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1 Surface bundles

A surface is one of the most basic objects in topology,
but the mathematics of surfaces spills out far beyond
its source, penetrating deeply into fields as diverse
as algebraic geometry, complex analysis, dynamics,
hyperbolic geometry, geometric group theory, etc. In
this article we focus on the mathematics of families
of surfaces: surface bundles. While the basics belong
to the study of fiber bundles, we hope to illustrate
how the theory of surface bundles comes into close
contact with a broad range of mathematical ideas.
We focus here on connections with three areas: al-
gebraic topology, algebraic geometry, and geometric
group theory, and see how the notion of a surface
bundle provides a meeting ground for these fields to
interact in beautiful and unexpected ways.

What is a surface bundle?

A surface bundle is a fiber bundle π : E → B whose
fiber is a 2-dimensional manifold S and whose struc-
ture group is the group Diff(S) of diffeomorphisms of
S. In particular, B is covered by open sets {Uα} on
which the bundle is trivial π−1(Uα) ∼= Uα × S, and
local trivializations are glued by transition functions
Uα ∩ Uβ → Diff(S).

Although the bundle is locally trivial, any nontriv-
ial bundle is globally twisted, similar in spirit to the
Möbius strip (Figure 1). This twisting is recorded in
an invariant called the monodromy representation to
be discussed in Section 3.
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Figure 1: The Möbius strip is the total space of a bun-
dle over S1 whose fibers are diffeomorphic to [0, 1].

A surface bundle E → B with fiber S is also called
an S-bundle over B, and E is called the total space.
Informally, one thinks of E as a family of surfaces
parameterized by B, i.e. for each b ∈ B, there is a
surface π−1(b) ∼= S.

Surface bundles in nature

Surface bundles arise naturally across mathematics.
The most basic source of S-bundles comes from the
mapping torus construction. Given f ∈ Diff(S), de-
fine Ef as the quotient of [0, 1] × S by identifying
{0}×S with {1}×S by f ; then Ef is the total space
of an S-bundle over the circle Ef → S1. See Figure
2. Surprisingly, this simple-minded construction is
ubiquitous in the classification of 3-manifolds, and in
particular hyperbolic 3-manifolds. Thurston proved
that if f is sufficiently complicated (pseudo-Anosov,
c.f. Theorem 2), then Ef admits a hyperbolic struc-
ture, i.e. a Riemannian metric with sectional curva-
ture K ≡ −1. Furthermore, by work of Agol, Wise,
Kahn-Markovic, every closed hyperbolic 3-manifold
M has a finite cover of the form Ef → M for some
f : S → S [Ago13].
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Figure 2: The mapping torus Ef of a surface diffeo-
morphism f : S → S. Note that the Möbius strip
(Figure 1) can be constructed in a similar way.

Surface bundles also figure prominently in 4-
manifold theory. Donaldson [Don98] proved that ev-
ery symplectic 4-manifold M admits a Lefschetz fi-
bration M → CP 1, which can be viewed as a surface
bundle where finitely many fibers are allowed to ac-
quire singularities of a simple form (so-called nodes).

Surface bundles appear in algebraic geometry,
where they are more commonly known as families of
curves1. Special examples can be obtained by simply
writing down families of equations. For instance, let
B be the space of tuples b = (b1, . . . , bn) of distinct
points in C, fix d ≥ 2, and for b ∈ B, consider the
surface

S(b) = {(x, y) ∈ C2 : yd = (x− b1) · · · (x− bn)}. (1)

Then E = {(x, y, b) | (x, y) ∈ S(b)} is the total
space of a S-bundle over B under the projection map
(x, y, b) 7→ b. Here B is the configuration space of
n (ordered) points in C. The study of this single S-
bundle is already incredibly rich, with connections to
representations of braid groups and geometric struc-
tures on moduli spaces of Riemann surfaces [McM13].

Vector bundles are also a source of surface bun-
dles: given a rank-3 real vector bundle, the associated
unit-sphere bundle is an S2-bundle. In fact, any S2-
bundle is obtained from this construction because, by
a theorem of Smale, Diff(S2) is homotopy equivalent
to the orthogonal group O(3) (this homotopy equiv-
alence implies the bundle statement by the theory
of classifying spaces discussed in Section 2). On the
other hand, if Sg is a closed oriented surface of genus

1Since Riemann surfaces have complex dimension one, al-
gebraic geometers refer to them as curves.

g ≥ 1, then Diff(Sg) is not homotopy equivalent to a
compact Lie group. As such, the study of Sg-bundles
for g ≥ 1 is the first instance of a nonlinear bundle
theory. There are many analogies between the theory
of vector bundles and surface bundles, but there are
also many new phenomena, connections, and open
questions.

Conventions. For the remainder of this article we
assume, for simplicity, that S = Sg is a closed, ori-
ented surface of genus g ≥ 1 (and at times g ≥ 2).
Working with oriented surfaces, we only consider
orientation-preserving diffeomorphisms; for brevity,
we suppress this from the notation and will not men-
tion it further.

The mapping class group

Given the wealth of examples of surface bundles de-
scribe above, we need a good way to tell different
surface bundles apart. We’ll discuss two approaches
to this – classifying spaces and monodromy – in Sec-
tions 2 and 3. Monodromy is a special feature for
Sg-bundles compared to other bundle theories, and
it is where the mapping class group plays a promi-
nent role.

To explain this, consider the mapping torus con-
struction discussed above (Figure 2). If f is isotopic
to the identity (i.e. there is a path from f to id in
Diff(Sg)), then Ef is just the product bundle S1×Sg.
More generally, for any f ∈ Diff(Sg), the bundle Ef
is unchanged if f is changed by an isotopy. There-
fore, if we want to understand the different bundles
obtained as mapping tori, we should start by con-
sidering the quotient Mod(Sg) := Diff(Sg)/Diff0(Sg)
by the (normal) subgroup of diffeomorphisms isotopic
to the identity. The group Mod(Sg) is called the
mapping class group. It is isomorphic to the group
π0 Diff(Sg) of path components of Diff(Sg).

For example Mod(T 2) ∼= SL2(Z). Any A ∈ SL2(Z)
acts linearly on R2 and descends to T 2, and con-
versely, up to homotopy or isotopy, a diffeomorphism
of T 2 is determined by its action on π1(T 2) ∼= Z2.
For g ≥ 1, Mod(Sg) is an infinite, finitely-presented
group. In Section 3 we explain how Mod(Sg) plays a
central role, not only for Sg-bundles over S1, but for

2



Sg-bundles over any base.

2 The classification problem

In this section we describe the basic tools and frame-
work from algebraic topology for studying S-bundles.
As mentioned above, we focus on the case S = Sg.

Two bundles E → B and E′ → B are isomorphic
if there is a diffeomorphism E → E′ that sends fibers
to fibers and covers the identity map on B.

Optimistically, one would like to solve the classi-
fication problem: for a given B, determine the set
of isomorphism classes of Sg-bundles E → B. This
problem can be translated to a homotopy-theoretic
problem via classifying space theory.

Usually the classification problem is too difficult to
solve completely. In practice one wants a rich collec-
tion of invariants that (i) measure topological prop-
erties of Sg-bundles, and (ii) enable us to distinguish
Sg-bundles found in nature. In the study of vector
bundles, a primary role is played by characteristic
classes. Surface bundles also have a theory of char-
acteristic classes, but as we explain, these are fairly
coarse invariants.

Classifying space for surface bundles

For a CW-complex B, let BunSg (B) be the set of
isomorphism classes of Sg-bundles over B. For each
g ≥ 0, there is a space BDiff(Sg) and a bijection

BunSg (B) ∼= [B,BDiff(Sg)] (2)

where the right-hand side is the set of homotopy
classes of maps B → BDiff(Sg). The space BDiff(Sg)
is called the classifying space for Sg-bundles. In
the language of homotopy theory, the functor B 7→
BunSg (B) is represented, and BDiff(Sg) is the uni-
versal element.

The space BDiff(Sg) is defined uniquely up to ho-
motopy by the property that there is a principal
Diff(Sg)-bundle P → BDiff(Sg) with P contractible.
In the bijection (2), given a map B → BDiff(Sg),
the corresponding Sg-bundle E → B is obtained by

pullback:

E
P×Sg

Diff(Sg)

B BDiff(Sg)

//

�� ��
//

The bundle on the right is known as the universal
Sg-bundle. See [Mor01] for more details.

We want to understand the homotopy type of
BDiff(Sg). As mentioned above, there is a fibration
Diff(Sg) → P → BDiff(Sg) where P is contractible.
Hence the homotopy types of Diff(Sg) and BDiff(Sg)
are closely related; indeed by the long exact sequence
of homotopy groups, πi(BDiff(Sg)) ∼= πi−1(Diff(Sg)).
When g ≥ 2, the homotopy type of Diff(Sg) is as sim-
ple as possible.

Theorem 1 (Earle-Eells). If g ≥ 2, then the iden-
tity component Diff0(Sg) < Diff(Sg) is contractible.
Consequently, the surjection Diff(Sg) → Mod(Sg) is
a homotopy equivalence.

The homotopy type of Diff(Sg) for g = 0, 1 is also
known: Diff(S2) is homotopy equivalent to O(3), and
Diff(T 2) is homotopy equivalent to T 2 o SL2(Z); see
e.g. [Mor01]. Theorem 1 was originally proved using
complex analysis (Teichmüller theory) and PDE; a
purely topological proof was given by Gramain; see
[Hat].

By Theorem 1, BDiff(Sg) is homotopy equivalent
to BMod(Sg) for g ≥ 2. Since Mod(Sg) is a discrete
group, its classifying space is an Eilenberg-Maclane
space BMod(Sg) ∼= K(Mod(Sg), 1). Observe that a
map f : B → BDiff(Sg) ' BMod(Sg) induces a ho-
momorphism π1(B) → Mod(Sg). This is a funda-
mental invariant of the bundle associated to f , known
as the monodromy ; we discuss it further in Section 3.

In practice, it can be useful to have a concrete
model for BDiff(Sg). From the point of view of ho-
motopy theory (as in [MW05, Hat]), the most useful
model is the “Grassmannian” of surfaces embedded
in R∞. Unfortunately it would be too much of a
detour to dwell on this further; see [Hat].

A second model for BDiff(Sg) is known as mod-
uli space Mg. Using Theorem 1 it suffices to give a
model for BMod(Sg). For this we need a contractible
space with a free, properly discontinuous action of
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Mod(Sg). To this end, consider the space H of hy-
perbolic metrics on Sg. The group Diff(Sg) acts by
pullback of metrics, and Diff0(Sg) acts freely. Mirac-
ulously, the Teichmüller space T := H/Diff0(Sg)
is finite-dimensional and contractible: T ∼= R6g−6.
There is a natural action of Mod(Sg) on T , and the
quotient Mg := T /Mod(Sg) is the moduli space of
hyperbolic metrics on Sg.

We would like to say that Mg is a model for
BMod(Sg), but this is not true because Mod(Sg) does
not act freely on T . Indeed, the stabilizer of [µ] ∈ T
is the isometry group Isom(Sg, µ), which is finite but
not necessarily trivial. To circumvent this issue, we
use the fact that Mod(Sg) contains many finite-index,
torsion-free subgroups Γ ≤ Mod(Sg). For such a
group, T /Γ is a genuine K(Γ, 1), and there is a finite
covering T /Γ → Mg of orbifolds. For this reason,
we call Mg a virtual classifying space for Mod(Sg).
This is adequate for many purposes, e.g. there is an
isomorphism

H∗(BMod(Sg);Q) ∼= H∗(Mg;Q).

The moduli space Mg is many things at once. In
addition to the set of hyperbolic metrics up to isome-
try, it is the set of algebraic curves up to isomorphism
and the set of Riemann surfaces up to biholomor-
phism. This brings the study of Sg-bundles into close
contact with hyperbolic geometry, complex analysis,
and algebraic geometry.

Characteristic classes

There are very few spaces B for which BunSg (B) ∼=
[B,BDiff(Sg)] has been computed completely. In-
stead one can ask for invariants that distinguish dif-
ferent elements of [B,BDiff(Sg)].

A characteristic class for Sg-bundles is a function
c that assigns to each Sg-bundle E → B a cohomol-
ogy class c(E) ∈ H∗(B). In order to be useful, this
function should be natural with respect to bundle
pullbacks: given a pullback square

φ∗(E) E

B′ B

//

�� ��
//

φ

we require c(φ∗(E)) = φ∗(c(E)) in H∗(B′). Equiva-
lently, a characteristic class is a natural transforma-
tion c : BunS(·)→ H∗(·).

Since every Sg-bundle E → B is obtained by pull-
back from the universal Sg-bundle over BDiff(Sg),
any cohomology class c ∈ H∗(BDiff(Sg)) defines a
characteristic class; conversely, every characteristic
class is of this form (evaluate on the universal bun-
dle). In other words, H∗(BDiff(Sg)) is the set (or
ring) of all characteristic classes of Sg-bundles.

Computing H∗(BDiff(Sg)) is of fundamental im-
portance for studying Sg-bundles, but it is also of
interest in other fields. By the preceding discussion,

H∗(BDiff(Sg);Q) ∼= H∗(BMod(Sg);Q)

∼= H∗(Mg;Q).

For our purpose, it is noteworthy that elements in
the cohomology of Mod(Sg) and Mg give character-
istic classes of Sg-bundles.

Observe that the space BDiff(Sg), the group
Mod(Sg), and the moduli space Mg are most nat-
urally objects of algebraic topology, geometric group
theory, and algebraic geometry, respectively. There
has been a fertile exchange of ideas, tools, and tech-
niques between these areas. To show this inter-
action, we briefly mention some of what is known
about H∗(BDiff(Sg);Q). Much of this is discussed
in [Mor01] and references therein. The groups
H∗(BMod(Sg)) satisfy homological stability, mean-
ing for each i ≥ 0, Hi(BMod(Sg)) is independent
of g when g � i. This was proved by Harer in
the early 1980s. Around the same time, Morita
and Miller defined certain characteristic classes ei ∈
H2i(BDiff(Sg)), and Mumford defined analogous
classes in the Chow ring of Mg. Collectively these
are known as MMM classes or as κ classes. Mumford
conjectured that these classes generate the cohomol-
ogy in degrees i� g, and this was proved by Madsen-
Weiss in 2002, who determined the homotopy type of
BDiff(Sg) “in the limit” as g →∞ [MW05].

Despite all of this progress, H∗(BDiff(Sg);Q) is
still mostly unknown. By a Euler characteristic com-
putation for Mg by Harer-Zagier, the MMM classes
account for a small fraction of the total cohomology.
We have only scratched the surface.
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We conclude this section with a simple geomet-
ric argument that shows H1(BMod(Sg);Z) = 0 for
g ≥ 3. Recalling that H1(BG) is the abelianization
Gab, it suffices to show Mod(Sg)

ab = 0. Dehn proved
that Mod(Sg) is generated by mapping classes known
as Dehn twists that are supported on an annulus in
Sg whose complement is connected. Any two such
Dehn twists are conjugate.2 Therefore, Mod(Sg)

ab is
a quotient of Z, generated by the image of any Dehn
twist A. There is a relation ABC = DEFG between
seven Dehn twists known as the lantern relation (Fig-
ure 3). For g ≥ 3 all seven annuli can be chosen
to have connected complement, so that the image of
this relation in Mod(Sg)

ab proves 3A = 4A or A = 0.
This concludes the proof. See also [FM12, §5.1].

A

BC

D

E

F G

Figure 3: Dehn twists about these curves satisfy the
lantern relation ABC = DEFG.

3 Monodromy

In Section 1 we saw that the mapping torus construc-
tion provides a rich supply of Sg-bundles over S1, but
the argument of the preceding paragraph shows that
none of these bundles are distinguished by charac-
teristic classes! In this section we discuss the mon-
odromy representation of an Sg-bundle. We will see
that this is a complete invariant, so that in some sense

2To see this, cut Sg along either annulus. By the classifica-
tion of surfaces, the cut-open surfaces are seen to be homeo-
morphic. This homeomorphism can be extended via the iden-
tity across the annuli, yielding a map of Sg taking one annulus
to the other.

we face the opposite problem: the challenge is to dis-
till practical, computable information from the mon-
odromy.

Throughout this section we assume g ≥ 2. By the
bijection (2), associated to an Sg-bundle E → B,
there is a map B → BDiff(Sg), unique up to homo-
topy. The induced map on fundamental groups

π1(B)→ π1(BDiff(Sg)) ∼= π0(Diff(Sg)) ≡ Mod(Sg)

is called the monodromy representation of E → B.
The monodromy representation can be described

concretely as follows: given [γ] ∈ π1(B) represented
by γ : S1 → B, consider the pullback γ∗(E) → S1.
Any bundle over the circle is obtained from the map-
ping torus construction (remove one fiber to get a
bundle over the interval, which is trivial because
any map [0, 1] → BDiff(Sg) is null-homotopic), so
γ∗(E) ∼= Efγ for some fγ ∈ Diff(Sg) whose isotopy
class [fγ ] ∈ Mod(Sg) is independent of the choice of
representative of [γ]. The monodromy representation
is the map [γ] 7→ [fγ ]. It measures how the “picture”
of the fiber changes under the transition maps along
the loop γ.

Monodromy as a complete invariant

By Equation (2) and Theorem 1 for g ≥ 2,

BunSg (B) ∼= [B,BDiff(Sg)] ∼= [B,BMod(Sg)].

From K(π, 1)-theory, a map to BMod(Sg) is deter-
mined by the induced map on π1, up to based ho-
motopy. Hence [B,BMod(Sg)] is isomorphic to the
quotient of Hom(π1(B),Mod(Sg)) by the action of
Mod(Sg) by conjugation.

In summary, for g ≥ 2 the isomorphism class of an
Sg-bundle is determined uniquely by its monodromy
representation. The monodromy is a complete invari-
ant! Next we give examples of B where this can be
used to completely determine BunSg (B).

As a trivial example, if π1(B) = 0, then the only
Sg-bundle over B is the trivial bundle B×Sg. (Here
it is important to remember that g ≥ 2.) This il-
lustrates a stark difference between Sg-bundles and
vector bundles; for example, there are many nontriv-
ial vector bundles over spheres Sk with k ≥ 2.
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As a second example, for B = S1, isomorphism
classes of Sg-bundles over S1 are in bijection with
homomorphisms Z → Mod(Sg) up to conjugation,
i.e. with conjugacy classes of elements of Mod(Sg).
Here we clearly see why conjugation is relevant: to
identify E → S1 with Ef , we must first choose a
homeomorphism between the fiber over the basepoint
and Sg. Different choices change f by conjugation.

The surprising part of the statement “monodromy
is a complete invariant” is that for any homomor-
phism ρ : π1(B) → Mod(Sg), there is a bundle
E(ρ)→ B whose monodromy is ρ. It’s not at all ob-
vious how to explicitly construct E(ρ) from ρ. This
is the power of Theorem 1. We note however that
the monodromy is not a complete invariant of the
total space up to homeomorphism, since a given 3-
manifold may fiber as an Sg-bundle in more than one
way. See [Thu86].

The monodromy–topology dictionary

Let’s think more about the bijection

BunSg (B) ∼= Hom(π1(B),Mod(Sg))/conjugation. (3)

In the previous section we gave examples where the
left-hand side could be explicitly computed using the
right-hand side, but usually this is an unreasonable
task. Even when B = Sh is also a closed surface,
there is no known classification of homomorphisms
π1(Sh)→ Mod(Sg).

We would like to emphasize a different perspec-
tive on (3) that leads to interesting problems. Ob-
serve that the left-hand side of (3) is topological,
while the right-hand side is group-theoretic. Under-
standing how geometric or topological properties of
Sg-bundles translate to properties of the monodromy
and vice versa leads to a dictionary. Below we men-
tion a couple of entries of this dictionary.

Geometric classification of mapping tori.
The precise conjugacy classification of elements of
Mod(Sg) is well-known. According to the Nielsen-
Thurston classification, there are three types of
conjugacy classes: periodic, reducible, and pseudo-
Anosov. “Periodic” is synonymous with “finite-
order”; a reducible element preserves (setwise) some

finite collection of curves up to isotopy. Thus a
pseudo-Anosov element is simply any element with
neither of these special properties. The miracle
of the Nielsen-Thurston classification is that ev-
ery pseudo-Anosov element nevertheless has a very
tightly-controlled form; see [FM12, §13].

Thurston used this classification to describe the ge-
ometry of mapping tori.

Theorem 2 (Thurston). Fix g ≥ 2 and fix [f ] ∈
Mod(Sg). Then [f ] is

(a) periodic if and only if Ef is admits a Rieman-
nian metric locally isometric to H2 × R;

(b) reducible if and only if Ef contains an incom-
pressible torus;

(c) pseudo-Anosov if and only if Ef admits a hyper-
bolic metric.

A geometric restriction on the bundle gives an al-
gebraic restriction on the monodromy and vice versa.
The most striking and difficult part of the theorem is:
if [f ] pseudo-Anosov, then Ef is hyperbolic. We re-
mark that a mapping class can be both periodic and
reducible, so (a) and (b) are not mutually exclusive.

Given Thurston’s theorem, it is natural to ask for
conditions on the monodromy of a bundle E → B
with dimB ≥ 2 that guarantee that E has negative
curvature. This seems to be a subtle question. It is
not hard to see that it is necessary for every nontriv-
ial element of the monodromy group to be pseudo-
Anosov [FM02], but the converse is not generally
known. It is a well-known open question whether or
not there exists a homomorphism π1(Sh)→ Mod(Sg)
such that the image of every nontrivial element is
pseudo-Anosov.

Complex structures on Sg-bundles over sur-
faces. When B = Sh is a closed surface, the total
space E of any Sg-bundle over B is a compact 4-
manifold and thus can potentially be diffeomorphic
to a complex surface. Furthermore, it is possible for
the bundle projection E → B to be holomorphic with
respect to some complex structure on B. Since the
monodromy ρ of E → B determines the topology
of E, this information is encoded inside ρ, albeit in
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a highly nontrivial way. In Section 4, we will dis-
cuss the geometric Shafarevich problem, which shows
that holomorphic families are exceedingly rare. Here,
we mention some entries in the monodromy-topology
dictionary concerned with the (non)-existence of a
complex structure on E.

Hodge theory provides one major source of obstruc-
tions. This is at its most powerful when the space
under study is Kähler and not merely complex. It
follows quickly from the Enriques-Kodaira classifica-
tion that if E is a compact complex surface that fibers
over a surface, then E is of general type and hence
Kähler. Thus the basic “Kähler package” imposes
nontrivial constraints on the cohomology algebra of
E. By (3), the structure of H∗(E;Z) (as a ring) can
be obtained from ρ. In fact, the cup product struc-
ture on an Sg-bundle is encoded as a certain family
of characteristic classes with “twisted coefficients”;
see [Sal18]. Another Hodge-theoretic obstruction is
provided by Deligne’s semisimplicity theorem, which
places strong restrictions on how ρ can act on the
homology of the fiber [Del87].

To close this discussion we mention a theorem of
Shiga [Shi97] providing another constraint on the
monodromy of a holomorphic Sg-bundle E → B over
a compact Riemann surface B. Shiga’s theorem as-
serts that in this setting, either all the fibers are bi-
holomorphic, or else the monodromy is geometrically
irreducible, meaning that there is no simple closed
curve globally fixed by the monodromy.

To further illuminate the themes under develop-
ment (especially the monodromy-topology dictionary
and interactions with algebraic geometry), in the fi-
nal two sections we take a closer look at two topics:
sections of Sg-bundles and Sg-bundles over surfaces.

4 Sections of Sg-bundles

A basic notion in any fiber bundle theory is that
of a section: if p : E → B is a bundle map, then
s : B → E is called a section if p ◦ s = id. In other
words, a section is a continuously-varying choice of
distinguished point in each fiber. Given an Sg-bundle
p : E → B with corresponding monodromy represen-

tation ρ : π1(B) → Mod(Sg), there is a simple char-
acterization of the homotopy classes of sections of p.
Such sections are in correspondence with liftings ρ̃ of
ρ as encoded in the diagram below:

Mod(Sg, ∗)

π1(B) Mod(Sg)

99ρ̃

��
//

ρ

(4)

Here Mod(Sg, ∗) is the based mapping class group,
defined as the group of diffeomorphisms fixing a dis-
tinguished point ∗ ∈ Sg, modulo isotopies fixing ∗.

Sections of Sg-bundles in algebraic geometry
and number theory. Before we discuss some of
the tools used to construct and obstruct sections of
Sg-bundles, it is worthwhile to mention some applica-
tions. Sections of Sg-bundles are often of interest in
problems of an algebro-geometric flavor. One notable
instance of this concerns the geometric Mordell prob-
lem. Loosely speaking, this asks for an enumeration
of holomorphic sections of Sg-bundles over surfaces in
the case where the total space has a complex struc-
ture. Arakelov and Parshin showed that the num-
ber of such sections is always finite. In fact this is
obtained from the geometric Shafarevich problem al-
luded to in Section 3. For simplicity we state the ver-
sion obtained by Parshin; Arakelov treats the more
general case when B is a compact Riemann surface
with finitely many points removed. See e.g. [McM00].

Theorem 3 (Geometric Shafarevich). Let B be a
compact Riemann surface. For g ≥ 2, there are only
finitely many truly varying families p : E → B of
Riemann surfaces of genus g.

A truly varying family p : E → B is an Sg-bundle
where E has a complex structure, p is holomorphic,
and the fibers are not all biholomorphic. The geo-
metric Mordell problem follows from geometric Sha-
farevich by way of the “Parshin trick”. The idea is
that each section s : B → E of a truly-varying family
can be used to construct a new truly-varying fam-
ily over B, by constructing a branched cover of E
branched along s(B). This construction will be dis-
cussed further in Section 5 in the context of Atiyah-
Kodaira bundles. Moreover the genus of the fibers
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in the new family depends only on the genus of the
original. Finiteness of families over B (Shafarevich)
then implies finiteness of sections (Mordell).

As explained by McMullen in [McM00], the ge-
ometric Mordell problem is actually the complex-
geometric analogue of Faltings’ theorem in num-
ber theory. Faltings’ theorem concerns Diophantine
equations F (x, y, z) such as xn+ yn+ zn = 0 (n ≥ 3)
whose complex points determine a Riemann surface
of genus at least 2; it asserts that such an equation
has only finitely many rational solutions. Scheme-
theoretically, one can view such a Diophantine equa-
tion as a “surface bundle” over3 Spec(Z), where the
“fibers” consist of the reductions of F mod p. From
this point of view, a rational solution (x, y, z) of F
determines a section of this bundle, by assigning the
distinguished point (x, y, z) (mod p) to the fiber F
(mod p) over p ∈ Spec(Z). McMullen explains how
Faltings’ arguments have direct analogues in the set-
ting of complex geometry, leading to the proof of the
geometric Shafarevich problem given by Imayoshi-
Shiga. In fact the connections between Sg-bundles
and number theory go beyond mere analogies. Re-
cently Lawrence-Venkatesh [LV19] gave a new proof
of Faltings’ theorem that involves a topological anal-
ysis of the monodromy of certain Sg-bundles over sur-
faces.

Sections of tautological bundles. Another appli-
cation of the theory of sections of Sg-bundles occurs
in studying the existence and classification of sec-
tions of “naturally-occurring” Sg-bundles. The most
“natural” of all such bundles is the universal curve
Mg,∗ → Mg whose fiber over a point x ∈ Mg is
the Riemann surface corresponding to x. The sec-
tion question in this case simply asks if there is a
way to continuously choose a distinguished point on
all Riemann surfaces simultaneously. Unsurprisingly,
Mg,∗ →Mg does not have a section for g ≥ 2. How-
ever it is possible to choose a continuously-varying
family of 6 everywhere-distinct points on the uni-
versal curve in genus 2, furnished by the so-called
Weierstrass points (Figure 4). Thus a more sophis-
ticated version of the section question asks if it is

3For simplicity we are ignoring issues of good/bad reduc-
tion.

Figure 4: The blue set forms the real solutions of
y2 = −(x2 − 1)(x2 − 4)(x2 − 9), plotted in R2 on the
left. The red dots are the Weierstrass points. After
projectivizing, the complex solutions are homeomor-
phic to a surface of genus 2.

possible to choose, for any n ≥ 1, a “multisection”
of n everywhere-distinct points. If one restricts at-
tention to holomorphic multisections, work of Hub-
bard [Hub76] shows that this is impossible, but this
does not preclude the possibility that some merely-
continuous multisection could exist. For the univer-
sal curve Mg,∗, it was only recently shown that no
continuous multisection exists for g ≥ 4 by L. Chen
and the first author [CS19], building off of ideas of
Mess. The basic tool is the theory of canonical reduc-
tion systems, described below, which can be viewed
as a version of the Jordan normal form for mapping
classes.

Sections: toolkit. The study of sections of Sg-
bundles again incorporates themes and tools from
a variety of mathematical disciplines. A first ques-
tion is whether a given bundle admits any sections
at all. Unlike in the theory of vector bundles, where
the “zero-section” provides a quick affirmative an-
swer to this question, an Sg-bundle may or may not
admit a section. This is similar to the situation
one encounters when studying nowhere-vanishing sec-
tions of vector bundles. The standard machinery in
the latter setting is obstruction theory, which man-
ufactures cohomological invariants that obstruct the
existence of sections. However, obstruction theory
breaks down when the fibers are K(π, 1) spaces with
π a group with trivial center, as is the case for Sg-
bundles. Thus, by-and-large, the study of sections
of Sg-bundles takes on a quintessentially geometric-
group-theoretic flavor governed by the study of lift-
ings ρ̃ as in (4).
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Given ρ : π1(B) → Mod(Sg), how could one ob-
struct or classify the lifts ρ̃ : π1(B) → Mod(Sg, ∗)?
The theory of canonical reduction systems provides
one approach. Here we provide only a casual overview
of how arguments using these ideas work; for a more
precise discussion (including an actual definition of a
canonical reduction system), see e.g. [FM12, §13.2].
In keeping with the basic philosophy of geometric
group theory, the method is to consider the action
of π1(B) on the set of simple closed curves on Sg
afforded by the monodromy ρ. If one finds an am-
ple supply of “simple” elements in the image of ρ
(e.g. elements with large centralizers in Mod(Sg)),
one can profitably understand the dynamics of this
group action from the point of view of how π1(B)
shuffles around simple closed curves on the surface.
This information can be used to classify and obstruct
sections: one asks where a distinguished point could
be placed in relation to the simple closed curves un-
der study, and in favorable circumstances one can
see (e.g. by exploiting relations in π1(B) and/or
Mod(Sg)) that there is simply no place to put a dis-
tinguished point that is compatible with the known
dynamics of the action.

One shortcoming of this approach is that current
techniques only apply when B has a fundamental
group with certain properties. In many common sit-
uations (e.g. when B = Sh is itself a surface), there
are not enough commuting elements of π1(B) to be
able to implement the above ideas. Our knowledge
of sections of Sg-bundles over surfaces is extremely
limited – in fact, the question of Mess [Kir78, Prob-
lem 2.17] from 1990 asking if every Sg-bundle over a
surface admits a multisection is still open.

5 Bundles and branched covers

The main goal of this section is to describe a con-
struction due to Atiyah and Kodaira of Sg-bundles
over surfaces obtained by branched coverings. In con-
trast to the effortless way that Sg-bundles over S1 are
constructed (Figure 2), constructing interesting Sg-
bundles over surfaces takes work, and the branched
covering constructions we discuss here have many in-
teresting applications.

Before we begin, we mention that the bundle
E → B over the configuration space from (1) in Sec-
tion 1 is obtained via a branched covers: the map
S(b) 3 (x, y) 7→ x ∈ C is a d-fold cover branched
over b1, . . . , bn. Thus B is parameterizing a family of
branched covers of C with moving branched points.
The Atiyah–Kodaira construction works similarly.

Atiyah-Kodaira bundles

We start with the basics of the construction, which
we explain in one of the simplest cases. Consider the
surface S3, and let σ : S3 → S3 be a free involution
(Figure 5). The product S3 × S3 contains a (discon-
nected) surface Σ, defined as the union of the graphs
of the identity and σ. We would like to take a 2-fold
cover E → S3 × S3, branched over Σ.

σ

x
σ(x)

Figure 5: Free involution on surface of genus 3. Cut
along the dotted line and double to obtain a 2-fold
branched cover S6 → S3.

Before explaining more details, let’s skip ahead to
the output: the construction produces an S6-bundle
E → S129.

Where do these number come from? For the fiber
S6, first observe that Σ ⊂ S3 × S3 meets {x} × S3

in two points (x, x) and (x, σ(x)), so under a double
cover E → S3 × S3 branched over Σ, the pre-image
of {x} × S3 is a 2-fold cover S6 → S3 branched over
two points.

Now we explain the base S129. The issue is that
the branched cover E → S3 × S3 is not guaran-
teed to exist. A sufficient condition for the exis-
tence is that the homology class [Σ] ∈ H2(S3 × S3)
is even.4 Unfortunately, [Σ] is not even. To fix this,
we first pass to the 26-sheeted cover S129 → S3 with

4A class x is even if x = 2y for some other class y.
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deck group H1(S3;Z/2Z). The pre-image of Σ un-
der S129 × S3 → S3 × S3 determines an even homol-
ogy class, and E is defined as a branched cover of
S129 × S3.

This construction can done very generally: given
a surface bundle E → B over a manifold and a mul-
tisection – viewed as a codimension-2 submanifold
Σ ⊂ E that projects to B as a covering space – af-
ter replacing B with a finite cover, there is a cover
E′ → E branched along Σ. If E → B and Σ ⊂ E are
both holomorphic, then the resulting bundle is also
holomorphic. This is the essence of the Parshin trick
discussed in Section 4.

The Atiyah-Kodaira examples exhibit many inter-
esting phenomena, and they appear in surprisingly
many situations. A variant of the Atiyah–Kodaira
construction appears in the work of Lawrence–
Venkatesh [LV19] mentioned in Section 4. We close
by mentioning a sampling of other applications of the
construction.

Signature. The total space E of an Atiyah–Kodaira
bundle is a closed, oriented 4-manifold, and therefore
has a signature sig(E), defined as the signature of
the intersection form H2(E) × H2(E) → Z. Under
a branched cover, the signature is multiplied by the
degree of the cover with a correction term that is
proportional to the self-intersection number of the
branching locus. Thus, although sig(S3 × S129) = 0,
we have sig(E) = 256. These were the first examples
constructed of Sg-bundles over surfaces with nonzero
signature.

Consequently, the MMM class e1 ∈ H2(BDiff(Sg))
is nontrivial for g = 6 (and hence for g ≥ 6 by
Harer stability). To see this, we remark that the
function that assigns to an Sg-bundle E → Sh the
value sig(E) ∈ Z can be viewed as a character-
istic class. Specifically, there is a homomorphism
H2(BDiff(Sg)) → Q that sends a cycle represented
by Sh → BDiff(Sg) to the signature of the asso-
ciated bundle. This is well-defined because signa-
ture is a cobordism invariant. From the Atiyah–
Kodaira construction [sig] 6= 0 in H2(BDiff(S6);Q),
and since e1 = 3 · [sig] (by Hirzebruch’s signature
theorem), we conclude e1 6= 0. In fact, the class
[sig] ∈ H2(BDiff(Sg);Q) is nontrivial and generates

this group when g ≥ 3.

Non-triviality of MMM classes. Morita generalized
the preceding argument to prove that all the MMM
classes are nontrivial. More precisely, for each fixed
i, there is g � i so that ei 6= 0 ∈ H2i(BDiff(Sg);Q).
He proved this by iterating the Atiyah–Kodaira con-
struction: for example, given the Atiyah–Kodaira
bundle p : E → S129, consider the pullback to an
S6-bundle p∗(E) → E. This bundle has a tautolog-
ical section over which one can branch; in this way
Morita obtained a bundle over a finite cover of E with
e2 6= 0. See [Mor01, §4.4] for more details.

In other directions, the Atiyah–Kodaira construc-
tion has also been used to give examples of inequiv-
alent symplectic structures on 4-manifolds [LeB00]
and examples of CAT(0) metrics with no Riemannian
smoothings [Sta15]. A variant of the construction has
also been used to study the geography problem for
symplectic 4-manifolds [BNOP19].

Conclusion

There are many ways to arrive at the theory of sur-
face bundles: as a non-linear bundle theory (alge-
braic topology), as a source for interesting 3- and
4-dimensional manifolds (low-dimensional topology
and geometric group theory), or as objects naturally
arising from moduli of Riemann surfaces (algebraic
geometry). Each area brings to surface-bundle the-
ory its own collection of ideas and techniques. This
leads to a rich interaction where questions in one area
motivate results in another. The interactions that we
have discussed above represent only a small fraction
of what is known and what is left to be discovered.
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