Totally symmetric sets
 and the representation theory of mapping class groups

Nick Salter
Represents joint work with Noah Caplinger
University of Notre Dame
March 31, 2022

Totally symmetric sets

Let G be a group. Kordek and Margalit introduced the following
Definition
A totally symmetric set (TSS) in G is a finite subset \mathscr{A} such that every permutation in \mathscr{A} can be induced by conjugation in G.

$$
g_{\sigma} a_{i} g_{\sigma}^{-1}=a_{\sigma(i)}
$$

Notes:

- The assignment $\sigma \mapsto g_{\sigma}$ need not be a homomorphism.
- Frequently add the condition that elements of \mathscr{A} pairwise commute
- Can then think of \mathscr{A} as an abstract "maximal torus"
- Size of maximal TSS some proxy for rank

Examples

$$
G=S_{n}
$$

$\mathscr{A}=\{(12),(34), \ldots,(n-1 n)\}$
Commutative TSS of size $\left\lfloor\frac{n}{2}\right\rfloor$

$$
G=B_{n}
$$

$$
\mathscr{A}=\left\{\sigma_{1}, \sigma_{3}, \ldots, \sigma_{n-1}\right\}
$$

Commutative TSS of size $\left\lfloor\frac{n}{2}\right\rfloor$

$$
\mathscr{A}=\{(12),(13), \ldots,(1 n)\}
$$

$$
\text { Noncommutative TSS of size } n-1
$$

$$
G=\operatorname{Mod}\left(\Sigma_{g}\right)
$$

$$
\mathscr{A}=\left\{T_{c_{1}}, \ldots, T_{c_{g+1}}\right\}
$$

Commutative TSS of size $g+1$

The persistence lemma

The utility of TSS for studying maps between groups is due to the following lemma of Kordek - Margalit:

Let $f: G \rightarrow H$ be a homomorphism. Then $f(\mathscr{A})$ is either a TSS of size $|f(\mathscr{A})|=|\mathscr{A}|$, or else a singleton.

"Collision implies collapse"

This means that classifying TSS in G and H can, in principle, tell you about all maps $f: G \rightarrow H$.

Prior work

Kordek - Margalit: classify CTSS of size $\left\lfloor\frac{n}{2}\right\rfloor$ in B_{n}. Use this to classify $f: B_{n}^{\prime} \rightarrow B_{n}$.

Chen - Mukherjea: classification of $f: B_{n} \rightarrow \operatorname{Mod}\left(\Sigma_{g}\right)$ for $g \leq n-3$.

Caplinger-Kordek, Chudnovsky-Kordek-Li-Partin, Scherich-Verberne, Kolay:

Question (Margalit): What is the smallest non-cyclic finite quotient of B_{n} ?
Kolay: (essentially) always the permutation rep $B_{n} \rightarrow S_{n}$.

Overarching theme: rigidity

Examples in $\mathrm{GL}_{n}(\mathbb{C})$

$$
A_{1}=\left(\begin{array}{lll}
\lambda & & \\
& \mu & \\
& & \mu
\end{array}\right) \quad A_{2}=\left(\begin{array}{lll}
\mu & & \\
& \lambda & \\
& & \mu
\end{array}\right) \quad A_{3}=\left(\begin{array}{lll}
\mu & & \\
& \mu & \\
& & \lambda
\end{array}\right)
$$

"Standard" construction: k elements in $\mathrm{GL}_{k}(\mathbb{C})$.

$$
A_{1}=\left(\begin{array}{ll}
\lambda & \\
& 1 \\
& \lambda
\end{array}\right) \quad A_{2}=\left(\begin{array}{lll}
\lambda & & 0 \\
& \lambda & 1 \\
& & \lambda
\end{array}\right) \quad A_{3}=\left(\begin{array}{cc}
\lambda & \\
& -1 \\
& \lambda
\end{array}-1 .\right.
$$

"Simplex" construction: k elements in $\mathrm{GL}_{k}(\mathbb{C})$.

Both commutative. Standard is diagonalizable, simplex is not.

Basic questions

Can you classify all TSS in $\mathrm{GL}_{n}(\mathbb{C}) ?$

Can you bound the size of a TSS in $\mathrm{GL}_{n}(\mathbb{C})$?

Irreducibility

Can you classify all TSS in GL ${ }_{n}(\mathbb{C}) ?$

Idea: borrow from representation theory.
A TSS $\mathscr{A} \subset \mathrm{GL}(V)$ is reducible if there is a proper subspace $W \subset V$ invariant under both \mathscr{A} and a set of permutations.
> \mathscr{A} then restricts to a TSS in $G L(W)$, and induces a TSS on $G L(V / W)$.

Non-semi-simplicity

The standard construction is irreducible (not obvious).
The simplex construction is reducible:

$$
A_{1}=\left(\begin{array}{lll}
\lambda & & 1 \\
& \lambda & 0 \\
& & \lambda
\end{array}\right), A_{2}=\left(\begin{array}{lll}
\lambda & & 0 \\
& \lambda & 1 \\
& & \lambda
\end{array}\right), A_{3}=\left(\begin{array}{ccc}
\lambda & & -1 \\
& \lambda & -1 \\
& & \lambda
\end{array}\right),
$$

Span of e_{1}, e_{2} is such a W.

This illustrates an important structural feature:

> The irreducible factors of a TSS do not determine the TSS. There is an extension problem to solve!

TSS of partition type

General construction: choose $\kappa=\left\{\kappa_{1}, \ldots, \kappa_{p}\right\}$ a partition of k.
Choose $\lambda_{1}, \ldots, \lambda_{p} \in \mathbb{C}^{\times}$distinct.

Let V be the space spanned by functions $\vec{\lambda}:[k] \rightarrow \mathbb{C}^{\times}$for which $\left|\vec{\lambda}^{-1}\left(\lambda_{i}\right)\right|=\kappa_{i}$.

Let $\mathscr{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ be the TSS acting diagonally on V by $A_{i}(f)=f(i) f$

$$
\kappa=\{2,2\}
$$

$$
\lambda_{1}=1, \lambda_{2}=2
$$

$\begin{array}{lllllll}A_{1} & 1 & 1 & 1 & 2 & 2 & 2\end{array}$
$\begin{array}{lllllll}A_{2} & 1 & 2 & 2 & 1 & 1 & 2\end{array}$
$\begin{array}{lllllll}\mathbf{A}_{3} & 2 & 1 & 2 & 1 & 2 & 1\end{array}$
$\begin{array}{lllllll}\mathrm{A}_{4} & 2 & 2 & 1 & 2 & 1 & 1\end{array}$
$\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\} \subset G L_{6}(\mathbb{C})$

Main theorem I: irreducibles

Denote such a $\operatorname{TSS} \mathscr{A}(\vec{\lambda})$.
Call the function $\vec{\lambda}:[k] \rightarrow \mathbb{C}$ a weight.

Theorem (Caplinger - S.):
Every irreducible commutative TSS is of the form $\mathscr{A}(\vec{\lambda})$.

Main theorem II: size bounds

Can you bound the size of a TSS in $\mathrm{GL}_{n}(\mathbb{C})$?

Theorem (Caplinger - S.):

A commutative TSS in $\mathrm{GL}_{n}(\mathbb{C})$ has at most n elements, and a noncommutative TSS has at most $n+1$.

Remark:

Unfortunately, it's not enough to just study irreducibles, because of the failure of semisimplicity.

Main theorem III: maximal size

Theorem (Caplinger - S.):

For $k \neq 4$, there are exactly two classes of k-element commutative $\mathrm{TSS}_{\text {in }} \mathrm{GL}_{k}(\mathbb{C})$:
the standard construction and the simplex construction.
There is one additional sporadic example for $k=4$.

There is exactly one class of $k+1$-element noncommutative TSS in $\mathrm{GL}_{k}(\mathbb{C})$.

Summary

How close does this come to a full classification?

Final step: solve the extension problem: classify off-diagonal blocks.

Application: symmetric group representations

Known that S_{n} never* admits noncyclic representations below dimension $n-1$.

Standard proof cumbersome: first classify all irreps, then use hook length formula to compute dimensions; observe gap between $1, n-1$.

TSS provides a structural explanation:
Take $\rho: S_{n} \rightarrow G L_{d}(\mathbb{C})$
Where is the TSS $\{(1 i)\}$ sent?
Noncommutative of size $n-1$, so $d \geq n-2$.
Unique TSS of size $n-2$ in $G L_{n-2}(\mathbb{C})$ -
check this works only for $n=4$.

Prospectus: representation theory

Broad goal: understand representations of braid and mapping class groups

Careful: residually-finite groups have a lot of representations!
One place where braid, mapping class groups diverge: braid groups seem to have more representations.

For $\operatorname{Mod}(\Sigma)$, only two mechanisms known:
Action on homology of covers
Residual finiteness
(TQFT reps are projective)

Can we use TSS to explore the landscape of representations of $\operatorname{Mod}(\Sigma)$?

Dimension gaps

As for the symmetric group, both braid and mapping class groups have a dimension gap in their rep theory:

Theorems (Formanek, Sysoeva):

For n large, B_{n} admits no nonabelian reps of dimension $<n-2$. Up to dimension n, all irreps are classified: Burau and TYM.

Theorem (Korkmaz):

For $g \geq 3$, the unique rep of $\operatorname{Mod}\left(\Sigma_{g}\right)$ of dimension $\leq 2 g$ is the symplectic rep.

Some questions/problems

Do there exist representations of $\operatorname{Mod}\left(\Sigma_{g}\right)$ with infinite image that do not arise via acting on the homology of a cover?

Increase the N for which we have a complete classification of irreps of $\operatorname{Mod}\left(\Sigma_{g}\right)$ in dimension $\leq N$. (Currently $N=2 g+1$; c.f. Kasahara).

Which other groups of geometric/topological interest have large TSS? Such groups should be rigid in the same ways braid/mapping class groups are.

Bonus: more examples

The sporadic example:

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{llll}
\nu & & 1 & 0 \\
& \nu & 0 & 1 \\
& & & \\
& & & \nu
\end{array}\right) \\
& A_{2}=\left(\begin{array}{cccc}
\nu & & -\mu-\frac{2}{3} & \mu+\frac{1}{3} \\
& \nu & 0 & \mu \\
& & \nu & \\
& & &
\end{array}\right) \\
& A_{3}=\left(\begin{array}{cccc}
\nu & & \mu & 0 \\
& \nu & \mu+\frac{1}{3} & -\mu-\frac{2}{3} \\
& \nu & \nu
\end{array}\right) \quad A_{4}=\left(\begin{array}{ccc}
\nu & \frac{-1}{3} & -\mu-\frac{1}{3} \\
\nu & -\mu-\frac{1}{3} & \frac{-1}{3} \\
& \nu & \nu
\end{array}\right)
\end{aligned}
$$

Here ν can be arbitrary, but μ must satisfy $3 \mu^{2}+2 \mu+3=0$!

Bonus: more examples

The $k+1$-element noncommutative TSS in $\mathrm{GL}_{k}(\mathbb{C})$:

$$
A_{1}=\left(\begin{array}{cc}
\lambda & \frac{\mu-\lambda}{2} \\
0 & \mu
\end{array}\right) \quad A_{2}=\left(\begin{array}{cc}
\mu & 0 \\
\frac{\mu-\lambda}{2} & \lambda
\end{array}\right) \quad A_{3}=\left(\begin{array}{cc}
\frac{\lambda+\mu}{2} & \frac{\lambda-\mu}{2} \\
\frac{\lambda-\mu}{2} & \frac{\lambda+\mu}{2}
\end{array}\right)
$$

Here λ and μ can be arbitrary (but distinct).

Conceptually:
Take $V_{k}^{\text {std }}=\mathbb{C}^{k-1}$ the standard rep for S_{k}.
To make A_{i}, decompose $V_{k}^{s t d}$ as a $\operatorname{Stab}(i)$ - rep:

$$
V_{k}^{s t d}=\left(V_{k-1}^{s t d}\right)_{i} \oplus \mathbb{C}_{i}
$$

Let A_{i} act by λ on $\left(V_{k-1}^{s t d}\right)_{i}$ and by μ on \mathbb{C}_{i}.

