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Abstract. We prove a suite of results classifying holomorphic maps between configuration spaces

of Riemann surfaces; we consider both the ordered and unordered setting as well as the cases

of genus zero, one, and at least two. We give a complete classification of all holomorphic maps

Confn(C) → Confm(C) provided that n ≥ 5 and m ≤ 2n extending the Tameness Theorem of

Lin, which is the case m = n. We also give a complete classification of holomorphic maps between

ordered configuration spaces of Riemann surfaces of genus at most one (answering a question of

Farb), and show that the higher genus setting is closely linked to the still-mysterious “effective de

Franchis problem”. The main technical theme of the paper is that holomorphicity allows one to

promote group-theoretic rigidity results to the space level.

1. Introduction

Let PConfn(X) denote the space of n ordered distinct points on a manifold X, and let Confn(X)

denote the corresponding space of unordered tuples. If X has a complex structure, then PConfn(X)

and Confn(X) inherit complex structures from X. In this paper we take X,Y to be Riemann

surfaces, and consider the family of problems of classifying holomorphic maps h : (P)Confn(X) →
(P)Confm(Y ).

As discussed in more detail below, a complete answer in full generality seems to be out of reach,

involving unresolved questions related to the “effective de Franchis problem” of enumerating and

bounding the set of all holomorphic maps X → Y as well as delicate group-theoretic considerations.

However, we are able to address a good portion of the general problem, especially in the ordered

setting.

A general phenomenon recurring throughout our results is that of “twisting”. Given a holo-

morphic map h : (P)Confn(X) → (P)Confm(Y ), suppose a holomorphic map A : (P)Confn(X) →
Aut(Y ) is given, where Aut(Y ) is the group of holomorphic automorphisms of Y , in our setting

itself a complex manifold. Then the twist hA of h is defined via the formula

hA(x1, . . . , xn) = A(x1, . . . , xn)(h(x1, . . . , xn)).

Note that the affine twist of a constant map need not be constant. In the case Y = C, the relevant

automorphism group is the affine group Aff = {az+b | a ∈ C∗, b ∈ C}, in which case we call this an

affine twist. We also note that PConfn(X) admits a family of automorphisms given by permuting

the coordinates; for ease of stating our main results, we will also consider this a kind of twist.

The following summarizes our main results; see the indicated statements for precise details.

• Theorem 3.1: For m ≥ 5 and n ≤ 2m, up to affine twisting, every holomorphic map

h : Confn(C) → Confm(C) is either constant, the identity, or a “root map” (see Section 3).
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• Theorem 4.3: For m ≥ 2, up to a slight generalization of affine twisting, every holomorphic

map h : PConfn(C) → PConfm(C) is either constant or a forgetful map.

• Theorem 4.4: For n ≥ 3, up to twisting, every holomorphic map h : PConfn(CP1) →
PConfm(CP1) is either constant or a forgetful map.

• Theorem 5.2: Let X,Y be compact Riemann surfaces of genera g(X) = g(Y ) = 1 and let

h : PConfn(X) → PConfm(Y ) be holomorphic, with m ≥ 2. Then up to twisting, either h

is constant or else X ∼= Y and h is a forgetful map.

• Theorem 5.3: Let X,Y be compact Riemann surfaces with g(X) ≥ 2 and g(Y ) = 1. Then

up to twisting, every holomorphic map h : PConfn(X) → PConfm(Y ) is constant.

• Theorem 6.1: Let X,Y be compact Riemann surfaces each of genus at least two. Then up

to twisting, either X ∼= Y and h is a forgetful map, or else h factors as the composition of

a forgetful map p : PConfn(X) → X and a holomorphic map f : X → PConfm(Y ).

We note that in the case m = n, Theorem 3.1 was previously established by Lin [Lin04, Theorem

1.4]. Farb [Far22, Problem 2.4] has asked for a classification of holomorphic maps PConfn(C) →
PConfm(C), which is resolved in Theorem 4.3.

Observe that in Theorem 6.1, a holomorphic map f : X → PConfm(Y ) is the same thing as

an m-tuple f1, . . . , fm of holomorphic maps fi : X → Y with the properties that the graphs are

pairwise disjoint in X × Y . The study of the set Hol(X,Y ) of nonconstant holomorphic maps

X → Y falls under the purview of the classical de Franchis theorem, which states that when

g(Y ) ≥ 2, the set is finite. Unlike its cousin the Hurwitz theorem (the case X = Y ), there is a very

large gap between known upper bounds on |Hol(X,Y )| as a function of the genera g(X), g(Y ), and

the lower bounds achieved by examples: by [Cha19], there is an upper bound that is slightly super-

exponential in g(X), whereas, to the authors’ knowledge, there are no families of examples where

the number of holomorphic maps grows faster than linearly with g(X). However, we show that

the extra constraint of having disjoint graphs is highly restrictive, which may be of independent

interest:

• Theorem 6.3: Let X,Y be compact Riemann surfaces each of genus at least two, and let

f : X → PConfm(Y ) be holomorphic. Then m ≤ 4g(X)g(Y ).

Our final main result is of a slightly different flavor, considering instead the holomorphic rigid-

ity properties of Confn(C) into the moduli space of curves Mg. One such map is given by the

hyperelliptic embedding H : Confn(C) → Mg for g = [n−1
2 ]:

H({x1, ..., xn}) = the algebraic curve {y2 = (x− x1)...(x− xn)}

• Theorem 3.2: For n ≥ 26 and g ≤ n − 2, if h : Confn(C) → Mg is a non-constant

holomorphic map of orbifolds, then h is the hyperelliptic embedding.

Remark 1.1. At a glance, Theorem 3.2 might seem implausible, since h can be precomposed

with the action of any affine map α on Confn(C) to yield an apparently distinct map h ◦ α.

However, these in fact yield the same map, since the curves y2 = (x − x1) . . . (x − xn) and y2 =

(x− α(x1)) . . . (x− α(xn)) are isomorphic.
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The holomorphic landscape. To put the results of this paper into better context, we describe

here what is known about the totality of holomorphic maps between configuration spaces. We

organize the problem along two axes: first, whether the configurations are ordered or not, and

secondly by the genera of the Riemann surfaces X and Y . An entry is left blank if we neither

know of any interesting examples nor a classification. The “covering construction” mentioned

below is the following: let p : Y → X be an unbranched covering of compact Riemann surfaces of

degree d. Then for all n ≥ 1, there is a holomorphic map P : Confn(X) → Confdn(Y ), given by

P ({x1, . . . , xn}) = p−1({x1, . . . , xn}).

PConf g(Y ) = 0 1 ≥ 2

g(X) = 0 Fully classified: All constant: All constant:

Theorems 4.3,4.4 Proposition 7.1 Proposition 7.1

1 Fully classified: All constant:

Theorem 5.2 Proposition 7.1

≥ 2 Classified modulo Classified modulo

case m = 1: understanding Hol(X,Y ) :

Theorem 5.3 Theorem 6.1

Conf g(Y ) = 0 1 ≥ 2

g(X) = 0 Partially classified: All constant:

Theorem 3.1 Proposition 7.2

1 Abundant:

covering construction

≥ 2 Abundant:

covering construction

We think that filling in the remaining entries of these tables is a worthwhile goal of future research.

In particular, we would like to highlight the following.

Question 1.2. For g(X), g(Y ) ≥ 2, does every holomorphic map h : Confn(X) → Confm(Y ) arise

via the covering construction?

Rigidity: holomorphic vs. continuous. While it is hard to find holomorphic maps between

configuration spaces of Riemann surfaces, there are many homotopy classes of continuous maps

between them. For instance, there are continuous maps Confn(C) → Confn+k(C) by adding k

points “near infinity”, a “doubling map” Confn(C) → Conf2n(C) which replaces a configuration of

points with two juxtaposed copies, and many more complicated examples. Even in the case when

the induced map π1(Confn(C)) → π1(Confm(C)) factors through Z, there are many possibilities,

encompassing all of the possible Nielsen-Thurston types of the associated mapping class of the

m-punctured plane. However, according to Theorem 3.1, none of the above can be induced by a

holomorphic map, so long as we are in the range m ≤ 2n. Work of the first author, Kordek, and

Margalit [CKM19] (cf. Theorem 2.1) explores this phenomenon and gives a complete classification

of homotopy classes of continuous maps Confn(C) → Confm(C) in the range m ≤ 2n; this is the

source of the restriction m ≤ 2n in Theorem 3.1. This is accomplished by giving a classification of
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homomorphisms Bn → Bm, where Bn = π1(Confn(C)) is the braid group on n strands. Following

[CKM19], there is now a conjectural classification of all homomorphisms ρ : Bn → Bm for n ≥ 5. To

formulate it, we recall that one can also think of the braid group as Bn
∼= Mod(Dn), the mapping

class group of the n-punctured disk.

Conjecture 1.3 (Reducibility conjecture). For n ≥ 5 and m > n, every homomorphism ρ : Bn →
Bm either has cyclic image or else is reducible, i.e. there is a nonempty set of disjoint essential,

non-boundary-parallel curves on the m-punctured disk invariant under ρ(Bn).

As discussed in [CKM19], the reducibility conjecture in fact implies a stronger classification

of homomorphisms, predicting that all homomorphisms are recursively assembled from a small

list of basic ones using a certain set of operations. Our methods here can be used to show that

Conjecture 1.3 implies a complete classification of all holomorphic maps between configuration

spaces.

Theorem 1.4. If Conjecture 1.3 holds, then the statement of Theorem 3.1 holds for all n ≥ 5 with

no restriction on m.

Prior Results. Within the world of moduli spaces of complex-analytic objects, there have been

various efforts to understand the relationship between their behavior in the holomorphic and smooth

categories. The results here expand on the work [Lin04] of Lin mentioned above, who obtained

Theorem 3.1 in the case m = n, and also investigated the corresponding questions in the setting of

configuration spaces on CP1. Our proof is independent, making use of the developments of [CKM19]

that give a classification of maps between braid groups, as well as employing some powerful results

from Teichmüller theory.

Questions of this flavor have also been treated from the algebro-geometric point of view, e.g.

in [BM13, GKM02, Mas17, MM17]. Here one is typically interested in classifying morphisms

between compactifications of moduli or configuration spaces; in this setting, arguments involving

the fundamental group are usually unavailable. Nevertheless, the spirit of the results obtained in

the aforementioned works is the same as we find here: the only morphisms are the “obvious” ones.

Two other results, while not bearing directly on the results of this paper, were a source of

inspiration and merit mention. Antonakoudis–Aramayona–Souto [AAS18] give a classification of

holomorphic maps Mg → Mh for h ≤ 2g − 2, showing that the only non-constant map is the

identity. Letting Ah be the moduli space of h-dimensional, principally-polarized abelian varieties,

a recent result of Farb [Far21] shows that a nonconstant holomorphic map f : Mg → Ah exists for

h ≤ g iff h = g and f is the map sending a curve to its Jacobian. It is interesting to note that in

both these results, every smooth map is homotopic to a holomorphic map. This is in contrast to the

setting of this paper, where smooth maps between configuration spaces exist in relative abundance

(see above).

Proof Strategy. The main theme running through our arguments is the promotion of group-

theoretic rigidity statements to the level of holomorphic maps. In [Che20], the first author has

established a general rigidity theorem classifying homomorphisms f : PBn(X) → Λ, where X

is a Riemann surface, PBn(X) := π1(PConfn(X)) denotes the space of ordered configurations
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of n points, and Λ is a torsion-free nonelementary hyperbolic group. When f is induced from

a holomorphic map F between complex manifolds, principles of complex analysis can be used to

show that F must have a specific form. In other settings, we make use of rigidity phenomena for

holomorphic maps of Riemann surfaces into the moduli space of Riemann surfaces, equivalently the

rigidity of holomorphically-varying families of Riemann surfaces over Riemann surfaces. We will use

two such theorems in our proof of Theorem 3.1, both concerning themonodromy of such families, the

homomorphism ρ : π1(B) → Mod(S) from the fundamental group of the base to the mapping class

group of the fiber. Specifically, we will use a result of Daskalopoulos-Wentworth [DW07] showing

that the monodromy of a non-isotrivial family of curves is necessarily “rich” in a certain technical

sense, and a result of Imayoshi–Shiga [IS88] stating that if two families have the same monodromy,

then they are equal to each other. Inside Confn(C), there are many embedded Riemann surfaces:

given distinct points Y ∈ Confn−1(C), there is an associated embedding iY : C−Y → Confn(C) of
the finite-type surface C − Y into Confn(C). The holomorphic map Confn(C) → Confm(C) thus

equips each such surface with a family of Riemann surfaces (specifically, the fiber is C punctured

at m points). The monodromy of such families factors through the homomorphism Bn → Bm

induced by the map on the configuration spaces; we exploit the classification of [CKM19] along

with the criterion of Daskalopoulos-Wentworth to rule out many possibilities, and the rigidity result

of Imayoshi–Shiga gives control over the situations where a map is possible. The phenomenon of

affine twisting appears because the target space Confm(C) is not exactly the moduli space of m

points in C, but becomes a finite cover of this after erasing the action of the affine group Aff.

Acknowledgements. NS is supported by NSF Award No. DMS-2153879. LC is supported by

NSF Award No. DMS-2203178 and the Sloan Foundation. We thank Peter Huxford for pointing a

problem in the proof of Theorem 3.1, and to several anonymous referees for useful feedback.

2. background

2.1. Classification of homomorphisms between braid groups. The basic strategy of the

proof of the main results is to first understand all possible induced maps on the fundamental

groups (i.e. braid groups), and then to contrast this with known rigidity results about holomorphic

maps between the associated moduli spaces. In this section we carry out the first of these tasks.

Theorem 2.1 below is a corollary of the work of Chen–Kordek–Margalit [CKM19]. To state it,

we introduce the following terminology. A transvection of a group homomorphism f : G → H is a

homomorphism f t : G → H defined via

f t(g) = f(g)tℓ(g),

where ℓ : G → Z is a homomorphism and t ∈ H centralizes f(G). A homomorphism f : G → Bn

is said to be reducible if the image f(G) preserves a finite set of isotopy classes of essential non-

boundary-parallel curves on the n-punctured disk (viewing Bn as the mapping class group of the

punctured disk). Lastly, an element of Bn is said to have prefinite order if its image in Bn/Zn has

finite order.

Theorem 2.1. For n ≥ 5 and m ≤ 2n, let ρ : Bn → Bm be a homomorphism. Then exactly one

of the following conditions hold:
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(1) n = m and ρ is the identity map up to transvection and a pre-composition of an automor-

phism of Bn,

(2) ρ is either reducible and nontrivial, or else has infinite cyclic image generated by a pseudo-

Anosov,

(3) ρ has prefinite cyclic image.

Proof. Note first that the statement is equivalent to the assertion that at least one of the following

conditions hold:

(1’) n = m and ρ is the identity map up to transvection,

(2’) ρ is reducible (possibly trivial)

(3’) ρ has cyclic image.

The latter assertion follows more readily from [CKM19, Theorem 1.1], but we will see in the

proof of Theorem 3.1 that the former organization corresponds to the classification of holomorphic

maps.

[CKM19, Theorem 1.1] asserts that for n ≥ 5, any homomorphism ρ : Bn → B2n is a transvection

of one of five “standard homomorphisms”, and [CKM19, Corollary 1.2] asserts that every ρ : Bn →
Bm for m < 2n is one of two of the five types possible when m = 2n. We first argue that if ρ

satisfies at least one of the conditions, then so does any transvection of ρ; then we will see that

each standard homomorphism satisfies one of the conditions.

There is nothing to check if ρ satisfies condition (1’). Suppose now that ρ is reducible. If ρ is

the trivial homomorphism, then any transvection of ρ has cyclic image (note that if t is pseudo-

Anosov, the transvection will not necessarily be reducible). If ρ is reducible and nontrivial, then

ρ has a nonempty “canonical reduction system” {Ci} of disjoint essential, non-boundary-parallel

curves (see e.g. [BLM83]). Given a transvection ρt, the element t commutes with every element of

ρ, from which it follows that t preserves {Ci} as well, so that ρt is likewise reducible. If ρ has cyclic

image, then ρ factors through the abelianization map ℓ : Bn → Z, and hence by construction any

transvection of ρ does as well.

We now see that each of the five “standard homomorphisms” described in [CKM19] satisfies

one of the above conditions. Each of these is a routine verification; for brevity’s sake we will

assume familiarity with the five, as given in [CKM19, page 1]. The trivial homomorphism satisfies

conditions (2’) and (3’), the inclusion homomorphism satisfies (1’) if m = n and (2’) if m > n, and

the diagonal, flip-diagonal, and k-twist cabling maps are all reducible (condition (2’)). □

In anticipation of Theorem 3.2, we next consider the case of homomorphisms ρ : Bn → Mod(Sg)

(here Mod(Sg) denotes the mapping class group of a closed surface of genus g). Let H be the

hyperelliptic embedding defined in the introduction; H∗ is then the induced homomorphism on

orbifold fundamental groups. We have the following result of Chen–Mukerjea [CM20, Theorem

1.1].

Theorem 2.2. For n ≥ 26 and g ≤ n− 2, let h : Bn → Mod(Sg) be a homomorphism. Then up to

transvection and a pre-composition of an automorphism of Bn, h is either trivial or H∗.
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2.2. Some results from complex analysis and Teichmüller theory. Before considering the

holomorphic theory of families of Riemann surfaces, we first mention a useful variant of the remov-

able singularity theorem that we will employ throughout the paper.

Proposition 2.3. Let X,Y be Riemann surfaces of finite type, each of negative Euler characteristic,

and let f : X → Y be holomorphic. Then f admits a holomorphic extension F : X̄ → Ȳ , where

X̄, Ȳ denote the compact Riemann surfaces associated to X,Y .

Proof. Since each of X,Y have negative Euler characteristic, they are uniformized by D and hence

admit complete hyperbolic metrics. By the Schwarz-Pick theorem, f is distance non-increasing in

these metrics. Let x ∈ X̄ − X be given, and let γ ⊂ X be a loop encircling x. The homotopy

class of γ admits representatives of arbitrarily short length, and hence the same is true for f(γ),

showing that f(γ) is either null-homotopic or else encircles a puncture in Y . Thus f admits a

continuous extension F : X̄ → Ȳ , and by the usual removable singularity theorem, it follows that

F is holomorphic. □

We now turn our attention to families of Riemann surfaces. Let M′
g,n be a finite orbifold cover

of Mg,n. A homomorphism f : G → Mod(Sg,n) is said to be sufficiently large if the image contains

two pseudo-Anosov elements with distinct fixed point sets in PMF(Sg,n). We will not need to know

the precise meaning of these terms, only that a sufficiently large subgroup is not reducible, i.e. there

is no globally-invariant finite set of curves. Daskalopoulos-Wentworth proved the following [DW07,

Theorem 5.7].

Theorem 2.4 (Daskalopoulos-Wentworth). Let B be a Riemann surface of finite type and f : B →
Mg,n be a non-constant holomorphic map. Then f∗ : π1(B) → Mod(Sg,n) is sufficiently large.

Imayoshi–Shiga proved the following [IS88, Section 3], which can be strengthened as the follow-

ing.

Theorem 2.5 (Imayoshi–Shiga). Let B be a Riemann surface of finite type. If f, h : B → M′
g,n

are non-constant holomorphic maps or anti-holomorphic maps and the monodromy maps f∗ = h∗ :

π1(B) → Mod(Sg,n) coincide, then f = h.

Proof. [DW07, Corollary 5.6] asserts that if B is a compact domain, then there is a unique harmonic

map B → M′
g,n in the homotopy class of a map with sufficiently large monodromy. This can be

extended to B a Riemann surface of finite type by taking an exhaustion B = ∪Bn of nested

compact subsurfaces. The claim now follows: holomorphic maps and anti-holomorphic maps are

harmonic maps, and by Theorem 2.4, the monodromy of holomorphic or anti-holomorphic maps

are sufficiently large. □

2.3. Relations between Confm(C), PConfm(C) and M0,m,1. Let M0,m,1 denote the moduli

space of m+1 points on CP1, where one of the points is distinguished. We now discuss the natural

projection map πm : Confm(C) → M0,m,1. Let Aff be the affine group of C, which induces an

action on Confm(C) and on PConfm(C).

Lemma 2.6. The preimage π−1
m (πm(X)) of a point X ∈ Confm(C) is the orbit Aff(X) ⊂ Confm(C).
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Proof. The point πm(X) represents CP1 with distinct marked points (x0, {x1, ..., xm}), the first of

which is distinguished. We first apply a Mobiüs transformation to send the first point into ∞.

Now πm(X) is represented as (∞, {x1, ..., xm}) where we have m distinct points x1, ..., xm ∈ C.
Two points (∞, {x1, ..., xm}) and (∞, {y1, ..., ym}) represent the same points in M0,m,1 if they are

holomorphically related, i.e. if and only if there is a biholomorphism f : C → C taking {x1 . . . , xm}
to {y1, . . . , ym}. The group of holomorphic automorphisms of C is Aff, and so (∞, {x1, ..., xm})
and (∞, {y1, ..., ym}) represent the same points in M0,m,1 if and only if there is f ∈ Aff such that

f({x1, ..., xm}) = {y1, ..., ym}. □

Denote by PM0,m+1 the moduli space of m + 1 ordered distinct points in CP1. Similar to

Lemma 2.6, we have the following (cf. [FM12, p. 247 ff.] for the assertion about orbifold funda-

mental groups).

Lemma 2.7. There is an isomorphism of complex orbifolds

PConfm(C)/Aff ∼= PM0,m+1.

The quotient PConfm(C) → PConfm(C)/Aff induces the natural map PBn → PBn/Zn on orbifold

fundamental groups.

A rotation group in Aff centered at c of order p is the cyclic subgroup generated by the element

g(x) = e2π/p(x− c) + c.

Lemma 2.8. Any finite subgroup of Aff is a rotation group centered at some c ∈ C.

Proof. Let G < Aff be a finite subgroup. Any orientation-preserving finite group action on R2 is

cyclic by [vK19], which implies that G is generated by a single element f(x) = ax + b of order p.

This implies that the linear coefficient a must be a pth root of unity, and then the center can be

determined by the formula c = b/(1− a). □

3. Holomorphic maps between configuration spaces on C: Theorem 3.1

Our first main result, Theorem 3.1, gives a classification of holomorphic maps h : Confn(C) →
Confm(C) in the range m ≤ 2n. To state the result, we must first discuss one of the possible

archetypes.

Root maps. There are two maps

rp : Confk(C∗) → Confkp(C∗)

and

r′p : Confk(C∗) → Confkp+1(C),

where the first takes pth roots of the k distinct nonzero points, and the second takes the union of

the pth roots of the k distinct nonzero points and {0}. Such maps are called basic root maps.

A map Confn(C) → Confkp+ϵ(C) (with ϵ ∈ {0, 1}) is called a root map if it admits a factorization

Confn(C) → Confk(C∗) → Confkp+ϵ(C),



HOLOMORPHIC MAPS BETWEEN CONFIGURATION SPACES OF RIEMANN SURFACES 9

where the map Confn(C) → Confk(C∗) is a twist of a constant map by some holomorphic map

A : Confn(C) → C∗ and the latter map is a basic root map as above. By convention, we consider

the zero map Confk(C) → Conf1(C) ∼= C to be a root map of the second kind with p = 0.

The main result of this section is the following rigidity result about holomorphic maps. We note

that in the case m = n, Theorem 3.1 was established by Lin [Lin04, Theorem 1.4].

Theorem 3.1. For n ≥ 5 and m ≤ 2n, if h : Confn(C) → Confm(C) is a non-constant holomorphic

map, then h is either an affine twist of the identity map or a root map.

We will also consider a variant of this result, where the target is the moduli space Mg. One

such holomorphic map is given by the hyperelliptic embedding H : Confn(C) → Mg for g = [n−1
2 ]:

H({x1, ..., xn}) = the algebraic curve {y2 = (x− x1)...(x− xn)}

Theorem 3.2. For n ≥ 26 and g ≤ n − 2, if h : Confn(C) → Mg is a non-constant holomorphic

map, then h is the hyperelliptic embedding.

Note that Theorem 3.2 does not mention affine twists, in contrast to Theorem 3.1. The reason

is that affine twisting gives equivalent points in the moduli space of the punctured sphere; the

hyperelliptic embedding does not depend on the actual location of the points but only on the holo-

morphic structure of the punctured sphere. Taking the orbifold structure on Mg into account, it is

possible to distinguish between two maps, one being a sort of twist of the other by the hyperelliptic

involution; see Section 3.5 for details.

To prove Theorem 3.1, we divide into cases according to Theorem 2.1. Let

h : Confn(C) → Confn(C)

be a holomorphic map, and let h∗ be the map induced by h on fundamental group. Theorem 2.1

asserts that there are three possibilities for h∗; we consider each in turn.

3.1. h∗ is the identity map up to transvection.

Proof. By [DG81], the outer automorphism group Out(Bn) ∼= Z/2. The generator is given by the

map σi 7→ σ−1
i that sends each standard generator to its inverse. On the level of Confn(C), this is

induced by the complex conjugation map {zi} 7→ {z̄i}. It follows that the composition of h with

the forgetful map h : Confn(C)
h−→ Confn(C)

F−→ M0,n+1 is homotopic to either the identity map or

the complex conjugation map.

The Fadell-Neuwirth fibration PConfn(C) → PConfn(C) realizes PConfn(C) as a union of finite-

type Riemann surfaces (given as C with n − 1 points deleted). Pulling back to PConfn(C) and

restricting h to each of these fibers, we conclude from the Imayoshi-Shiga theorem Theorem 2.5

that h is precisely equal to either the forgetful map Confn(C)
F−→ M0,n+1 or the precomposition of

F by complex conjugation. The second possibility is ruled out because the complex conjugation

map is not holomorphic.

We then consider the lift

h̃ : PConfn(C) → PConfn(C).
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Let π′
n : PConfn(C) → PConfn(C)/Aff be the natural quotient map. By Lemma 2.7, the space

PConfn(C)/Aff is a finite orbifold cover of M0,n+1 and πorb
1 (PConfn(C)/Aff) ∼= PBn/Zn, with

π′
n,∗ the natural quotient PBn → PBn/Zn.

Let Y = (x1, ..., xn−1) be an n− 1-tuple of ordered distinct points in C. There is an embedding

iY : C− Y → PConfn(C)

such that iY (x) = (Y, x). From the above description of π′
n,∗, we see that both π′

n ◦ h̃ ◦ iY and

π′
n ◦ iY induce the same map on the orbifold fundamental group. By Theorem 2.5, it follows that

π′
n ◦ h̃ ◦ iY = π′

n ◦ iY .

Therefore h̃(Y, x) = g(Y, x)(Y, x) for some function g : PConfn(C) → Aff.

Claim 3.3. The map g : PConfn(C) → Aff is holomorphic and factors through Confn(C).

Proof. For X = (x1, . . . , xn) ∈ PConfn(C), we write

h̃(X) = (h̃1(X), . . . , h̃n(X))

with

h̃i(X) = g(X)(xi).

Writing g(X)(z) = az + b, we can solve for a, b using the fact that for any pair of distinct indices

i, j, the map g(X) takes xi to h̃i(X) and xj to h̃j(X). This yields the expressions

a =
h̃i(X)− h̃j(X)

xi − xj
, b =

xj h̃i(X)− xih̃j(X)

xi − xj
.

Observe that since h̃ is holomorphic, these expressions vary holomorphically with X, and that they

are independent of i and j by the assumption that h̃i(X) = g(X)(xi) for all i. □

Thus in this case, we have shown that the original map h is the affine twist of the identity map

by the holomorphic map g : Confn(C) → Aff.

3.2. The image of h∗ is reducible or else infinite cyclic pseudo-Anosov. Given a set Y =

{x1, ..., xn−1} of n− 1 distinct points in C, there is an embedding

iY : C− Y → Confn(C)

such that iY (x) = Y ∪ {x}. Composing iY with the natural projection πm : Confm(C) → M0,m,1,

we obtain a holomorphic map hY := πm ◦ h ◦ iY from the finite-type Riemann surface C− Y into

M0,m,1.

Suppose first that h∗ has cyclic image generated by a pseudo-Anosov. As the kernel of πm,∗ :

π1(Confm(C)) → πorb
1 (M0,m,1) is contained in the center Zn ≤ Bn = π1(Confm(C)) by [FM12,

p. 247 ff.], it follows that hY,∗ also has cyclic image generated by a pseudo-Anosov element. By

Theorem 2.4, this is not possible. Likewise, in the case when h∗ has reducible image, the induced

map hY ∗ also has nontrivial reducible image, which is again prohibited by Theorem 2.4.



HOLOMORPHIC MAPS BETWEEN CONFIGURATION SPACES OF RIEMANN SURFACES 11

3.3. h∗ has prefinite cyclic image. We will show that in this case h is a root map up to an affine

twist.

Claim 3.4. The map πm ◦ h is a constant map.

Proof. We continue to consider

hY : C− Y → M0,m,1

as in Section 3.2. If hY were not constant, then it would determine a locally nontrivial family, which

would then have sufficiently large monodromy by Theorem 2.4, contrary to hypothesis. Therefore

πm ◦h({x1, ..., xn}) = h{x1,...,xn−1}(xn), which does not depend on xn. This implies that it does not

depend on any coordinate, by symmetry. The claim follows. □

Denote the image of πm ◦ h by X ∈ M0,m,1, and let X0 = {x1, ..., xm} be a representative

of X in Confm(C). By Lemma 2.7, the image π−1
m (X) is given as the orbit Aff(X0), and by the

orbit-stabilizer theorem, there is an isomorphism of complex manifolds, defining G := Stab(X0),

Aff(X0) ∼= Aff /G.

Thus h is given as a holomorphic map h : Confn(C) → Aff /G. By Lemma 2.8, G is a rotation

group of order p with center c and X0 is a G-invariant subset of C. By applying an affine twist,

we can assume that the center point of G is c = 0, so that G = µp, the pth roots of unity, and X0

consists of all pth roots of some fixed subset Y0 = {y1, ..., yk} ⊂ C∗, possibly along with 0.

There is an isomorphism of complex manifolds

Aff /G ∼= C∗ × C

which sends the coset of z 7→ az + b to (ap, b). Under this identification, let

A : Confn(C) → C∗

be given as the first coordinate of the map h : Confn(C) → Aff /G, and likewise define B :

Confn(C) → C as the second coordinate. The map of configuration spaces

h : Confn(C) → Aff(X0) ⊂ Confkp+ϵ(C)

is now seen to be an affine twist of a root map, factoring as shown below:

Confn(C)
(cY0 )

A

// Confk(C∗)
rp

// Confkp+ϵ
idB

// Confkp+ϵ .

□

3.4. Proof of Theorem 1.4. Conjecture 1.3 asserts that every homomorphism ρ : Bn → Bm with

5 ≤ n < m is reducible, or else has cyclic image. The arguments of Section 3.2 and Section 3.3

then apply to extend the classification to this setting.
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3.5. Proof of Theorem 3.2. Suppose h : Confn(C) → Mg is holomorphic, with n, g satisfying

the bounds of Theorem 2.2. We execute the same strategy as before, now following the cases

delineated by Theorem 2.2. If h∗ : Bn → Mod(Sg) is trivial, then we imitate the proof of Claim 3.4

to see that h is constant. If the image of h∗ is cyclic, it is not sufficiently large, and so cannot arise

from a holomorphic map by Theorem 2.4.

It remains to consider the case where h∗ is a transvection of H∗ (the map induced by the

hyperelliptic embedding H : Confn(C) → Mg). Note that the image of H∗ is the hyperelliptic

mapping class group, which has centralizer Z/2Z, generated by the hyperelliptic involution ι. Thus,

there is exactly one nontrivial transvection of H∗, by ι. If h∗ : Bn → Mod(Sg) is given by H∗ , we

follow the argument of Section 3.1 to see that on each submanifold of the form C−Y ⊂ Confn(C),
the maps h and H coincide, hence coincide globally. If h∗ = Hι

∗, the same argument shows that

there is at most one holomorphic map in the homotopy class of h; it remains to give a construction.

As a map of sets, the underlying map Hι is the same as H, sending the configuration {x1, . . . , xn}
to the hyperelliptic curve y2 = (x− x1) . . . (x− xn). As a map of complex orbifolds, the two differ

in how the marking is specified on the universal covers: Hι arises from H by precomposition with

an affine twist by some holomorphic map ∆ : Confn(C) → C∗ that induces the abelianization

∆∗ : Bn → Z.

4. Rigidity of holomorphic maps between PConfn(C) and PConfn(CP1)

In this section, we will give a new proof of [Lin04, Theorem 2.5] (classifying holomorphic maps

F : PConfn(C) → C − {0, 1}) and use this to give a complete classification of holomorphic maps

between PConfn(C).
To state the results, we first define some basic ingredients: the maps sr, cr, RQ, and NI. The

maps sr and cr are holomorphic maps PConfn(C) → C− {0, 1}, both arising from the cross-ratio.

The “simple ratio” sr(i, j, k) : PConfn(C) → C− {0, 1} is given by

sr(i, j, k)(x1, ..., xn) =
xk − xi
xj − xi

.

The second map is the cross-ratio cr(i, j, k, l) : PConfn(C) → C− {0, 1}, given by

cr(i, j, k, l)(x1, ..., xn) =
xl − xi
xl − xk

xj − xk
xj − xi

.

Another interpretation of the maps sr(i, j, k) and cr(i, j, k, l) are the following. For (x1, ..., xn) ∈
PConfn(C), there is a unique element in A ∈ Aff such that A(xi) = 0, A(xj) = 1. We define the

value sr(i, j, k)(x1, ..., xn) = A(xk). Likewise, for (x1, ...xn) ∈ PConfn(C), there is a unique element

in A ∈ PSL(2,C) such that

A(xi) = 0, A(xj) = 1, A(xk) = ∞.

We define the value cr(i, j, k, l)(x1, ..., xn) = A(xl).

For later use, we record the following properties of cr and sr under permutation of indices; these

can be checked by direct inspection.

Lemma 4.1. There are identities

sr(j, i, k) = 1− sr(i, j, k), sr(j, k, i) = 1/sr(i, j, k),
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and

cr(i, j, k, l) = cr(k, l, i, j), cr(j, i, k, l) = 1− cr(i, j, k, l), cr(k, j, i, l) = 1/cr(i, j, k, l).

We will give a new proof of the following result of Lin [Lin04, Theorem 2.15], which has the

virtue of being somewhat shorter than the original.

Theorem 4.2. For n ≥ 3, any non-constant holomorphic map f : PConfn(C) → C − {0, 1} is

given by either sr(i, j, k) or cr(i, j, k, l).

Using this, we will classify holomorphic maps h : PConfn(C) → PConfm(C). We define two

basic ingredients. The first is the map RQn : PConfn(C) → PConfn−1(C), given by the following.

For (x1, ..., xn) ∈ PConfn(C), note that cr(x1, x2, x3, z), viewed as a Möbius transformation, sends

x1, x2, x3 to 0, 1,∞, respectively. Then define

RQn(x1, ..., xn) = (0, 1, cr(x1, x2, x3, x4), ..., cr(x1, x2, x3, xn)).

The terminology comes from the fact that the classical “resolving the quartic” map PConf4(C) →
PConf3(C) is affine equivalent to RQ4.

The second basic map we consider is the “normalized inversion”NIn : PConfn(C) → PConfn(C),
given by the formula

NIn(x1, . . . , xn) =

(
0,

1

x2 − x1
, . . . ,

1

xn − x1

)
.

We can now state the main results of the section.

Theorem 4.3. Let m ≥ 2. Let h : PConfn(C) → PConfm(C) be a holomorphic map. Then up to

permutation of coordinates in the source and target and affine twisting, h is a composition of one

or more of the following:

• h = c a constant map,

• h = RQn,

• h = NIn,

• h = πm
n the forgetful map (x1, . . . , xn) 7→ (x1, . . . , xm) (including m = n, the identity).

In particular, there is no holomorphic map PConfn(C) → PConfm(C) for 1 < n < m.

Theorem 4.4. Let m ≥ 3. Let h : PConfn(CP1) → PConfm(CP1) be a holomorphic map. Up to

a permutation on the domain and twisting by a holomorphic map A : PConfn(CP1) → PSL(2,C),
either F is a constant map or a forgetful map.

4.1. Rigidity of PConfn(C) → C−{0, 1} and PConfn(CP1) → C−{0, 1}. We begin with

the following lemma.

Lemma 4.5. Any holomorphic map f : Aff → C − {0, 1} is constant. Likewise, any holomorphic

map f : PSL(2,C) → C− {0, 1} is a constant map.

Proof. Given f : Aff → C − {0, 1} holomorphic, there is an induced holomorphic map F between

the universal covers. As a complex manifold, Aff is isomorphic to C∗ × C and hence its universal

cover is C2, while the universal cover of C − {0, 1} is D; by Liouville’s theorem, it follows that F ,

and hence f , must be constant.
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Now suppose holomorphic f : PSL(2,C) → C− {0, 1} is given. The action by Möbius transfor-

mation gives a fiber bundle

Aff → PSL(2,C) → CP1

whose fibers are holomorphic submanifolds. By the previous paragraph, the restriction of f to each

fiber must be constant, and hence f factors through the base space CP1; the result now follows via

the maximum principle. □

We will also make use of the following result of [Che20, Theorem 1.4]:

Theorem 4.6. For n ≥ 3 and m ≥ 2, any homomorphism

f : PBn → Fm

factors through a forgetful map p∗ : PBn → PBm with m ∈ {3, 4}; in the case m = 4, there is a

further factorization through RQ4,∗ : PB4 → PB3.

Our other main tool will be the following lemma:

Lemma 4.7. For n ≥ 3, let

f : PConfn(C) → C− {0, 1}
be holomorphic. If f∗ : PBn → F2 factors through a forgetful map p∗ : PBn → PBm, then f factors

through a forgetful map p : PConfn(C) → PConfm(C).

Proof. Suppose that p∗ forgets the ith strand. Fixing a configuration of n− 1 points

Xi := x1, . . . , x̂i, . . . , xn,

the restriction of f to the subspace C − Xi ⊂ PConfn(C) (where only the ith coordinate varies)

then lifts to the universal cover D of C− {0, 1}. However by the removability singularity theorem,

this extends to give a holomorphic map F : C → D, which must be constant by Liouville’s theorem,

as desired. □

Proof of Theorem 4.2. We proceed by induction on n.

Base case 1: n = 3. For τ ∈ C− {0, 1} fixed, define hτ : Aff → C− {0, 1} by

hτ (az + b) = h(b, a+ b, aτ + b).

By Lemma 4.5, each hτ is constant, with value c(τ) ∈ C− {0, 1}. Since h is holomorphic, so too is

the induced map c : C− {0, 1} → C− {0, 1}.
By the Great Picard Theorem, the points 0, 1,∞ are at worst poles of c. Thus, c extends to a

holomorphic map ĉ : CP1 → CP1, a rational function so that ĉ−1({0, 1,∞}) ⊂ {0, 1,∞}. If this

containment is strict then ĉ has degree zero and hence c is constant; otherwise we can assume ĉ

restricts as the identity on the set {0, 1,∞}, and that ĉ has no other singularities.

Writing ĉ(z) = p(z)/q(z), it follows that p(z) is divisible by z, there are no other zeros of p, that

q has no zeroes, and that ĉ(1) = 1. Thus ĉ(z) = z = sr(1, 2, 3)(0, 1, z), and as was discussed above,

this implies that h = sr(1, 2, 3) over the entire domain.

Base case 2: n = 4. By Theorem 4.6, h∗ : PB4 → F2 either factors through a forgetful map

PB4 → PB3 or else through (RQ4)∗. In the former case, we apply Lemma 4.7 to reduce to the
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case n = 3, and so we assume that h∗ factors through (RQ4)∗. For τ ∈ C− {0, 1} fixed, define the

subset Xτ ⊂ PSL(2,C) via

Xτ := {A ∈ PSL(2,C)|A(0) ̸= ∞, A(1) ̸= ∞, A(∞) ̸= ∞, A(τ) ̸= ∞}.

By construction, Xτ ((0, 1,∞, τ)) = cr(1, 2, 3, 4)−1(τ). Like in the case n = 3, we define the

holomorphic map hτ : Xτ → C− {0, 1} by

hτ (A) = h(A(0, 1,∞, τ)).

We claim that hτ extends to a holomorphic map hτ : PSL(2,C) → C = {0, 1}. To see this, we

first claim that hτ lifts to holomorphic map Hτ : Xτ → D. This follows from the assumption

that h∗ factors through (RQ4)∗ = (0, 1, cr(1, 2, 3, 4))∗ and the characterization Xτ ((0, 1,∞, τ)) =

cr(1, 2, 3, 4)−1(τ), which shows that hτ is homotopic to a constant map. Thus Hτ is a bounded

holomorphic map. The space Xτ is the complement of hypersurfaces in the smooth complex variety

PSL(2,C). By the higher-dimensional removable singularity theorem [KW17, Theorem 4.7.2], it

follows that Hτ , and hence hτ , can be extended to PSL(2,C).
By Lemma 4.5, each map hτ : PSL(2,C) → C−{0, 1} is a constant map hτ = c(τ). We can now

apply the argument of the last two paragraphs in the case n = 3 to conclude that c : C− {0, 1} →
C − {0, 1} must be an automorphism, and hence h = cr(1, 2, 3, 4) up to an automorphism of

C− {0, 1} as claimed.

Inductive step: n ≥ 5. We proceed by induction on n, taking n = 4 as the base case. The

inductive step follows by Theorem 4.6 and Lemma 4.7. □

The following lemma gives a useful normalization of a map between configuration spaces.

Lemma 4.8 (Normalization). Every holomorphic map

h : PConfn(C) → PConfm(C)

is equivalent up to affine twisting to a unique holomorphic map

hs : PConfn(C) → PConfm(C)

such that the first two coordinates of hs(x1, ..., xn) are 0, 1.

Proof. Let p12 : PConfm(C) → PConf2(C) be the projection onto the first two coordinates. Then

p12 ◦ h is a holomorphic map. Let A : PConfn(C) → Aff be characterized by the condition that

A(x1, ..., xn)(p12(x1, ..., xn)) = (0, 1). Via the identification of complex manifolds PConf2(C) ∼= Aff,

it follows that A is holomorphic. Defining hs as the affine twist hA, the claim follows. □

We now discuss the common values of cr(i, j, k, l) and sr(i, j, k).

Lemma 4.9.

(1) The function sr(1, 2, 3)− sr(i, j, k) has no zero in PConfn(C) if and only if (i, j, k) is one

of (1, 2, p), (1, p, 3), (p, 2, 3) for p ≥ 4.

(2) The function cr(1, 2, 3, 4)− sr(i, j, k) always has a zero in PConfn(C).
(3) The function cr(1, 2, 3, 4)− cr(i, j, k, l) has no zero in PConfn(C) if and only if (i, j, k, l) is

one of (p, 2, 3, 4), (1, p, 3, 4), (1, 2, p, 4), (1, 2, 3, p) for p ̸= 1, 2, 3, 4.
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Proof. We will prove (3), the proofs of (1),(2) being similar. The function cr(1, 2, 3, 4)− cr(i, j, k, l)

has a zero if and only if the expression

x4 − x1
x4 − x3

x2 − x3
x2 − x1

=
xl − xi
xl − xk

xj − xk
xj − xi

. (1)

has a solution. If {i, j, k, l} = {1, 2, 3, 4}, we can see by Lemma 4.1 that cr(i, j, k, l) is the image of

cr(1, 2, 3, 4) under some element of the dihedral groupD3 acting on C−{0, 1} via z 7→ 1−z, z 7→ 1/z,

and it is straightforward to verify that no element of this group acts freely, implying that the

equation cr(1, 2, 3, 4) = cr(i, j, k, l) admits a solution in PConfn(C) in this case.

We therefore assume that index i is not in {1, 2, 3, 4}; without loss of generality, set i = 5.

If we view the equation as a function of x5 (fixing other points), it will have a unique solution

z5 = z5(x1, . . . , x̂5, . . . , xn) in CP1. If this is not a valid solution in PConfn(C), then z5 must either

be one of the xq for q ̸= 5 or else ∞. As z5 varies continuously with the parameters xi, i ̸= 5, if (1)

has no solutions, then there must be an identity z5 = xq for q ̸= 5 or else z5 = ∞.

In case z5 = ∞, (1) simplifies to the ostensible identity in C(x1, . . . , xn)
x4 − x1
x4 − x3

x2 − x3
x2 − x1

=
xj − xk
xl − xk

,

which is readily seen to not hold regardless of the values of j, k, l. If z5 = xq for some q ̸= 5, a

similar analysis shows that the only way (1) can be satisfied is if (p, j, k, l) = (1, 2, 3, 4). □

We now discuss similar results for PConfn(CP1).

Theorem 4.10. Every non-constant holomorphic map f : PConfn(CP1) → C − {0, 1} is of the

form cr(i, j, k, l).

Proof. Let f : PConfn(CP1) → C − {0, 1} be a holomorphic map. Let En : PConfn(C) →
PConfn(CP1) be the natural embedding, which is a holomorphic map. By Theorem 4.2, f ◦En is a

cross ratio map, either some sr or cr. Since En has dense image, the map f is uniquely determined

by f ◦ En.

If f ◦ En = sr(i, j, k), then letting xi approach ∞, the image under f ◦ En approaches 1.

Thus sr(i, j, k) cannot extend to PConfn(CP1) and so f ◦En must be a four-term cross ratio map

cr(i, j, k, l), each of which extends to PConfn(CP1) via the same formula. □

Similarly, we have the following counterpart to Lemma 4.9.

Theorem 4.11. The equation cr(1, 2; 3, 4) = cr(i, j, k, l) has no zero in PConfn(CP1) if and only

if (i, j, k, l) is one of (p, 2, 3, 4), (1, p, 3, 4), (1, 2, p, 4), (1, 2, 3, p) for p ̸= 1, 2, 3, 4.

4.2. Rigidity of PConfn(C) → PConfm(C).

Proof of Theorem 4.3. Let

h : PConfn(C) → PConfm(C)
be a holomorphic map. We can assume the first two coordinates of h(x1, ..., xn) are (0, 1) by

Lemma 4.8. The remaining coordinates of h(x1, ..., xn) are functions

f3, ..., fm : PConfn(C) → C− {0, 1}.

Since the image lies in PConfm(C), the expressions fi − fj = 0 have no solutions in PConfn(C).
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Case 1: f3 = sr(i, j, k). By Lemma 4.9, if f3 = sr(i, j, k), then all other fi’s are also simple

ratios sr. Up to a permutation of coordinates on the domain, we assume that f3 = sr(1, 2, 3). By

Lemma 4.9, f4 is either sr(1, 2, 4), sr(1, 4, 3) or sr(4, 2, 3). Applying Lemma 4.1, by applying an

affine twist and/or NIn, we can assume f4 = sr(1, 2, 4). We then claim that fk = sr(1, 2, k) for

all k ≥ 3, up to permutation on the domain. This follows from Lemma 4.9: the only tuple (i, j, k)

that differs from both (1, 2, 3) and (1, 2, 4) in a single entry is (1, 2, p) for some other p. Then we

can apply a permutation such that p = k. Applying the affine twist (x2 − x1)z + x1 then shows

that h is affine-equivalent to the forgetful map πm
n .

Case 2: f3 = cr(i, j, k, l). By Lemma 4.9, if f3 = cr(i, j, k, l), then all other fi’s are also four-term

cross ratio functions cr. Applying a permutation on the domain, we assume that f3 = cr(1, 2, 3, 4).

By Lemma 4.9, f4 is a cr function indexed by a tuple where exactly one entry of (1, 2, 3, 4) has

been replaced by 5. As in Case 1, we apply Lemma 4.1 so that possibly after an affine twist and/or

an application of NIn, we can assume that f4 = cr(1, 2, 3, 5). Arguing as in Case 1, it follows

that fk = cr(1, 2, 3, k + 1) for 3 ≤ k ≤ m up to permutation on the domain, and visibly then

h = πm
n ◦RQn. □

4.3. Rigidity of PConfn(CP1) → PConfm(CP1) for m ≥ 3.

Proof. Let

h : PConfn(CP1) → PConfm(CP1)

be a holomorphic map. Similar to Lemma 4.8, we can assume that the first three coordinates of all

images of h are 0, 1,∞ after applying a twist A : PConfn(CP1) → PSL(2,C). All the holomorphic

maps PConfn(CP1) → C − {0, 1} are given by cross ratio functions cr(i, j, k, l). By a similar

argument as in Theorem 4.2, it can be shown that h is a forgetful map (in this setting, the maps

RQ,NI arise as twists and do not need to be considered separately). □

5. Pure configuration spaces in genus one

Here we consider the setting of holomorphic maps between pure configuration spaces of Riemann

surfaces where the target Y has genus one. In outline, the proof is the same as that of the

previous section - we construct a normalization fs of f : PConfn(X) → PConfm(Y ), relative to

which the component functions are tightly constrained enough to be completely classifiable. In

the previous section this classification of component functions (Theorem 4.2) relied on the group-

theoretic classification Theorem 4.6, which was proved in [Che20]. The results of [Che20] also treat

the case where g(X) ≥ 2 (this is recalled below in Theorem 5.10), but we must establish the case

g(X) = 1 ourselves. It is interesting to note that whereas all three results have a similar flavor

(asserting that maps from configuration spaces to hyperbolic groups factor through forgetful maps),

the precise nature of these forgetful maps reflect the different genus regimes (for g(X) = 0 we forget

all but three or four, for g(X) = 1 we forget all but two, and for g(X) ≥ 2 we forget all but one).

Theorem 5.1. Any homomorphism PBn(T
2) → Fm either factors through PB2(T

2) or has cyclic

image.

Using this, we will establish the main results of the section:
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Theorem 5.2. Let X,Y be compact Riemann surfaces with g(X) = g(Y ) = 1, and let h :

PConfn(X) → PConfm(Y ) be a holomorphic map with m ≥ 2. Then up to permutation of co-

ordinates and twisting, either h is constant or else X → Y and h is a forgetful map.

Theorem 5.3. Let X,Y be compact Riemann surfaces with g(X) ≥ 2 and g(Y ) = 1. Then up to

twisting, any holomorphic map h : PConfn(X) → PConfm(Y ) is constant.

Remark 5.4. The hypothesis m ≥ 2 in Theorem 5.2 is necessary. For instance, let f : X → Y be

an unbranched covering of curves of genus 1. Then there is a family of maps h : PConfn(X) → Y

given as the composition of the addition map PConfn(X) → X with f .

We observe that a twist A : PConfn(X) → Aut(Y ) is essentially the same thing as the case

m = 1 (see Equation (2) below), and so Theorem 5.3 really gives a reduction to the case m = 1.

It remains to give a classification of holomorphic h : PConfn(X) → Y . Certainly one possibility is

to factor through a forgetful map PConfn(X) → X, but there are more complicated examples, as

well. For instance, if X admits Y as one of its isogeny factors (i.e. the Jacobian Jac(X) admits

a finite cover isomorphic to a product Y × A), then it is possible to use the Abel-Jacobi map to

induce a map PConfn(X) → Y this way. We leave the problem of classifying m = 1 for future

work.

5.1. Theorem 5.1: from torus braid groups to free groups. We first discuss some facts

about the group PBn(T
2). Given a disk D2 embedded in T 2, we obtain an embedding of the pure

braid group i : PBn < PBn(T
2) as a subgroup.

We now introduce a generating set for PBn. Recall that PBn is the pure mapping class group of

the disk with n marked points; i.e., π0(Diff(Dn)), where Diff(Dn) is the group of diffeomorphisms

of D fixing n marked points pointwise. Consider the disk with n marked points Dn in Figure 1.

Figure 1. Dn.
Figure 2.

Figure 3. a124.

Let L be a line segment below all the marked points x1, ..., xn. Let L1, ..., Ln be line segments

connecting x1, ..., xn to L as in Figure 1. Similarly, let U be a line segment above all marked points

and let U1, ..., Un be line segments connecting x1, ..., xn to U as shown in Figure 2.

For I ⊂ {1, ..., n}, let aI (resp. a′I) be the boundary curve of the tubular neighborhood of⋃
i∈I Li ∪L (resp.

⋃
i∈I Ui ∪U). Let TI (resp. T ′

I) be the Dehn twist about aI (resp. a′I). Figure 3

gives an example of a curve representing a124. The following proposition about generating sets of

PBn is classical and can be found in [MM09, Theorem 2.3].
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Proposition 5.5. Both {Tij |1 ≤ i < j ≤ n} and {T ′
ij |1 ≤ i < j ≤ n} are generating sets for PBn.

An embedding Dn ↪→ T 2 induces an injection PBn ↪→ PBn(T
2). We fix one such embedding,

and use this to identify TI and T ′
I with elements of PBn(T

2).

Lemma 5.6. For n ≥ 2, any Dehn twist Tc about a simple closed curve c surrounding pi, pj is

conjugate in PBn(T
2) to Tij.

Proof. The Dehn twists Tc and Tij can be viewed as point-pushing maps about based loops c+ and

c+ij starting from pi around pj following c and cij respectively. The point-pushing subgroup based

at pi inside PBn(T
2) is a free group π1(T

2−{x1, ..., x̂i, ..., xn}). The loops c+ and c+ij are conjugate

in π1(T
2 − {x1, ..., x̂i, ..., xn}), since as unbased loops they both encircle the puncture xj . □

We now prove the following statement; in anticipation of later use, we formulate it for a general

compact surface, not just tori (the Dehn twists Tij retain the meaning given above, as loops of the

ith point around the jth inside some topological embedding Dn ↪→ X).

Lemma 5.7. Let S be a compact surface and let en : PConfn(S) → PConfn−1(S)×S be the natural

embedding. The kernel of the induced map en∗ on the fundamental groups is normally generated by

{T1n, ..., Tn−1,n}.

Proof. Endow S with a complete Riemannian metric. Define W := PConfn−1(S)×S−PConfn(S),

noting that W is a union W =
∐

Wi of n− 1 disjoint embedded copies of PConfn−1(S), according

to the unique i ∈ {1, . . . , n − 1} such that xn = xi. Let N(W ) be a tubular neighborhood;

likewise there is a decomposition N(W ) =
∐

N(W )i. Let p : N(W ) → W be the projection

taking (x1, . . . , xn) ∈ N(W )i to (x1, . . . , xn−1, xi). The map p is a homotopy equivalence because

it extends to a deformation retraction by radially contracting xn in to the associated xi, and the

set N(W )◦i := N(W )i−Wi has the homotopy type of a S1-bundle over Wi, with bundle map given

by p.

The use of van Kampen to obtain the result is complicated by the fact that W and N(W ) are

disconnected. Accordingly, define Y0 := PConfn(S) and for i ≥ 1,

Yi = Yi−1

⋃
N(W )◦i

N(W )i;

let qi ∈ N(W )◦i be a basepoint.

Applying the van Kampen theorem to the above decomposition of Yi yields the following pushout

diagram:

π1(N(W )◦i , qi)
fi,∗

//

pi,∗

��

π1(Yi−1, qi)

ei,∗

��

π1(N(W )i, qi) ∼= π1(Wi, qi) // π1(Yi, qi)

Therefore the kernel of ei,∗ is normally generated by the image of ker(pi,∗) under fi,∗. Observe that

ker(pi,∗) is normally generated by the S1-fiber, which corresponds under fi,∗ to the Dehn twist Ti,n.

Inductively, we see that the kernel of the inclusion map π1(PConfn(S), qi) → π1(Yi, qi) is normally

generated by the Dehn twists Tj,n for j ≤ i; as Yn−1 = PConfn−1(S)× S, the result follows. □
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Let Pi := π1(T
2 − {x1, ..., x̂i, ..., xn}) < PBn(T

2) be the point-pushing subgroup based at the

point xi.

Lemma 5.8. The group PBn(T
2) is generated by elements in Pi for i ∈ {1, ..., n}

Proof. The subgroup Pn is the kernel of the homomorphism PBn(T
2) → PBn−1(T

2) induced by

forgetting the last point. The lemma is deduced by induction. □

We will make use of the result [Che20, Theorem 2.5]:

Theorem 5.9. Let G1, ..., Gn be groups and let Γ < G1 × ... ×Gn be a finite index subgroup. Let

πi : Γ → Gi be the ith projection map and let Γi be the image of πi. Let Λ be a torsion-free,

non-elementary hyperbolic group. Then any homomorphism ϕ : Γ → Λ either factors through πi or

its image is a cyclic group.

We now start the proof of Theorem 5.1.

Proof of Theorem 5.1. Let ρ : PBn(T
2) → Fm be a homomorphism.

Case 1: n = 3. Suppose that one of ρ(T12), ρ(T13) or ρ(T23) is not trivial (we will consider the

situation where all three vanish below). We assume without loss of generality that ρ(T12) ̸= 1.

Let us consider the centralizer of T12. The point push of the third point gives the embedding

P3 : π1(T
2 − {x1, x2}) → PB3(T

2). Denote the based loop at x3 corresponding to T12 as c.

Then P3(c) = T−1
12 T123. The loop c = [a, b] is a commutator in π1(T

2 − {x1, x2}), where a, b

are standard generators for π1(T
2, x3) disjoint from T12, and so crucially, both P3(a) and P3(b)

commute with T12. As the centralizer of any nontrivial element of Fm is cyclic, it follows that

ρ([P3(a), P3(b)]) = ρ(T−1
12 T123) = 1 and hence ρ(T123) = ρ(T12). By the same logic, either ρ(T23) = 1

or ρ(T23) = ρ(T123), and likewise either ρ(T13) = 1 or else ρ(T13) = ρ(T123).

By the lantern relation, T12T23T13 = T123. If either ρ(T23) or ρ(T13) is trivial, this implies that

both are. The other possibility is that all three of ρ(T12), ρ(T23), ρ(T13) equal ρ(T123), which implies

that ρ(T123)
2 = 1; as Fm is torsion-free, this implies ρ(T123) = 1, contrary to the assumption that

ρ(T12) ̸= 1. We conclude that ρ(T13) = ρ(T23) = 1, so by Lemma 5.7, it follows that ρ factors

through the product PB2(T
2) × T 2. By Theorem 5.9, we conclude that ρ either factors through

PB2(T
2) or else has cyclic image. Note that the argument of this paragraph covers the case where

all of ρ(T12), ρ(T13), ρ(T23) are trivial.

Case 2: n = 4. As above, we can assume without loss of generality that ρ(T12) ̸= 1. By

Theorem 4.6, the restriction ρ|PB4 either factors through a forgetful map to PB3 or RQ4. In the

first case, ρ(T14) = ρ(T24) = ρ(T34) = 1, which implies that ρ factors through e4∗ by Lemma 5.7.

Applying Theorem 5.9, either the image is cyclic or else we have reduced to the case n = 3.

Suppose then that ρ factors through RQ4. On the level of B4, the map RQ4 sends the standard

generators σ1, σ2 to themselves and σ3 to σ1. Thus ρ(T34) = ρ(σ2
3) = ρ(σ2

1) = ρ(T12).

Subcase 1: ρ(T23) does not commute with ρ(T12). We first claim that under this assumption,

ρ(T123) = ρ(T1234) = ρ(T234) = 1.

To see this, observe that each such element commutes with both ρ(T12) = ρ(T34) and ρ(T23) and

hence lies in the intersection of their centralizers, which is trivial.
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γγ3γ4γ34

c̄

Figure 4. The configuration of curves used in Subcase 1.

Referring to the left side of Figure 4, we define the elements S, S3, S4, S34 ∈ Mod(T 2, {x1, . . . , x4})
as the Dehn twists about the curve γ with the corresponding subscript. Then there is a lantern

relation of the form

T34S4S3 = SS34

We rearrange, expressing each side as an element of PB4(T
2):

T34S4S
−1 = S−1

3 S34

Since S4S
−1 commutes with T12 and T23, it follows that ρ(S4S

−1) = 1 since ρ(T12) and ρ(T23)

do not commute by hypothesis. Thus ρ(S−1
3 S34) = ρ(T34). There is a second lantern relation

T ′
24T34T23 = T234, from which we conclude ρ(T ′

24) = ρ(T34T23)
−1.

Let c be the curve given as a regular neighborhood of the arc c̄ indicated on the right side of

Figure 4. By disjointness, Tc commutes with T ′
24 and S−1

3 S34. However ρ(S−1
3 S34) = ρ(T34) =

ρ(T12) and ρ(T ′
24) = ρ(T34T23)

−1 = ρ(T12T
−1
23 ) don’t commute, which implies that ρ(Tc) = 1. By

Lemma 5.6, ρ(Tc) is conjugate to ρ(T13), implying that ρ(T13) = 1 as well. However, there is a

lantern relation T12T23T13 = T123, and since ρ(T123) = 1, this implies that ρ(T13) = ρ(T12T23)
−1 ̸= 1,

a contradiction.

Figure 5. Subcase 2: generators for P1 and P2.

Subcase 2: ρ(T23) commutes with ρ(T12). In this case, ρ(PB4) is in the centralizer of ρ(T12).

We now show that ρ(PB4(T
2)) is in also in the centralizer of ρ(T12), and hence ρ has cyclic image.



22 LEI CHEN AND NICK SALTER

By Lemma 5.8, it suffices to show that ρ(Pi) is in the centralizer of ρ(T12) for i = 1, . . . , 4. The

subgroup P1 is the fundamental group of T 2 − {x2, x3, x4} and is generated by point-push maps

about the paths indicated in Figure 5. Expressing a point push as the product of Dehn twists

about the boundary components of a regular neighborhood, one observes that each such curve is

disjoint from either a12 or a34 with the exception of T23. By hypothesis, ρ(T23) commutes with

ρ(T12), and it follows that ρ(P1) commutes with ρ(T12) = ρ(T34) as claimed. A similar analysis of

the generating sets for P2, P3, P4 show that the same result holds, completing the argument.

Case 3: general n. This proceeds as in the first step of the case n = 4. If all ρ(Tij) = 1,

then the image is abelian and hence cyclic. Otherwise, ρ(T12) ̸= 1 without loss of generality.

By Theorem 4.6, the restriction ρ|PBn factors through a forgetful map, so that (without loss of

generality) ρ(Ti,n) = 1 for 1 ≤ i ≤ n− 1. By Lemma 5.7, it follows that ρ factors through en,∗, and

applying Theorem 5.9 implies that either ρ has cyclic image or else we have reduced to the case

m = n− 1. □

5.2. Theorem 5.2: holomorphic maps between configuration spaces on elliptic curves.

To begin, we recall the classification of maps f : PBn(X) → Fm established (in greater generality)

in [Che20, Theorem 1.1].

Theorem 5.10. Let X be a compact Riemann surface with g(X) ≥ 2, and let Fm be a free group of

rank m ≥ 2. Then every homomorphism f : PBn(X) → Fm either has cyclic image or else factors

through a forgetful map pi : PBn(X) → X.

Using this and Theorem 5.1, we establish the following analogue of Theorem 4.2.

Lemma 5.11. Let X,Y be compact Riemann surfaces, with g(Y ) = 1. Choose a base point O ∈ Y ,

thereby endowing Y with a group structure. Let h : PConfn(X) → Y −{O} be a holomorphic map.

Then either h is constant or there is an isomorphism I : X ∼= Y , and h = I(xi − xj) for some i, j.

Proof. We proceed by induction, the case n = 1 being trivial (as every holomorphic map h : X →
Y − {O} is constant). Now let n ≥ 2 be given. By Theorem 5.1 and Theorem 5.10, either h∗

has cyclic image or h∗ factors through a forgetful map: either PBn(X) → PB2(X) in the case of

g(X) = 1 or PBn(X) → X in the case of g(X) ≥ 2.

Firstly, suppose that h∗ has cyclic image. Fix a configuration C = (x1, ..., xn−1) ∈ PConfn−1(X),

and for 1 ≤ k ≤ n, consider the natural embedding iC,k : X − C ⊂ PConfn(X) where all but

the kth coordinate is fixed at C; note this is a holomorphic map. By Proposition 2.3, h ◦ iC,k

extends to a holomorphic map H : X → Y . If H is not constant, then Hodge theory asserts that

H1(Y ;C) is spanned by holomorphic differentials and their conjugates. Since nonzero holomorphic

differentials pull back to nonzero holomorphic differentials along holomorphic maps, it follows that

H∗ : H1(Y ;C) → H1(X;C) is injective, and dually H∗ : H1(X;C) → H1(Y ;C) is surjective. This

contradicts the assumption that h ◦ iC,k has cyclic image.

Next, suppose that that g(X) ≥ 2 and h∗ factors through a forgetful map p : PBn(X) → X;

without loss of generality, assume that p is the projection onto the nth factor. As in the previous

paragraph, we fix a configuration C = (x1, ..., xn−1) ∈ PConfn−1(X) and consider h◦iC,k : X−C →
Y − {O}. By hypothesis, for 1 ≤ k ≤ n− 1, the induced map (h ◦ iC,k)∗ on fundamental group is
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trivial and so there is a lift H : X − C → D. By the removable singularity theorem, this extends

to a holomorphic map H : X → D, but this must be constant by the maximum principle. We

conclude that h : PConfn(X) → Y −{O} factors through pn : PConfn(X) → X. The induced map

h : X → Y then has degree zero (since it misses O ∈ Y by hypothesis) and hence is constant, as

claimed.

Finally, suppose that g(X) = 1 and h∗ factors through a forgetful map PBn(X) → PB2(X);

for notational simplicity, we may therefore assume that n = 2. Let x1 ∈ X and ix1 : X − {x1} →
PConf2(X) be the natural embedding. Then the induced map h ◦ ix1 is also holomorphic. By

the removable singularity theorem (Proposition 2.3), h ◦ ix1 can be uniquely extended to a map

h ◦ ix1 : X → Y . Every holomorphic map between elliptic curves is either constant or else a covering

map. Since O has at most a single preimage, h ◦ ix1 is either an isomorphism or a constant map.

If h ◦ ix1 is a constant map, then this holds for all x1 ∈ X. Thus h factors through the forgetful

map to the first coordinate X, reducing further to the previous case n = 1, from which we conclude

that h is constant.

If h ◦ ix1 is an isomorphism, then we obtain a family of isomorphisms h ◦ ix1 : X → Y such

that h ◦ ix1(x1) = O. Thus we obtain a global holomorphic map H : X × X → Y such that

H(x1, x1) = O. Choose a basepoint OX ∈ X, and let I = h ◦ iOX
. Thus H(OX , x2) = I(x2). A

holomorphic map X → Y is uniquely determined by the map on the fundamental group and the

image of a single point. Thus H(x1, x2) = I(x2 − x1) for any other x1 since this map satisfies that

H(x1, x1) = O and is compatible on fundamental groups. □

Proof of Theorem 5.2. Let h : PConfn(X) → PConfm(Y ) be a holomorphic map, and fix a base-

point O ∈ Y . Let y1 ∈ Y denote the first coordinate of h(x1, . . . , xn); note that y1 is a holomorphic

function of x1, . . . , xn. Exploiting the group structure, define the normalization

hs(x1, ..., xn) = h(x1, ..., xn)− (y1, ..., y1).

Thus, hs(x1, ..., xn) = (O, f2(x1, ..., xn), ..., fm(x1, ..., xn)) where fp : PConfn(X) → Y − {O} for

2 ≤ p ≤ m are holomorphic maps. By Lemma 5.11, it follows that either fp is constant or else

fp(x1, ..., xn) = Ip(xi−xj) for some isomorphism Ip : X → Y and some pair of indices 1 ≤ i < j ≤ n.

We first consider the case where (without loss of generality) f2 is constant, say with value

y ∈ Y − {O}. If some fp for p ≥ 3 is nonconstant, then by Lemma 5.11, it is of the form

fp(x1, . . . , xn) = Ip(xi − xj) for some isomorphism Ip : X → Y and some pair of distinct indices

i, j. Then there are distinct points x, x′ ∈ X such that Ip(x− x′) = y, so that a configuration with

x (resp. x′) in the ith (resp. jth) component has second and third components equal under h, a

contradiction. This shows that either all fp are constant (in which case we are done) or else all fp

are nonconstant and hence given by isomorphisms Ip.

To proceed, we consider the set of all isomorphisms I : X → Y . This set is a torsor for Aut(Y ),

the group of automorphisms of Y as a Riemann surface. There is a semi-direct product structure

Aut(Y ) ∼= (Y,O)⋊Aut(Y,O), (2)

where (Y,O) indicates the elliptic curve structure on Y with O as the origin, and Aut(Y,O) indicates

the subgroup of Aut(Y ) fixing O, equivalently the subgroup of group automorphisms. The group

Aut(Y,O) is always finite, and always contains the negation map −id : x 7→ −x.
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Fix the identification I2 : X → Y associated with the first nontrivial coordinate f2 once and

for all; accordingly, we suppress I2 from the notation. For p ≥ 3, the torsor structure then gives

expressions Ip = (ϵp, αp) ◦ I2, where ϵp ∈ Y and αp ∈ Aut(Y,O). Succinctly, Ip(x) = αp(x) + ϵp, so

that we can write (after a permutation of coordinates in the domain)

fs(x1, . . . , xn) = (O, x2 − x1, α3(xi3)− α3(xj3) + ϵ3, . . . , αm(xim)− αm(xjm) + ϵm).

By hypothesis, the difference αp(xip) − αp(xjp) + ϵp − (x2 − x1) does not have O in its image, so

that by Lemma 5.11, there is an identity

αp(xip)− αp(xjp) + ϵp − (x2 − x1) = β(xk)− β(xl) + δ,

for distinct indices k, l and (β, δ) ∈ Aut(Y ), or equivalently

x1 + αp(xip) + β(xl)− (x2 + αp(xjp) + β(xk)) = δ − ϵp.

The right-hand side above is constant, and so the left-hand side must exhibit cancellation. If either

β or αp is not ±id, then this is not possible (e.g. lifting to the universal cover C of Y , the derivative

of the left-hand side would necessarily be everywhere nontrivial). Up to an exchange of indices, we

can assume that αp = β = id, so that

x1 + xip + xl − (x2 + xjp + xk) = δ − ϵp.

It follows that exactly one of the conditions ip = 2 or jp = 1 holds (they cannot both hold

simultaneously since then k = l). By a permutation of coordinates, we can assume j3 = 1 and

i3 = 3. At this point, our expression for fs has become

fs(x1, . . . , xn) = (O, x2 − x1, x3 − x1 + ϵ3, . . . , xim − xjm + ϵm),

subject to the condition that exactly one of the identities ip = 2 or jp = 1 holds for all p. By

comparing the second and pth entries, we conclude that ϵp = O for all p ≥ 3.

We claim that necessarily jp = 1 must hold for all p ≥ 4. Suppose to the contrary; then (without

loss of generality)

fs(x1, . . . , xn) = (O, x2 − x1, x3 − x1, x2 − xj4 , . . . ).

By the previous analysis, comparing the third and fourth component forces j4 = 1, but then the

fourth component equals the second, a contradiction. Finally, we can re-normalize fs by translation

by x1, showing that f is given by a forgetful map as claimed. □

5.3. Theorem 5.3: from higher genus to genus one.

Proof of Theorem 5.3. Write h = (f1, . . . , fm), with each fk : PConfn(X) → Y holomorphic.

Choose a basepoint O ∈ Y , and, as in Theorem 5.2, normalize h : PConfn(X) → PConfm(Y )

by the twist

A(x1, . . . , xn)(y) = y − f1(x1, . . . , xn)

so that h = (O, f2, . . . , fm) with fk : PConfn(X) → Y −O holomorphic. By Lemma 5.11, each fk

must be constant. □
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6. Pure configuration spaces in higher genus

In this section we consider the problem of classifying holomorphic maps h : PConfn(X) →
PConfm(Y ), where X,Y are Riemann surfaces of higher genus. We find that the situation is quite

rigid - Theorem 6.1 shows that either X = Y and the map is forgetful, or else h is induced from a

family of maps fi : X → Y which pairwise have disjoint graphs. In Theorem 6.3, we consider the

question of how many such fi can exist, which is essentially a variant of the de Franchis theorem

from classical algebraic geometry.

6.1. Classification of holomorphic maps.

Theorem 6.1. Let X and Y be compact Riemann surfaces, with g(X), g(Y ) ≥ 2. Suppose

h : PConfn(X) → PConfm(Y )

is a nonconstant holomorphic map. Then up to permutation of coordinates and the actions of

Aut(X) and Aut(Y ), either X = Y, n ≥ m, and h is a forgetful map PConfn(X) → PConfm(X),

or else h factors as the composition of a forgetful map PConfn(X) → X and a holomorphic map

X → PConfm(Y ).

Proof. Consider the composition pi ◦ h : PConfn(X) → Y , where pi : PConfm(Y ) → Y is the

projection onto the ith factor.

Claim 6.2. Each pi ◦ h is nonconstant and induces a surjection H1(PConfn(X);Q) → H1(Y ;Q).

Proof. We first show that each pi ◦h is nonconstant. If m = 1 and p1 is constant then h is constant,

contrary to hypothesis. If m > 1, then supposing that any pi ◦h is constant (say with value y0 ∈ Y )

let j ̸= i be some other index, and consider pj ◦ h. If this is nonconstant, then let C ⊂ X be a

configuration of n−1 distinct points, and consider the inclusion iC,k : X−C ⊂ PConfn(X) as before.

Here k is chosen so as to make the composition pj◦h◦iC,k nonconstant. By the removable singularity

theorem (Proposition 2.3), this extends to give a nonconstant holomorphic map fC : X → Y and

by the de Franchis theorem, the space of such maps is discrete, and hence f := fC is independent

of C. Since f : X → Y is nonconstant, it has positive degree and hence is surjective. Thus, there

is some (x1, . . . , xn) ∈ PConfn(X) such that pjh(x1, . . . , xn) = y0 = pih(x1, . . . , xn), i.e. the map

fails to have codomain PConfn(Y ), contrary to assumption.

To see that (pi ◦ h)∗ is surjective, it suffices to see that f∗ : H1(X;Q) → H1(Y ;Q) is surjective,

where f is as in the above paragraph, but this is a general property of nonconstant holomorphic

maps between compact Riemann surfaces, following from the existence of a transfer homomor-

phism f ! : H1(Y ;Q) → H1(X;Q) with the property that f !f∗ = deg(f)IH1(X;Q) (see, e.g. [Tan10,

Definition 2.2] for a dual cohomological formulation). □

We consider the induced map (pi ◦ h)∗ : PBn(X) → π1(Y ). By [Che19, Lemma 2.5], either

(pi ◦ h)∗ factors as (pi ◦ h)∗ = f∗ ◦ pj,∗ for some f∗ : π1(X) → π1(Y ), where pj,∗ : PBn(X) → π1(X)

is induced by projecting onto the jth factor, or else (pi ◦ h)∗ has cyclic image, possibly trivial.

The latter case cannot happen, since such maps would not induce a surjection on H1, contrary to

Claim 6.2.
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Defining [k] := {1, . . . , k}, we next claim that there is a function j : [m] → [n] and nonconstant

holomorphic maps αi : X → Y for which the diagram below commutes for all i:

PConfn(X)
h
//

pj(i)

��

PConfm(Y )

pi
��

X
αi

// Y

(3)

The function j can be defined as follows: by the above, (pi ◦h)∗ : PBn(X) → π1(Y ) factors through

some projection pj,∗ : PBm(X) → π1(X); let j(i) be this j. We observe that h is determined by its

values on the collection of submanifolds (X −C)k. For k ̸= j(i), the restriction of the holomorphic

map pi ◦ h to (X − C)k is nullhomotopic by the preceding paragraph, and hence constant. Thus

pi ◦ h factors through pj(i) as required.

By construction, if j is constant, then h factors through some projection pj : PConfn(X) → X.

It remains to show that if j is nonconstant, then Y = X,n ≥ m, and h is a forgetful map up

to permutation of coordinates and the application of some α ∈ Aut(X) to each component of

PConfn(X).

We claim that if j is nonconstant, then αi1 = αi2 for all pairs of indices. Supposing to the

contrary, without loss of generality, we may take i = 1, j = 2, and j(1) = 1, j(2) = 2. Let x1 ∈ X

be given such that α1(x1) ̸= α2(x1), and let x2 ∈ X satisfy α2(x2) = α1(x1). Completing x1, x2 to

a point (x1, x2, . . . , xn) ∈ PConfn(X), we see that h(x1, . . . , xn) = (α1(x1), α2(x2), . . . , αn(xj(n)))

has a repeated entry α1(x1) = α2(x2), a contradiction.

To see that X = Y in this case, we show that the fixed map α : X → Y has degree 1. If not, let

x1 ̸= x2 ∈ X satisfy α(x1) = α(x2) = y; then h(x1, x2, . . . ) = (y, y, . . . ) has a repeated entry. Thus

X = Y , and by adjusting by α−1 if necessary, we may assume that α = id. Now it is clear that

n ≥ m, otherwise h(x1, . . . , xn) = (xj(1), . . . , xj(n)) would have a repeated entry. □

6.2. Bounds. To complement Theorem 6.1, we consider the problem of determining the maximal

m for which there is a nonconstant holomorphic map h : X → PConfm(Y ). This is closely related

to the effective de Franchis problem, which asks for bounds on the number of distinct holomorphic

maps fi : X → Y (known to be finite for g(X), g(Y ) ≥ 2 by the classical de Franchis theorem);

here we add the condition that the images of fi be pairwise-disjoint (pairwise have no coincidences,

in the terminology of [Tan10]). The general effective de Franchis problem is far from conclusively

resolved - Chamizo [Cha19] obtains an upper bound that is slightly larger than exponential in

g(X), while the largest known examples are linear in the genus (arising when X and/or Y has

a large automorphism group which can be used to enlarge the number of morphism by pre/post

composition).

Here, we find that the condition that the morphisms pairwise have no coincidences imposes a

strong constraint, greatly reducing the upper bound, although in practice there is still a gap between

the upper bound of Theorem 6.3 and the largest known examples (arising when Y is equipped with

a group of free automorphisms).

Theorem 6.3. Let X,Y be compact Riemann surfaces each of genus at least 2, and let h : X →
PConfm(Y ) be a nonconstant holomorphic map. Then m ≤ 4g(X)g(Y ).
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Proof. Each holomorphic map f : X → Y induces f∗ ∈ Hom(J(X), J(Y )), the induced map on

Jacobians; Martens observes [Mar78] that distinct morphisms f, g induce distinct maps f∗, g∗ so

long as g(Y ) ≥ 2. Tanabe [Tan10, Definition 2.9], following ideas of Fuertes – González-Diez

[FGD93], Martens [Mar78] and ultimately Weil [Wei56], introduces a certain positive-definite inner

product ⟨·, ·⟩ on Hom(J(X), J(Y )). According to [Tan10, Theorem 4.1], if f, g : X → Y are

holomorphic and have no coincidences (i.e. f(x) ̸= g(x) for all x ∈ X), then deg(f) = deg(g) and

cos(f∗, g∗) = g(Y )−1, where cos(v, w) := ⟨v, w⟩/∥v∥∥w∥ is defined as in any inner product space. If

h : X → PConfm(Y ) is given, the component functions h1, . . . , hm pairwise have no coincidences,

and thus determine a configuration of vectors h1,∗, . . . , hm,∗ ∈ Hom(J(X), J(Y )) where the angles

cos(hi,∗, hj,∗) = g(Y )−1 are pairwise fixed and equal.

As Hom(J(X), J(Y )) is a subgroup of Hom(H1(X;Z), H1(Y,Z)) ∼= Z4g(X)g(Y ), to prove the

claim, it suffices to show that such a configuration of vectors must be linearly independent. It

suffices to consider the associated unit vectors v1, . . . , vm. Let A be the matrix with Aij = ⟨vi, vj⟩;
linear-independence of {v1, . . . , vm} is equivalent to the nonsingularity of A. By hypothesis,

A = (1− g(Y )−1)I + C,

where C is the matrix where every entry is given by g(Y )−1. The eigenvalues of C are 0 and

mg(Y )−1, and hence the eigenvalues of A are 1 − g(Y )−1 and 1 + (m − 1)g(Y )−1. As g(Y ) ≥ 2,

both of these are nonzero, which proves the claim. □

7. Distinct genus regime

In this section, we examine what happens when g(X) and g(Y ) belong to distinct genus regimes

(i.e. g = 0, 1, or g ≥ 2) - this is the setting in which there are very few holomorphic maps. The

results largely follow from basic principles, but we include the proofs for the sake of completeness.

Proposition 7.1. Let X,Y be Riemann surfaces of finite type with g(Y ) > g(X). Then every

holomorphic map h : PConfn(X) → PConfm(Y ) is constant.

Proof. Fix a configuration of distinct points C = {x1, . . . , xn−1} ⊂ X, and for 1 ≤ k ≤ n, consider

the inclusions (X − C)k ↪→ PConfn(X) as in the proof of Theorem 6.1. Composing with the

projection pi : PConfm(Y ) → Y onto the ith factor, we obtain a holomorphic map fik : X−C → Y .

As g(Y ) > g(X), any such map must be constant; varying i, k, and C then shows that h itself is

constant. □

Proposition 7.2. Let Y be a compact Riemann surface of genus g(Y ) = 1. Then every holomorphic

map h : Confn(CP1) → Confm(Y ) is constant.

Proof. We consider the induced map on fundamental group

h∗ : Bn(CP1) → π1(Y );

note that as the target is abelian, this factors through H1(Bn(CP1);Z). It is well-known that

Bn(CP1) = Bn(S
2) is a quotient ofBn by the word σ1σ2 . . . σn−1σn−1 . . . σ1. Thus,H1(Bn(CP1);Z) ∼=

Z/(2n − 2)Z. As π1(Y ) ∼= Z2 is torsion-free, it follows that h∗ is the trivial map. Applying

Lemma 5.7, we conclude that h extends to a holomorphic map

H : (CP1)n → Y.
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Every such map is constant (e.g. H lifts to the universal cover C of Y and is therefore constant via

the maximum principle). □

We remark that in the setting of g(Y ) ≥ 2, the same argument (replacing Y with its Jacobian)

shows that any holomorphic map h : Confn(CP1) → Confm(Y ) has image contained in a fixed

linear system on Y , but this by itself is not enough to conclude that h itself is constant.
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