Simple closed curves in covers of surfaces and unitary K-theory

Nick Salter
Incorporates ongoing work with Corey Bregman
Columbia University
May 13, 2021

H_{1} of a surface

Extremely classical fact: $H_{1}\left(\Sigma_{g} ; \mathbb{Z}\right)$ is generated by geometric classes.

> A class $c \in H_{1}\left(\Sigma_{g} ; \mathbb{Z}\right)$ is geometric if $c=[\gamma]$ for some simple closed curve $\gamma \subset \Sigma_{g}$

There is a purely algebraic criterion for geometricity:
$c \in H_{1}\left(\Sigma_{g} ; \mathbb{Z}\right)$ is geometric if and only if
c is primitive: c is not a proper multiple of any other vector. Equivalently, if the entries of c generate the unit ideal in \mathbb{Z}.

H_{1} of a surface, relative version

Talk today: the relative version of this story.

Fix $f: X \rightarrow Y$ a map of surfaces with Y of finite type.
Typically f is a regular covering, possibly branched, with deck group G.
Degree not necessarily finite.

A class $c \in H_{1}(X ; \mathbb{Z})$ is relatively geometric
if $c=[\tilde{\gamma}]$
for $\tilde{\gamma}$ a component of $f^{-1}(\gamma)$, with $\gamma \subset Y$ a s.c.c.

H_{1} of a surface, relative version

Basic questions:
(1) Can you describe the subspace $H_{1}^{g e o m}(X ; R) \leq H_{1}(X ; R)$ spanned by relatively geometric classes?
(2) Can you describe the set of relatively geometric classes? That is, can you give a purely algebraic characterization?

Question (1) has been studied in the last decade.

A deep and rich story we don't have time to visit.

Far from completely understood, but we now have some methods to show strict containment, and examples where this happens.

Primitive homology

(1) Can you describe the subspace $H_{1}^{g e o m}(X ; R) \leq H_{1}(X ; R)$ spanned by relatively geometric classes?

Question 1 has been investigated over the last decade. Often called "primitive homology" or "scc homology".

```
We now know many examples of coverings f:X }->
    for which }\mp@subsup{H}{1}{geom}(X;R)\not=\mp@subsup{H}{1}{}(X;R)
    both for }R=\mathbb{Z},\mathbb{Q}\mathrm{ (latter is stronger!)
```

Koberda-Santharoubane `16: first examples; \(R=\mathbb{Z}\). Farb-Hensel `16: representation-theoretic criterion on G
Malestein-Putman `18: infinite family of examples; \(R=\mathbb{Q}\). Lee-Rosenblum Sellers-Safin-Tenie `20: quite simple examples

$$
\text { (e.g. }|G|=128 \text {) }
$$

Our running example

Remainder of talk: will explore (2) for the $\mathbb{Z} / 4 \mathbb{Z}$ cover $f: \Sigma_{5} \rightarrow \Sigma_{2}$.

Chevalley-Weyl: $H_{1}\left(\Sigma_{5} ; \mathbb{Z}\right)=\left(\mathbb{Z}[t] /\left(t^{4}-1\right)\right)^{2} \oplus \mathbb{Z}^{2}$
Spanned additively by
$\tilde{x}_{1}, t \tilde{x}_{1}, t^{2} \tilde{x}_{1}, t^{3} \tilde{x}_{1}, \tilde{y}_{1}, t \tilde{y}_{1}, t^{2} \tilde{y}_{1}, t^{3} \tilde{y}_{1}, \tilde{x}_{2}, \tilde{y}_{2}$
On this basis, $f_{*}\left(t^{k} \tilde{z}\right)=z$, except $f_{*}\left(\tilde{x}_{2}\right)=4 x_{2}$.

Example 1

Is $v_{1}=\tilde{x}_{1}+t \tilde{y}_{1}$ relatively geometric?

Obstruction 1: isotropy

"Trivial" observation: components $\tilde{\gamma} \subset f^{-1}(\gamma)$ are disjoint.
So ($\tilde{\gamma}, g \tilde{\gamma})=0$ for any $g \in G$.
Can be expressed algebraically: relative intersection pairing.

Relative intersection pairing

There is a $\mathbb{Z}[G]$-valued relative intersection pairing on $H_{1}(X ; \mathbb{Z})$:

$$
\langle x, y\rangle:=\sum_{g \in G}(x, g y) g
$$

Here, (x, y) denotes the ordinary pairing

Skew-Hermitian: $\langle\alpha y, x\rangle=-\alpha \overline{\langle x, y\rangle}$ for $\alpha \in \mathbb{Z}[G]$ with $-: \mathbb{Z}[G] \rightarrow \mathbb{Z}[G]$ induced from $g \mapsto g^{-1}$ on G

But e.g. $\left\langle\tilde{x}_{1}+t \tilde{y}_{1}, \tilde{x}_{1}+t \tilde{y}_{1}\right\rangle=t^{-1}-t$

If v is relatively geometric, then v is isotropic:

$$
\langle v, v\rangle=0 .
$$

Example 2

Is $v_{2}=\tilde{x}_{1}+t^{2} \tilde{y}_{1}$ relatively geometric?
Obstruction 2: superisotropy
Problem: $\left\langle\tilde{x}_{1}+t^{2} \tilde{y}_{1}, \tilde{x}_{1}+t^{2} \tilde{y}_{1}\right\rangle=t^{-2}-t^{2}=0$.
"Accidental cancellation" can't detect crossings.
Solution: lift to a further double-cover where $t^{-2} \neq t^{2}$.
After accounting for arbitrary choices, get a function $q: H_{1}(X ; \mathbb{Z}) \rightarrow \mathbb{Z} / 2 \mathbb{Z}$.

Say isotropic $x \in H_{1}(X ; \mathbb{Z})$ is superisotropic if $q(x)=0$.

When G has 2-torsion, rel. geom. vectors must be superisotropic.

Example 3

Is $v_{3}=(1+t) \tilde{x}_{1}+\tilde{x}_{2}$ relatively geometric?

Obstruction 3: primitivity

Given $v \in H_{1}(X ; \mathbb{Z})$, let $I_{v} \triangleleft \mathbb{Z}[G]$ denote the pairing ideal

$$
I_{v}=\left\langle H_{1}(X ; \mathbb{Z}), v\right\rangle
$$

The ideal $I_{v_{3}}=\left(1+t+t^{2}+t^{3}, 1+t\right)=(1+t)$ is proper.

It turns out I_{v} is tightly constrained for rel. geom. v !

Stabilizer ideal

For $v \in H_{1}(X ; \mathbb{Z})$ with stabilizer subgroup $G_{v} \leq G$, define

$$
I_{G_{v}}:=\left(\sum_{g \in G_{v}} g\right)
$$

Can show*: If $v \in H_{1}(X ; \mathbb{Z})$ is relatively geometric, then

$$
I_{v}=I_{G_{v}}
$$

$I_{v} \leq I_{G_{v}}:$ easy from definitions
$I_{G_{v}} \leq I_{v}$: construct a "partner curve" w for v.

Example 4

Is $v_{4}=(1-t) \tilde{y}_{1}$ relatively geometric?

Phenomenon: lifting separating curves

Actually, it is!

Formula $I_{v}=I_{G_{v}}$ breaks down when $f_{*}(v)=0$.
Analysis of this case shows the following:
If v is rel. geom. with $f_{*}(v)=0$,
then $v=(1-t) v^{\prime}$ with v^{\prime} rel. geom and $f_{*}\left(\nu^{\prime}\right) \neq 0$.

Main theorem

Summary of necessary conditions:
Let $f: X \rightarrow \Sigma_{g}$ be a cyclic unbranched covering of degree d (possibly $d=\infty)$, and let $v \in H_{1}(X ; \mathbb{Z})$ be relatively geometric.
(A) If $f_{*}(v)=0$, then $v=(1-t) v^{\prime}$ with v^{\prime} rel. geom. and $f_{*}\left(v^{\prime}\right) \neq 0$. (i.e. v^{\prime} is in case (B)).
(B) If $f_{*}(v) \neq 0$, then the following conditions must hold:
(1) $\langle v, v\rangle=0$
(2) $q(v)=0$
(3) $I_{v}=I_{G_{v}}$
(4)"degree-order condition"
isotropy
superisotropy (for d finite, even)
$\mathbb{Z}[G]$-primitivity

Theorem (S.): If $g \geq 5$, then the necessary conditions are sufficient.

How not to prove this

What I wanted to do:
Use topology to do algebra!
Run a relative version of the "Euclidean algorithm on surfaces": start with a cycle representing v with many crossings/components, and resolve until v has a relatively geometric representative.

I don't know how to do this!

How net to prove this

Sadly had to resort to the other direction:
Use algebra to do topology
("Liftable subgroup" of) mapping class group $\operatorname{Mod}(Y)$ acts on $H_{1}(X ; \mathbb{Z})$.

$$
\begin{aligned}
& \text { If you have one rel. geom. } v \in H_{1}(X ; \mathbb{Z}) \text { and } \\
& \text { you completely understand the orbit of } v, \\
& \text { can understand all rel. geom. elements. }
\end{aligned}
$$

Lots of authors (e.g. Looijenga, McMullen, Venkataramana, Grunewald-Larsen-Lubotzky-Malestein) have investigated these representations.

Unfortunately, no result has yet been precise enough to do what I need.
Theorem (S.): Complete computation of $\operatorname{Mod}\left(\Sigma_{g}\right) \circlearrowright H_{1}(X ; \mathbb{Z})$ for $f: X \rightarrow \Sigma_{g}$ cyclic unbranched, $g \geq 5$.

Unitary K-theory provides tools to study these sorts of matrix groups: show generation by elementary matrices.

A look ahead

Bregman and I are working on pushing this story further

Ultimate goal: describe the image of the Burau representation

Can be approached by understanding relative geometricity for the Burau cover of the punctured disk.

Strange things seem to be happening.

Theorem (Bregman-S.): At least one of the following is true:

- The Burau representation for B_{4} is non-injective
- The image of Burau is "much smaller image than expected"

