# Simple closed curves in covers of surfaces and unitary K-theory

Nick Salter
Incorporates ongoing work with Corey Bregman
Columbia University
May 13, 2021

## H<sub>1</sub> of a surface

Extremely classical fact:  $H_1(\Sigma_g; \mathbb{Z})$  is generated by geometric classes.

A class  $c\in H_1(\Sigma_g;\mathbb{Z})$  is geometric if  $c=[\gamma]$  for some simple closed curve  $\gamma\subset\Sigma_g$ 



There is a purely algebraic criterion for geometricity:

 $c \in H_1(\Sigma_g; \mathbb{Z})$  is geometric if and only if c is *primitive*: c is not a proper multiple of any other vector. Equivalently, if the entries of c generate the unit ideal in  $\mathbb{Z}$ .

## H<sub>1</sub> of a surface, relative version

Talk today: the *relative* version of this story.

Fix  $f: X \to Y$  a map of surfaces with Y of finite type.

Typically f is a *regular* covering, possibly branched, with deck group G.

Degree not necessarily finite.

A class  $c \in H_1(X; \mathbb{Z})$  is relatively geometric if  $c = [\tilde{\gamma}]$  for  $\tilde{\gamma}$  a component of  $f^{-1}(\gamma)$ , with  $\gamma \subset Y$  a s.c.c.



### H<sub>1</sub> of a surface, relative version

Basic questions:

(1) Can you describe the subspace  $H_1^{geom}(X;R) \le H_1(X;R)$  spanned by relatively geometric classes?

(2) Can you describe the *set* of relatively geometric classes? That is, can you give a purely algebraic characterization?

Question (1) has been studied in the last decade.

A deep and rich story we don't have time to visit.

Far from completely understood, but we now have some methods to show strict containment, and examples where this happens.

# Primitive homology

(1) Can you describe the subspace  $H_1^{geom}(X;R) \le H_1(X;R)$  spanned by relatively geometric classes?

Question 1 has been investigated over the last decade. Often called "primitive homology" or "scc homology".

We now know many examples of coverings  $f: X \to Y$  for which  $H_1^{geom}(X;R) \neq H_1(X;R)$ , both for  $R = \mathbb{Z}$ ,  $\mathbb{Q}$  (latter is stronger!)

Koberda-Santharoubane `16: first examples;  $R = \mathbb{Z}$ .

Farb-Hensel `16: representation-theoretic criterion on  ${\it G}$ 

Malestein-Putman `18: infinite family of examples;  $R = \mathbb{Q}$ .

Lee-Rosenblum Sellers-Safin-Tenie `20: quite simple examples

(e.g. 
$$|G| = 128$$
)

# Our running example

Remainder of talk: will explore (2) for the  $\mathbb{Z}/4\mathbb{Z}$  cover  $f: \Sigma_5 \to \Sigma_2$ .



Chevalley-Weyl:  $H_1(\Sigma_5; \mathbb{Z}) = (\mathbb{Z}[t]/(t^4 - 1))^2 \oplus \mathbb{Z}^2$ 

Spanned additively by

$$\tilde{x}_1, t\tilde{x}_1, t^2\tilde{x}_1, t^3\tilde{x}_1, \tilde{y}_1, t\tilde{y}_1, t^2\tilde{y}_1, t^3\tilde{y}_1, \tilde{x}_2, \tilde{y}_2$$

On this basis,  $f_*(t^k\tilde{z}) = z$ , except  $f_*(\tilde{x}_2) = 4x_2$ .

Is  $v_1 = \tilde{x}_1 + t\tilde{y}_1$  relatively geometric?

#### Obstruction 1: isotropy

"Trivial" observation: components  $\tilde{\gamma} \subset f^{-1}(\gamma)$  are disjoint.

So  $(\tilde{\gamma}, g\tilde{\gamma}) = 0$  for any  $g \in G$ .

Can be expressed algebraically: relative intersection pairing.



## Relative intersection pairing

There is a  $\mathbb{Z}[G]$ -valued *relative intersection pairing* on  $H_1(X;\mathbb{Z})$ :

$$\langle x, y \rangle := \sum_{g \in G} (x, gy)g$$

Here, (x, y) denotes the ordinary pairing

Skew-Hermitian: 
$$\langle \alpha y, x \rangle = -\alpha \overline{\langle x, y \rangle}$$
 for  $\alpha \in \mathbb{Z}[G]$  with  $\overline{\cdot} : \mathbb{Z}[G] \to \mathbb{Z}[G]$  induced from  $g \mapsto g^{-1}$  on  $G$ 

But e.g. 
$$\langle \tilde{x}_1 + t \tilde{y}_1, \tilde{x}_1 + t \tilde{y}_1 \rangle = t^{-1} - t$$

If v is relatively geometric, then v is *isotropic:*  $\langle v, v \rangle = 0$ .

Is  $v_2 = \tilde{x}_1 + t^2 \tilde{y}_1$  relatively geometric?

#### Obstruction 2: *super*isotropy

Problem: 
$$\langle \tilde{x}_1 + t^2 \tilde{y}_1, \tilde{x}_1 + t^2 \tilde{y}_1 \rangle = t^{-2} - t^2 = 0.$$

"Accidental cancellation" can't detect crossings.

Solution: lift to a further double-cover where  $t^{-2} \neq t^2$ .

After accounting for arbitrary choices, get a function  $q: H_1(X; \mathbb{Z}) \to \mathbb{Z}/2\mathbb{Z}$ .

Say isotropic  $x \in H_1(X; \mathbb{Z})$  is *superisotropic* if q(x) = 0.

When G has 2-torsion, rel. geom. vectors must be *super*isotropic.

Is  $v_3 = (1 + t)\tilde{x}_1 + \tilde{x}_2$  relatively geometric?

Obstruction 3: primitivity

Given  $v \in H_1(X; \mathbb{Z})$ , let  $I_v \triangleleft \mathbb{Z}[G]$  denote the pairing ideal

$$I_{v} = \langle H_{1}(X; \mathbb{Z}), v \rangle$$

The ideal  $I_{v_3} = (1 + t + t^2 + t^3, 1 + t) = (1 + t)$  is proper.

It turns out  $I_v$  is *tightly constrained* for rel. geom. v!

## Stabilizer ideal

For  $v \in H_1(X; \mathbb{Z})$  with stabilizer subgroup  $G_v \leq G$ , define

$$I_{G_{v}} := \left(\sum_{g \in G_{v}} g\right)$$

Can show\*: If  $v \in H_1(X; \mathbb{Z})$  is relatively geometric, then  $I_v = I_{G_v}$ 

 $I_v \leq I_{G_v}$ : easy from definitions

 $I_{G_v} \leq I_v$ : construct a "partner curve" w for v.

\*: Actually this is a lie!

Is  $v_4 = (1 - t)\tilde{y}_1$  relatively geometric?

#### Phenomenon: lifting separating curves

Actually, it is!



Formula  $I_v = I_{G_v}$  breaks down when  $f_*(v) = 0$ . Analysis of this case shows the following:

If v is rel. geom. with  $f_*(v) = 0$ , then v = (1 - t)v' with v' rel. geom and  $f_*(v') \neq 0$ .

## Main theorem

Summary of necessary conditions:

Let  $f: X \to \Sigma_g$  be a cyclic unbranched covering of degree d (possibly  $d = \infty$ ), and let  $v \in H_1(X; \mathbb{Z})$  be relatively geometric.

(A) If  $f_*(v) = 0$ , then v = (1 - t)v' with v' rel. geom. and  $f_*(v') \neq 0$ . (i.e. v' is in case (B)).

(B) If  $f_*(v) \neq 0$ , then the following conditions must hold:

 $(1)\langle v, v \rangle = 0$ 

(2) q(v) = 0

 $(3)I_{v}=I_{G_{v}}$ 

(4) "degree-order condition"

isotropy

superisotropy (for d finite, even)

 $\mathbb{Z}[G]$ -primitivity

Theorem (S.): If  $g \ge 5$ , then the necessary conditions are sufficient.

# How not to prove this

What I wanted to do:

Use topology to do algebra!

Run a relative version of the "Euclidean algorithm on surfaces": start with a cycle representing v with many crossings/components, and resolve until v has a relatively geometric representative.

I don't know how to do this!



## How not to prove this

Sadly had to resort to the other direction:

Use algebra to do topology

("Liftable subgroup" of) mapping class group Mod(Y) acts on  $H_1(X; \mathbb{Z})$ .

If you have one rel. geom.  $v \in H_1(X; \mathbb{Z})$  and you completely understand the orbit of v, can understand *all* rel. geom. elements.

Lots of authors (e.g. Looijenga, McMullen, Venkataramana, Grunewald-Larsen-Lubotzky-Malestein) have investigated these representations.

Unfortunately, no result has yet been precise enough to do what I need.

Theorem (S.):

Complete computation of  $\operatorname{Mod}(\Sigma_g) \circlearrowleft H_1(X; \mathbb{Z})$  for  $f: X \to \Sigma_g$  cyclic unbranched,  $g \geq 5$ .

*Unitary K-theory* provides tools to study these sorts of matrix groups: show generation by elementary matrices.

# A look ahead

Bregman and I are working on pushing this story further

Ultimate goal: describe the image of the Burau representation

Can be approached by understanding relative geometricity for the Burau cover of the punctured disk.

Strange things seem to be happening.

Theorem (Bregman-S.): At least one of the following is true:

- The Burau representation for  $B_4$  is non-injective
- The image of Burau is "much smaller image than expected"