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Totally symmetric sets

Definition

Let  be a group. Kordek and Margalit introduced the followingG

A totally symmetric set (TSS) in  is a finite subset  
such that every permutation in  can be induced by 

conjugation in .

G 𝒜
𝒜

G

gσaig−1
σ = aσ(i)

The assignment  need not be a homomorphism.σ ↦ gσ

Notes:

Can then think of  as an abstract “maximal torus”𝒜
Frequently add the condition that elements of  pairwise commute𝒜

Size of maximal TSS some proxy for rank 



Examples

G = Sn



Commutative TSS of size 

𝒜 = {(12), (34), …, (n − 1 n)}
⌊ n

2 ⌋



Noncommutative TSS of size 
𝒜 = {(12), (13), …, (1n)}

n − 1

G = Bn



Commutative TSS of size 

𝒜 = {σ1, σ3, …, σn−1}
⌊ n

2 ⌋

G = Mod(Σg)



Commutative TSS of size 

𝒜 = {Tc1
, …, Tcg+1

}
g + 1



The persistence lemma

Lemma Let  be a homomorphism. Then  is either 
a TSS of size , or else a singleton.
f : G → H f(𝒜)

| f(𝒜) | = |𝒜 |

“Collision implies collapse”

This means that classifying TSS in  and  can, 
in principle, tell you about all maps .

G H
f : G → H

The utility of TSS for studying maps between groups 
is due to the following lemma of Kordek - Margalit:



Prior work

Kordek - Margalit: classify CTSS of size  in Bn.

Use this to classify . 

⌊ n
2 ⌋

f : B′￼n → Bn

Chen - Mukherjea: classification of  for .f : Bn → Mod(Σg) g ≤ n − 3

Caplinger-Kordek, Chudnovsky-Kordek-Li-Partin,  
Scherich-Verberne, Kolay:


Question (Margalit): What is the smallest non-cyclic finite quotient of Bn?


Kolay: (essentially) always the permutation rep .Bn → Sn

Overarching theme: rigidity



Examples in GLn(ℂ)

A1 = (
λ

μ
μ)  A2 = (

μ
λ

μ) A3 = (
μ

μ
λ)

“Standard” construction:  elements in .k GLk(ℂ)

A1 =
λ 1

λ 0
λ

A2 =
λ 0

λ 1
λ

,A3 =
λ −1

λ −1
λ

“Simplex” construction:  elements in . k GLk(ℂ)

Both commutative. Standard is diagonalizable, simplex is not.



Basic questions

Can you classify all TSS in ? GLn(ℂ)

Can you bound the size of a TSS in ?GLn(ℂ)



Irreducibility

Idea: borrow from representation theory.

Definition: A TSS  is reducible if there is  
a proper subspace  invariant under 


both  and a set of permutations.

𝒜 ⊂ GL(V )
W ⊂ V

𝒜

Can you classify all TSS in ? GLn(ℂ)

 then restricts to a TSS in ,  
and induces a TSS on .

𝒜 GL(W )
GL(V/W )



Non-semi-simplicity

The standard construction is irreducible (not obvious).

,A1 =
λ 1

λ 0
λ

,A2 =
λ 0

λ 1
λ

,A3 =
λ −1

λ −1
λ

Span of  is such a .e1, e2 W

The simplex construction is reducible:

This illustrates an important structural feature:

The irreducible factors of a TSS do not determine the TSS.

There is an extension problem to solve!



General construction: choose 
 a partition of .κ = {κ1, …, κp} k

Choose  distinct.λ1, …, λp ∈ ℂ×

Let  be the space spanned by functions 

  for which .

V
⃗λ : [k] → ℂ× ⃗λ −1(λi) = κi

Let  be the TSS acting 
diagonally on  by 

𝒜 = {A1, …, Ak}
V Ai( f ) = f(i) f

TSS of partition type

κ = {2,2}

λ1 = 1, λ2 = 2

A1 1 1 1 2 2 2

A2 1 2 2 1 1 2

A3 2 1 2 1 2 1

A4 2 2 1 2 1 1

{A1, A2, A3, A4} ⊂ GL6(ℂ)



Main theorem I: irreducibles

Denote such a TSS .𝒜( ⃗λ )

Theorem (Caplinger - S.):

Every irreducible commutative TSS  is of the form .𝒜( ⃗λ )

Call the function  a weight.⃗λ : [k] → ℂ



Main theorem II: size bounds

Theorem (Caplinger - S.):

A commutative TSS in  has at most  elements, 
and a noncommutative TSS has at most .

GLn(ℂ) n
n + 1

Can you bound the size of a TSS in ?GLn(ℂ)

Remark:

Unfortunately, it’s not enough to just study irreducibles, 
because of the failure of semisimplicity.



Theorem (Caplinger - S.):

For , there are exactly two classes  
of -element commutative TSS in :


the standard construction and the simplex construction.

k ≠ 4
k GLk(ℂ)

There is one additional sporadic example for . k = 4

There is exactly one class of -element  
noncommutative TSS in .

k + 1
GLk(ℂ)

Main theorem III: maximal size



Summary

How close does this come to a full classification?

(
? ? ?
? ? ?
? ? ?)

(
? ? ?
0 ? ?
0 0 ?)

𝒜( ⃗λ ) ? ?
0 𝒜( ⃗μ ) ?
0 0 𝒜( ⃗ν )

Irreducibility

Main Theorem I

Final step: solve the extension problem: classify off-diagonal blocks.



Application: symmetric group representations

Known that  never* admits noncyclic 
representations below dimension .

Sn
n − 1

TSS provides a structural explanation:

* except n = 4

Noncommutative of size , so . n − 1 d ≥ n − 2

Take ρ : Sn → GLd(ℂ)
Where is the TSS  sent? {(1 i)}

Unique TSS of size  in  -  
check this works only for .

n − 2 GLn−2(ℂ)
n = 4

Standard proof cumbersome: first classify all irreps, 
then use hook length formula to compute dimensions; 
observe gap between .1, n − 1



Prospectus: representation theory

Broad goal: understand representations 
of braid and mapping class groups

Careful: residually-finite groups have a lot of representations!

One place where braid, mapping class groups diverge: 
braid groups seem to have more representations.

For , only two mechanisms known:Mod(Σ)

Action on homology of covers
Residual finiteness

(TQFT reps are projective)

Can we use TSS to explore the landscape 
of representations of ?Mod(Σ)



Dimension gaps

Theorems (Formanek, Sysoeva):

For  large,  admits no nonabelian reps of 
dimension . Up to dimension , all 

irreps are classified: Burau and TYM.

n Bn
< n − 2 n

As for the symmetric group, both braid and mapping class groups 
have a dimension gap in their rep theory: 

Theorem (Korkmaz):

For , the unique rep of  of 
dimension  is the symplectic rep.

g ≥ 3 Mod(Σg)
≤ 2g



Some questions/problems

Do there exist representations of  
with infinite image that do not arise via acting 

on the homology of a cover?

Mod(Σg)

Increase the  for which we have a complete 
classification of irreps of  in dimension . 

(Currently ; c.f. Kasahara).

N
Mod(Σg) ≤ N

N = 2g + 1

Which other groups of geometric/topological interest 
have large TSS? Such groups should be rigid in the 

same ways braid/mapping class groups are.



Thank you!



Bonus: more examples

The sporadic example:

A1 =
ν 1 0

ν 0 1
ν

ν
A2 =

ν −μ − 2
3 μ + 1

3

ν 0 μ
ν

ν

A3 =

ν μ 0

ν μ + 1
3 −μ − 2

3
ν

ν

A4 =

ν −1
3 −μ − 1

3

ν −μ − 1
3

−1
3

ν
ν

Here  can be arbitrary, but  must satisfy ! ν μ 3μ2 + 2μ + 3 = 0



Bonus: more examples

The -element noncommutative TSS in :k + 1 GLk(ℂ)

A1 = (λ μ − λ
2

0 μ ) A2 = (
μ 0

μ − λ
2 λ) A3 =

λ + μ
2

λ − μ
2

λ − μ
2

λ + μ
2

Here  and  can be arbitrary (but distinct).λ μ

Conceptually:
Take  the standard rep for .Vstd

k = ℂk−1 Sk

To make , decompose  as a  - rep: Ai Vstd
k Stab(i)

Vstd
k = (Vstd

k−1)i ⊕ ℂi

Let  act by  on  and by  on .Ai λ (Vstd
k−1)i μ ℂi


