Higher spin mapping class groups and applications

Nick Salter Joint with Aaron Calderon Columbia University October 12, 2019

Higher spin structures

Paradigmatic example:

Such ϕ : r-spin structures.

Also called r-winding-number functions.

Translation surfaces

 $\kappa = \{\kappa_1, ..., \kappa_n\}$: partition of 2g-2 Stratum $\mathcal{H}\Omega(\kappa)$: all translation surfaces with cone angle set κ

Basic problem: understand the topology of $\mathscr{H}\Omega(\kappa)$

 $\pi_0(\mathscr{H}\Omega(\kappa))$ understood (Kontsevich-Zorich). Always \leq 3 components.

Turns out r-spin structures play an important role in this question!

Gives us map $\rho_{\mathscr{H}}: \pi_1(\mathscr{H}) \to \operatorname{Mod}(\Sigma_g)$

- A method to study this mysterious group
- Tells us about translation surfaces

What does the presence of a spin structure tell us?

 $Mod(\Sigma_g)$ acts on set of r-spin structures (precomposition)

 $\operatorname{Mod}(\Sigma_g)[\phi]$: stabilizer of ϕ

Invariant horizontal vector field —> invariant r-spin structure ϕ

$$\rho_{\mathcal{H}}:\pi_1(\mathcal{H})\to \operatorname{Mod}(\Sigma_g)[\phi]$$

Simple generating sets

Theorem (Calderon - S.): For $g \ge 5$, any r-spin structure ϕ , there is an explicit finite generating set for $Mod(\Sigma_g)[\phi]$ consisting of Dehn twists.

Theorem (Calderon - S.): Fix $g \ge 5$, κ partition of 2g-2, and $\mathcal{H} \subseteq \mathcal{H}\Omega(\kappa)$ "non-hyperelliptic"*. Then

 $\rho_{\mathcal{H}}:\pi_1(\mathcal{H})\to \operatorname{Mod}(\Sigma_g)[\phi]$

is surjective.

- Have found a large quotient of $\pi_1(\mathscr{H})$
- Leads to a classification of components components of "marked strata" (refining Kontsevich-Zorich)
- Tells us about cylinders

*: this is the generic case

A word on the proof

How to show these twists generate $Mod(\Sigma_g)[\phi]$?

Nonseparating curve *a* admissible if $\phi(a) = 0$

Admissible subgroup $\mathcal{T}_{\phi} = \langle T_a \mid a \text{ admissible} \rangle$

Step 1: show your twist-set generates \mathcal{T}_{ϕ}

Complex of admissible curves, subsurface point-push subgroups

Step 2: show $\mathcal{T}_{\phi} = \operatorname{Mod}(\Sigma_g)[\phi]$

Ode to Dennis Johnson. Compare your groups rel. Johnson filtration. "Artin group relations"

Thank you for your attention. Here is a cat.