Mapping class groups and the monodromy of some families of algebraic curves

Nick Salter
University of Chicago

AG crash course

Plane curve:

$$
\left\{[x: y: z] \mid x^{d}+y^{d}+z^{d}=0\right\} \subset \mathbb{C} P^{2}
$$

Smooth:

$$
\left\{[x: y: z] \mid x^{d}+y^{d}+z^{d}=0\right\} \cong \Sigma_{g}
$$

$$
g=\binom{d-1}{2}
$$

Moduli space of plane curves:

$$
\mathcal{P}_{d}=\mathbb{C} P^{N} \backslash \mathcal{D}_{d}
$$

Universal plane curve:

$$
\Sigma_{g} \rightarrow \mathfrak{X}_{d} \rightarrow \mathcal{P}_{d}
$$

Surface bundles have monodromy:

$$
\rho_{d}: \pi_{1}\left(\mathcal{P}_{d}\right) \rightarrow \operatorname{Mod}_{g}
$$

Basic question: What is $\Gamma_{d}:=\operatorname{im}\left(\rho_{d}\right) \subset \operatorname{Mod}_{g}$?

Symplectic representation: $\Psi: \operatorname{Mod}_{g} \rightarrow \operatorname{Sp}_{2 g}(\mathbb{Z})$

Theorem (Beauville):

$$
\Psi\left(\Gamma_{d}\right)= \begin{cases}\operatorname{Sp}_{2 g}(\mathbb{Z}) & d \text { even } \\ \operatorname{Sp}_{2 g}(\mathbb{Z})[q] & d \text { odd }\end{cases}
$$

Here, q is a "spin structure" and $\mathrm{Sp}_{2 g}(\mathbb{Z})[q]$ indicates the stabilizer

Spin structures

My favorite definition: "Winding number function"

$$
\phi:\{\text { SCC's }\} \rightarrow \mathbb{Z} / 2 \mathbb{Z}
$$

Cohomological definition:

$$
\phi \in H^{1}\left(T^{1} \Sigma_{g} ; \mathbb{Z} / 2 \mathbb{Z}\right) ; \quad \phi(\zeta)=1
$$

n-spin structures

My favorite definition: "Winding number function"

$$
\phi:\{\mathrm{SCC} ' \mathrm{~s}\} \rightarrow \mathbb{Z} / n \mathbb{Z}
$$

Cohomological definition:

$$
\phi \in H^{1}\left(T^{1} \Sigma_{g} ; \mathbb{Z} / n \mathbb{Z}\right) ; \quad \phi(\zeta)=1
$$

Constraints

Observation (Folklore):
There is a natural (d-3)-spin structure ϕ_{d}
invariant under Γ_{d}

For $d \geq 5$, the containment

$$
\Gamma_{d} \subset \operatorname{Mod}_{g}\left[\phi_{d}\right] \subsetneq \Psi^{-1}\left(\Psi\left(\Gamma_{d}\right)\right)
$$

is strict.
$\mathrm{d}=3$: \quad Elliptic curves are all planar $\quad\left(y^{2}=x^{3}+a x+b\right)$ ($\mathrm{g}=1$)

$$
\Gamma_{3}=\operatorname{Mod}_{1} \cong \mathrm{SL}_{2}(\mathbb{Z})
$$

$\mathrm{d}=4$: \quad AG fact: "Generic" genus-3 curve planar. ($\mathrm{g}=3$)

Implies $\Gamma_{4}=\operatorname{Mod}_{3}$

$$
d=5
$$

Theorem (S. '16): There is an equality

$$
\Gamma_{5}=\operatorname{Mod}\left(\Sigma_{6}\right)\left[\phi_{5}\right]
$$

This ϕ_{5} is a $\mathbb{Z} / 2 \mathbb{Z}$ spin structure.

Conjecture: $\Gamma_{d}=\operatorname{Mod}_{g}\left[\phi_{d}\right]$

Current knowledge: Don't even know if Γ_{d} is finite-index!

Crétois and Lang ('17) studied a closely related problem (monodromy of linear systems on toric surfaces) and formulated the same conjecture!
$\pi_{1}\left(\mathcal{P}_{d}\right)$ has an explicit presentation, due to Lönne.

It's a quotient of a RAAG!

"Picard-Lefschetz theory" implies that ρ_{d} maps generators to Dehn twists.

I use mapping class group techniques to determine this configuration of curves

From Beauville's result, it suffices to show

$$
\Gamma_{d} \cap \operatorname{ker}(\Psi)=\operatorname{Mod}_{g}\left[\phi_{d}\right] \cap \operatorname{ker}(\Psi)
$$

For $\mathrm{d}=5, \operatorname{Mod}_{g}\left[\phi_{d}\right] \cap \operatorname{ker}(\Psi)=\mathcal{I}_{g}$ (Torelli group)

Then I exhibit all of Johnson's generators for \mathcal{I}_{g} as elements of Γ_{d}

$d>5$?

The limitation for $d>5$ is simply that there isn't a known set of generators for $\operatorname{Mod}_{g}\left[\phi_{d}\right] \cap \operatorname{ker}(\Psi)$
(or for $\operatorname{Mod}_{g}\left[\phi_{d}\right]$ itself)

How hard could this be?
(Famous last words...)

