Totally symmetric sets

and the representation theory of mapping class groups

Nick Salter
Represents joint work with Noah Caplinger
University of Notre Dame
March 31, 2022

Totally symmetric sets

Let G be a group. Kordek and Margalit introduced the following

Definition

A totally symmetric set (TSS) in G is a finite subset \mathscr{A} such that every permutation in \mathscr{A} can be induced by conjugation in G.

$$g_{\sigma}a_{i}g_{\sigma}^{-1} = a_{\sigma(i)}$$

Notes:

- The assignment $\sigma \mapsto g_{\sigma}$ need not be a homomorphism.
- ullet Frequently add the condition that elements of ${\mathscr A}$ pairwise commute
- ullet Can then think of ${\mathscr A}$ as an abstract "maximal torus"
- Size of maximal TSS some proxy for rank

Examples

$$G = S_n$$

$$\mathcal{A} = \{(12), (34), ..., (n-1n)\}$$

Commutative TSS of size $\lfloor \frac{n}{2} \rfloor$

$$\mathcal{A} = \{(12), (13), ..., (1n)\}$$

Noncommutative TSS of size $n-1$

$$G = B_n$$

$$\mathcal{A} = \{\sigma_1, \sigma_3, ..., \sigma_{n-1}\}$$
 Commutative TSS of size $\lfloor \frac{n}{2} \rfloor$

$$G = \operatorname{Mod}(\Sigma_g)$$

The persistence lemma

The utility of TSS for studying maps between groups is due to the following lemma of Kordek - Margalit:

Let $f: G \to H$ be a homomorphism. Then $f(\mathscr{A})$ is either a TSS of size $|f(\mathscr{A})| = |\mathscr{A}|$, or else a singleton.

"Collision implies collapse"

This means that classifying TSS in G and H can, in principle, tell you about all maps $f: G \to H$.

Prior work

Kordek - Margalit: classify CTSS of size $\lfloor \frac{n}{2} \rfloor$ in B_n. Use this to classify $f: B'_n \to B_n$.

Chen - Mukherjea: classification of $f: B_n \to \operatorname{Mod}(\Sigma_g)$ for $g \le n-3$.

Caplinger-Kordek, Chudnovsky-Kordek-Li-Partin, Scherich-Verberne, Kolay:

Question (Margalit): What is the smallest non-cyclic finite quotient of B_n?

Kolay: (essentially) always the permutation rep $B_n \to S_n$.

Overarching theme: rigidity

Examples in $GL_n(\mathbb{C})$

$$A_1 = \begin{pmatrix} \lambda & \mu \\ \mu \end{pmatrix} \qquad A_2 = \begin{pmatrix} \mu & \mu \\ \lambda & \mu \end{pmatrix} \qquad A_3 = \begin{pmatrix} \mu & \mu \\ \lambda & \lambda \end{pmatrix}$$

"Standard" construction: k elements in $\mathrm{GL}_k(\mathbb{C})$.

$$A_1 = \begin{pmatrix} \lambda & 1 \\ & \lambda & 0 \\ & & \lambda \end{pmatrix} \qquad A_2 = \begin{pmatrix} \lambda & 0 \\ & \lambda & 1 \\ & & \lambda \end{pmatrix} \qquad A_3 = \begin{pmatrix} \lambda & -1 \\ & \lambda & -1 \\ & & \lambda \end{pmatrix},$$

"Simplex" construction: k elements in $\mathrm{GL}_k(\mathbb{C})$.

Both commutative. Standard is diagonalizable, simplex is not.

Basic questions

Can you classify all TSS in $GL_n(\mathbb{C})$?

Can you bound the size of a TSS in $GL_n(\mathbb{C})$?

Irreducibility

Can you classify all TSS in $GL_n(\mathbb{C})$?

Idea: borrow from representation theory.

Definition:

A TSS $\mathscr{A} \subset \operatorname{GL}(V)$ is *reducible* if there is a proper subspace $W \subset V$ invariant under both \mathscr{A} and a set of permutations.

 \mathscr{A} then restricts to a TSS in GL(W), and induces a TSS on GL(V/W).

Non-semi-simplicity

The standard construction is irreducible (not obvious).

The simplex construction is reducible:

$$A_1 = \begin{pmatrix} \lambda & 1 \\ \lambda & 0 \\ \lambda \end{pmatrix}, A_2 = \begin{pmatrix} \lambda & 0 \\ \lambda & 1 \\ \lambda \end{pmatrix}, A_3 = \begin{pmatrix} \lambda & -1 \\ \lambda & -1 \\ \lambda \end{pmatrix},$$

Span of e_1, e_2 is such a W.

This illustrates an important structural feature:

The irreducible factors of a TSS do not determine the TSS. There is an *extension problem* to solve!

TSS of partition type

General construction: choose $\kappa = {\kappa_1, ..., \kappa_p}$ a partition of k.

Choose $\lambda_1, ..., \lambda_p \in \mathbb{C}^{\times}$ distinct.

Let V be the space spanned by functions

$$\overrightarrow{\lambda}$$
: $[k] \to \mathbb{C}^{\times}$ for which $\left| \overrightarrow{\lambda}^{-1}(\lambda_i) \right| = \kappa_i$.

Let $\mathscr{A} = \{A_1, ..., A_k\}$ be the TSS acting diagonally on V by $A_i(f) = f(i) f$

$$\kappa = \{2,2\}$$

$$\lambda_1 = 1, \lambda_2 = 2$$

$$\{A_1, A_2, A_3, A_4\} \subset GL_6(\mathbb{C})$$

Main theorem I: irreducibles

Denote such a TSS $\mathscr{A}(\overrightarrow{\lambda})$.

Call the function $\overrightarrow{\lambda}$: $[k] \to \mathbb{C}$ a weight.

Theorem (Caplinger - S.):

Every irreducible commutative TSS is of the form $\mathcal{A}(\lambda)$.

Main theorem II: size bounds

Can you bound the size of a TSS in $GL_n(\mathbb{C})$?

Theorem (Caplinger - S.):

A commutative TSS in $GL_n(\mathbb{C})$ has at most n elements, and a noncommutative TSS has at most n+1.

Remark:

Unfortunately, it's not enough to just study irreducibles, because of the failure of semisimplicity.

Main theorem III: maximal size

Theorem (Caplinger - S.):

For $k \neq 4$, there are exactly two classes of k-element commutative TSS in $\operatorname{GL}_k(\mathbb{C})$: the standard construction and the simplex construction.

There is one additional sporadic example for k=4.

There is exactly one class of k+1-element noncommutative TSS in $\mathrm{GL}_k(\mathbb{C})$.

Summary

How close does this come to a full classification?

Final step: solve the *extension problem*: classify off-diagonal blocks.

Application: symmetric group representations

Known that S_n never* admits noncyclic representations below dimension n-1.

* except n = 4

Standard proof cumbersome: first classify all irreps, then use *hook length formula* to compute dimensions; observe gap between 1, n-1.

TSS provides a structural explanation:

Take $\rho: S_n \to GL_d(\mathbb{C})$

Where is the TSS $\{(1 i)\}$ sent?

Noncommutative of size n-1, so $d \ge n-2$.

Unique TSS of size n-2 in $GL_{n-2}(\mathbb{C})$ -check this works only for n=4.

Prospectus: representation theory

Broad goal: understand representations of braid and mapping class groups

Careful: residually-finite groups have a lot of representations!

One place where braid, mapping class groups diverge: braid groups seem to have more representations.

For $\operatorname{Mod}(\Sigma)$, only two mechanisms known:

Action on homology of covers

Residual finiteness

(TQFT reps are *projective*)

Can we use TSS to explore the landscape of representations of $\mathrm{Mod}(\Sigma)$?

Dimension gaps

As for the symmetric group, both braid and mapping class groups have a *dimension gap* in their rep theory:

Theorems (Formanek, Sysoeva):

For n large, B_n admits no nonabelian reps of dimension < n-2. Up to dimension n, all irreps are classified: Burau and TYM.

Theorem (Korkmaz):

For $g \geq 3$, the unique rep of $\operatorname{Mod}(\Sigma_g)$ of dimension $\leq 2g$ is the symplectic rep.

Some questions/problems

Do there exist representations of $\mathrm{Mod}(\Sigma_g)$ with infinite image that do not arise via acting on the homology of a cover?

Increase the N for which we have a complete classification of irreps of $\mathrm{Mod}(\Sigma_g)$ in dimension $\leq N$. (Currently N=2g+1; c.f. Kasahara).

Which other groups of geometric/topological interest have large TSS? Such groups should be *rigid* in the same ways braid/mapping class groups are.

Thank you!

Bonus: more examples

The sporadic example:

$$A_1 = \begin{pmatrix} \nu & 1 & 0 \\ & \nu & 0 & 1 \\ & & \nu & \\ & & \nu \end{pmatrix}$$

$$A_{2} = \begin{pmatrix} \nu & -\mu - \frac{2}{3} & \mu + \frac{1}{3} \\ \nu & 0 & \mu \\ \nu & \nu \end{pmatrix}$$

$$A_{3} = \begin{pmatrix} \nu & \mu & 0 \\ \nu & \mu + \frac{1}{3} & -\mu - \frac{2}{3} \\ \nu & \nu \end{pmatrix}$$

$$A_{3} = \begin{pmatrix} \nu & \mu & 0 \\ \nu & \mu + \frac{1}{3} & -\mu - \frac{2}{3} \\ \nu & \nu \end{pmatrix} \qquad A_{4} = \begin{pmatrix} \nu & \frac{-1}{3} & -\mu - \frac{1}{3} \\ \nu & -\mu - \frac{1}{3} & \frac{-1}{3} \\ \nu & \nu \end{pmatrix}$$

Here ν can be arbitrary, but μ must satisfy $3\mu^2 + 2\mu + 3 = 0$!

Bonus: more examples

The k+1-element noncommutative TSS in $\operatorname{GL}_k(\mathbb{C})$:

$$A_{1} = \begin{pmatrix} \lambda & \frac{\mu - \lambda}{2} \\ 0 & \mu \end{pmatrix} \qquad A_{2} = \begin{pmatrix} \mu & 0 \\ \frac{\mu - \lambda}{2} & \lambda \end{pmatrix} \qquad A_{3} = \begin{pmatrix} \frac{\lambda + \mu}{2} & \frac{\lambda - \mu}{2} \\ \frac{\lambda - \mu}{2} & \frac{\lambda + \mu}{2} \end{pmatrix}$$

Here λ and μ can be arbitrary (but distinct).

Conceptually:

Take $V_k^{std} = \mathbb{C}^{k-1}$ the standard rep for S_k .

To make A_i , decompose V_k^{std} as a $\operatorname{Stab}(i)$ - rep:

$$V_k^{std} = (V_{k-1}^{std})_i \oplus \mathbb{C}_i$$

Let A_i act by λ on $(V_{k-1}^{std})_i$ and by μ on \mathbb{C}_i .