found lots of Dehn twists. The challenge arises in keeping track of how different
degenerations (different vanishing cycles/twists) interact with/ intersect each other.

The basic idea of Crétois–Lang is to use the methods of tropical geometry to find a
beautiful combinatorial scheme for creating lots of degenerations in such a way that it
is possible to track the relative locations of the vanishing cycles. I cannot comment on
the details of their argument, and I refer the interested reader to their paper [CL18].
What I can do is explain what their theory looks like and how it interfaces with the



26 NICK SALTER

theory we’ve developed. We follow [Sal19, Sections 10,11].

Linear systems on toric surfaces: what do they look like? Answer: they look like
this (see Figure 9).

FIGURE 9. Representing the line bundle O(6) on CP2 as a lattice polygon.

Let’s explain. We start with the lattice Z2 ⊂ R2. A lattice polygon ∆ (i.e. vertices
of ∆ lie in Z2) determines a line bundle L∆ on a toric surface X∆ as follows: let
S = ∆ ∩ Z2 be the set of lattice points in ∆; say this has cardinality m. Enumerate the
points in S as (ai, bi) for i = 1, . . . ,m. This specifies an embedding (C×)2 → CPm−1

via
(z, w) 7→ [za1wb1 : · · · : zamwbm ].

The toric surface X∆ is defined as the closure of (C×)2 under this embedding, and
the line bundle L∆ is the restriction of O(1).

Example 4.1. Consider the polygon ∆ given as the convex hull of (0, 0), (1, 0), (0, 1).
Then the embedding is

(z, w) 7→ [1 : z : w].

Thus the toric surface is CP2 with line bundle O(1) (compare Example 1.1).

Example 4.2. Consider now ∆ given as the convex hull of (0, 0), (2, 0), (0, 2). Then
the lattice points in ∆ are given as

S = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 0)}

and the embedding is

(z, w) 7→ [1 : z : z2 : w : zw : w2].
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Those with an algebro-geometric background will recognize this as the Veronese
embedding, whose closure gives an embedding CP2 → CP5. The line bundle O(1) on
CP5 has sections given by linear forms, and under the Veronese embedding, these pull
back to give quadratic forms on CP2. That is, ∆ as above gives the pair (CP2,O(2)).
More generally, applying this procedure to ∆ the convex hull of (0, 0), (d, 0), (0, d)

gives (CP2,O(d)).

Remark 4.3. The surface X∆ is not necessarily smooth. This is the case exactly when
at each vertex v of ∆, the “edge vectors” e1, e2 (the vectors connecting v to the nearest
lattice point to v on each edge) generate Z2. In such cases we say that ∆ is smooth.

Given a smooth ∆, we want to understand the properties of the line bundle L∆.
Two things are especially important for us: (1) What is the largest r such that L∆

admits an rth root? (2) What is the genus of a smooth section of L∆? Both of these
can be read off from ∆, and both are formulated in terms of the adjoint polygon.

Definition 4.4. Let ∆ be a lattice polygon. The adjoint polygon ∆a is the convex hull
of the lattice points lying in the interior of ∆.

The adjoint polygon for ∆ as in Figure 9 is shown as shaded.
The terminology arises from the fact that when ∆ is smooth, L∆a is the adjoint line

bundle for L∆: if C is a smooth section of L∆, then

L∆a |C= KC .

Now we can answer the two main questions. We say that a polygon ∆ is a d-fold
dilate if 1

d
∆ is also a lattice polygon.

Fact 4.5 (Dilates are roots). Let ∆a be a lattice polygon. Then L∆a admits an rth root if and
only if ∆a is an r-fold dilate, in which case

(L 1
d

∆a
)⊗d = L∆a .

In particular, a smooth section C of L∆ carries a canonical r-spin structure whenever ∆a is
an r-fold dilate.

The adjoint polygon ∆a in Figure 9 is 3-divisible, hence the smooth sections of L∆

carry 3-spin structures. As this is a picture of O(6) on CP2, we knew that already!
As for the second question, the genus of C also can be easily read off from ∆a.
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Fact 4.6 (Adjoint lattice points count genus). Let ∆ be a lattice polygon. Let g be the
number of lattice points in ∆a. Then the genus of a smooth section C is g.

For a plane curve of degree d, this lattice point count is the triangular number(
d−1

2

)
.

Vanishing cycles. Thus far, we have only seen “classical” aspects of the theory of
linear systems on toric surfaces. Crétois–Lang take the polygon picture a step further,
giving an explicit model for C built out of the polygon ∆.

Construction 4.7 (Inflation). Let ∆ be a lattice polygon. The inflation of ∆ is the
topological surface S∆ constructed as follows: drill out a small circle around each
interior lattice point of ∆, and then double.

The inflation of the polygon ∆ in Figure 9 is the genus-10 surface drawn in Figure
8.

By construction, the inflation S∆ has genus equal to that of a smooth section of L∆.
Crétois–Lang show how to use this model to track different degenerations of C to
nodal curves.

Definition 4.8. An A-curve on S∆ is a simple closed curve that encircles an interior
lattice point. A B-curve is a simple closed curve corresponding to doubling a line
segment on ∆ that does not contain any lattice points in its interior.

A-curves and B-curves can be seen on the inflation surface shown in Figure 8.
The theorem below says that A-curves and certain B-curves model vanishing

cycles. It is an amalgamation of [CL18, Theorem 3, Propositions 7.13, 7.16]; see
also [Sal19, Theorems 10.4, 10.5]. Here and throughout, r is defined to be the highest
root of the adjoint line bundle.

Theorem 4.9 (Crétois–Lang). Every A-curve is a vanishing cycle for some nodal degenera-
tion of C. A B-curve is a nodal degeneration for C if the line connecting the endpoints passes
through a vertex with r-divisible coordinates.

Re-examine Figure 8: the curves shown on the inflation surface are all vanishing
cycles.

Remark 4.10. Experts will recognize that I have simplified this story somewhat. I did
not discuss the possibility that the curves in a linear system could all be hyperelliptic.
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In this case, the theory behaves differently and there is not a surjection onto Modg[φ].
The hyperelliptic case was analyzed by Crétois–Lang [CL19].

Concluding the monodromy calculation; Donaldson. To determine the monodromy,
we combine Theorem 3.7 with Theorem 4.9. The precise formulation of Theorem 3.7
(c.f. [Sal19, Theorem 9.5]) implies that Mod(C)[φ] is generated by Dehn twists about
the A curves and B curves of Theorem 4.9. Thus the monodromy group is the full
spin structure stabilizer.

Theorem 4.11. Let L be a linear system on a smooth toric surface for which the generic
fiber C is not hyperelliptic. Let r be the highest root of the adjoint line bundle. Then the
monodromy group ΓL is computed to be

ΓL = Mod(C)[φ],

where φ is the r-spin structure corresponding to the maximal root of the adjoint line bundle.

We return now to Donaldson’s question: which curves are vanishing cycles? Recall
the notion of admissible curve: a nonseparating simple closed curve a is admissible if
φ(a) = 0. It is not hard to show that a curve c ⊂ C is a vanishing cycle if and only if
the corresponding twist Tc ∈ Im(ρ). We have just shown that the Dehn twists in Im(ρ)

are precisely the admissible twists. Thus we have answered Donaldson’s question:

Theorem 4.12. A simple closed curve c ⊂ C is a vanishing cycle if and only if c is admissible
with respect to the canonical r-spin structure on C.

Do you see now why the constraint I showed in Lecture 1 (Figure 2) holds?

4.2. Strata of abelian differentials. Let us now consider the other monodromy
problem we set out to answer. We fix a partition κ = {κ1, . . . , κn} of 2g − 2, and
consider the stratum Hκ of pairs (C, ω), where C is a Riemann surface of genus
g and ω is an abelian differential with zeroes of multiplicities κ1, . . . , κn. Setting
r = gcd{κ1, . . . , κn}, we have observed that (C, ω) carries a canonical r-spin structure,
geometrically induced from the “horizontal vector field” Re(ω).

Following the work of Lecture 3, we need to write down a family of loops of
differentials for which the monodromy induces a Dehn twist about an admissible
curve. We accomplish this by working with translation surfaces.

The key geometric notion we will require is that of a cylinder. A cylinder A on a
translation surface S is just that: it is a flat-embedded annulus, i.e. a family of parallel
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straight lines determining closed curves on S, a parallelogram with a pair of parallel
sides identified, etc. We encountered cylinders in Example 2.9 above in Lecture 2.
There, we saw that each cylinder determines a family of deformations called a shear.

FIGURE 10. The configuration at left generates Mod5[φ] for a certain
2-spin structure φ (the spin structure uniquely determined by setting
all indicated curves to be admissible). The configuration of curves can
be converted into a translation surface as follows: convert each curve a
into a rectangle of side lengths 1 and k, where k is the number of other
curves a intersects, and identify the sides of length 1 with each other.
If curves a and b intersect, glue a 1 × 1 portion of the corresponding
rectangles to each other. The result is a translation surface. It lives in
the following stratum: the number of zeroes corresponds to the number
of components the configuration divides the surface into, and the order
of each zero is (minus) the corresponding Euler characteristic. This
example has two regions of Euler characteristics −2 and −6, hence the
differential lives in the stratum {2, 6} as can be seen directly.

Our task is now as follows. For each partition κ as above, we need to build a
translation surface in the stratumHκ which is built in an explicit combinatorial way
out of cylinders. We need to design these in such a way that the corresponding Dehn
twists can be seen to generate Mod(S)[φ] using another criterion for generation, [CS19,
Theorem B].

In [Cal19], Aaron came up with a very nice method for doing this using something
called the Thurston-Veech construction. This allows you to start with a collection of
simple closed curves on a surface (satisfying some combinatorial restrictions) and
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b1b2

b3 b4 b5 bg+1

b2g−3

FIGURE 11. Building a translation surface in the stratumHκ. Let C be
the configuration of curves shown in red. The curves b1, . . . , b2g−3 are
shown in blue. For the partition κ = {κ1, . . . , κn}, we include only the
curves bij for ij of the form ij =

∑j
k=1 κk.

promote it to a translation surface on which all the curves become cylinders. Figure
10 shows a worked example in the case κ = {2, 6} in genus 5.

Figure 11 shows how the construction works in general. We start with the configu-
ration C shown as red curves. We then add the curve bκ1 to the configuration: observe
that bκ1 and C together bounds a region of Euler characteristic −κ1, and so under the
Thurston–Veech construction, this will give a translation surface with a cone point
of order κ1 as required. We then continue, adding in bκ2+κ1 , bκ3+κ2+κ1 , . . . . In total,
we “allocate” the total Euler characteristic 2 − 2g of Σg among n regions of Euler
characteristic −κ1, . . . ,−κn, giving a translation surface in the stratum Hκ, where
each Dehn twist on the topological picture Figure 11 is incarnated as a cylinder.10

Note also that we get a well-defined r-spin structure (for r = gcd(κ) as usual) by
declaring all a ∈ C and all bi1 , . . . , bin to be admissible.

Here is a paraphrase of [CS19, Theorem B].

Theorem 4.13 (Calderon - S.). Let κ = {κ1, . . . , κn} be a partition of 2g − 2 for g ≥ 5 and
set r = gcd(κ). The collection of Dehn twists about the curves C ∪ {bi1 , . . . , bin} as shown in
Figure 11 generates Modg[φ], where φ is the r-spin structure determined by the condition
that all a ∈ C and all bij are admissible.

Applying the Thurston–Veech construction to this configuration and invoking
Theorem 4.13 shows surjectivity of the monodromy for all strata!

10For the experts: when Hκ has two components classified by parity of the Arf invariant, we
use two different starting configurations C, C′, and the resulting translation surfaces will live in the
different strata components.
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Remark 4.14. Once again I have suppressed some aspects of the story. For the sake
of honesty, here’s what I’ve been leaving out. In [KZ03], Kontsevich–Zorich study
the components ofHκ, and they find thatHκ is not always connected. They classify
the components of a fixedHκ. For κ = {2g − 2} or κ = {g − 1, g − 1}, they find that
there is a component ofHκ consisting entirely of hyperelliptic curves; as in the toric
surface situation, this behaves very differently and was analyzed in [Cal19]. They
also find that whenever r is even (and g ≥ 4), there are two componentsHeven

κ ,Hodd
κ ,

distinguished by the “parity of the Arf invariant”. As in Remark 3.10, I do not want
to discuss the Arf invariant in detail; suffice it to say that in the case where Hκ is
disconnected, we can apply the above method in each (non-hyperelliptic) component
separately and compute the monodromy of each stratum-component.

Here is a precise statement of what we have proved.

Theorem 4.15. Let κ be a partition of 2g − 2 for g ≥ 5 with gcd(κ) = r. Let H be a
non-hyperelliptic component ofHκ with associated r-spin structure φ. Then the monodromy
group ΓH associated toH is computed to be

ΓH = Modg[φ].

Applications. A primary reason to care about the monodromy problem for strata is
that it provides the first substantial information about the highly mysterious groups
π1(H) (technically we mean orbifold π1). We know for abstract reasons (virtually they
are fundamental groups of quasiprojective varieties) that these groups are finitely
presented, but beyond that, almost nothing is known. The monodromy representa-
tion provides a homomorphism from π1(H) into the mapping class group, which is
much better understood. The monodromy calculation then shows that π1(H) is rich
enough to surject onto a finite-index subgroup of Modg.

Which curves are cylinders? Another more concrete application is to answer the
counterpart of Donaldson’s question for translation surfaces. We fix a marking f :

Σg → S between a topological surface Σg and a chosen translation surface S. Once
we have fixed a marking, we can move around insideH and identify simple closed
curves on translation surfaces with simple closed curves on Σg. We ask:

Question 4.16. For which curves c ⊂ Σg does there exist a path γ ⊂ H such that c is a
cylinder on γ(1)?
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As we did with Donaldson’s question, we answer this using the monodromy
calculation. We identify the set of Dehn twists in the monodromy with the set of
“cylinder curves” on Σg. As before, the calculation ΓH = Modg[φ] tells us the answer:

Theorem 4.17. For g ≥ 5, a nonseparating curve a ⊂ Σg is the core curve of a cylinder on
some non-hyperelliptic translation surface S ∈ H if and only if φ(a) = 0.

If someone hands you a curve a on a translation surface, the winding number φ(a)

can be measured explicitly. Recall from Remark 3.3 that we can compute φ(c) by
computing the winding number of c with respect to the horizontal vector field on
the translation surface S. Winding number is a signed count of the number of times
a curve crosses a fixed direction, and so just because a curve c has φ(c) = 0 doesn’t
mean that it literally runs “straight”, i.e. lies on a cylinder. But what Theorem 4.17
is telling us is that if we have any c with φ(c) = 0, then there is some sequence of
shears that we can perform to systematically eliminate cancelling pairs of crossings
and eventually take c to a cylinder.

5. SINS OF OMISSION

In the interest of bibliographic completeness, we briefly mention here some closely
related work which didn’t make its way into the body of the lectures.

Spin mapping class groups. To the author’s knowledge, higher spin mapping class
groups first appear in the literature in the work of Sipe [Sip82, Sip86]; she credits
Mumford with the suggestion to study these groups. In [RW14], Randal-Williams
proves a homological stability result for r-spin mapping class groups. Both he and
Kawazumi [Kaw17] study versions of the problem of determining the orbit structure
of the action of the mapping class group on the set of r-spin structures.

Monodromy of linear systems. Because the results are now superseded by [Sal19],
we did not discuss some prior work on special cases of the monodromy problem
for linear systems on toric surfaces. We would especially like to draw attention to a
second paper [CL19] by Crétois–Lang. There, they solve the monodromy problem
in the case where the highest root r of the adjoint line bundle is 2. We also did not
mention our own early paper [Sal16] on the monodromy problem for smooth plane
curves. Our main result there treats the case d = 5, which also corresponds to the
case r = 2. While the result is very limited in scope, the method is perhaps worth
mentioning. Appearing as it did before the work of Crétois–Lang, we take a different
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approach to the constructive portion of the argument, where we exhibit a range
of Dehn twists corresponding to different nodal degenerations. Our technique is
special to plane curves, and relies on the fascinating work of Lönne [Lön09]. Lönne
finds an explicit and tractable presentation for the fundamental group of the space
of smooth hypersurfaces of arbitrary degree d in an arbitrary projective space CPN .
We use a version of the change–of–coordinates principle to show that the generators
of Lönne’s presentation determine a unique configuration of Dehn twists (up to
diffeomorphism). We can then directly study the subgroup of Mod6 generated by
this collection of twists and prove that it generates the stabilizer of a 2-spin structure.

More classical algebraic geometry was also interested in the homological mon-
odromy group of the family of smooth plane curves (i.e. the action on H1(Σg;Z)).
The final result here was obtained by Beauville [Bea86], building off of earlier work
of Janssen [Jan83] and Chmutov [Chm82].

Strata of abelian differentials. Walker’s papers [Wal10, Wal09] are closely related to
the problem of computing monodromy for strata of Abelian differentials. She studies
quadratic differentials (holomorphic sections of the square of the cotangent bundle)
which have a geometric incarnation as half-translation surfaces. She is interested in
the problem of classifying components of these strata when the differentials are
equipped with the data of a “marking”. This essentially amounts to a monodromy
computation; she is able to obtain results under the assumption that many zeroes
have the same order.

Hamenstädt has also investigated the problem of computing monodromy of strata
of abelian differentials. In her preprint [Ham18], she obtains a geometric characteri-
zation of the monodromy group which provides an interesting counterpart to the
main results of the forthcoming paper [CS20].
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