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Let Σg → E → Σh be a surface bundle over a surface with monodromy represen-
tation ρ : π1Σh → Mod(Σg) contained in the Torelli group Ig . In this paper we ex-
press the cup product structure in H∗(E,Z) in terms of the Johnson homomorphism
τ : Ig → ∧3(H1(Σg,Z))/H1(Σg,Z). This is applied to the question of obtaining
an upper bound on the maximal n such that p1 : E → Σh1 , . . . , pn : E → Σhn are
fibering maps realizing E as the total space of a surface bundle over a surface in
n distinct ways. We prove that any nontrivial surface bundle over a surface with
monodromy contained in the Johnson kernel Kg fibers in a unique way.

57R22; 57R95

1 Introduction

The theory of the Thurston norm gives a detailed picture of the set of possible ways that
a compact, oriented 3-manifold M can fiber as a surface bundle. If b1(M) > 1, then M
admits infinitely many such fibrations Σg → M → S1 ; finitely many for each g ≥ 2.
The purpose of the present paper is to take up a similar sort of inquiry for 4-manifolds
Σg → E → Σh fibering as a surface bundle over a surface of genus g ≥ 2.

When h = 1 (i.e. the base surface is a torus), a similar story as in the 3-manifold
setting unfolds; if M3 is a 3-manifold admitting infinitely many fiberings p : M → S1 ,
then p× id : M3× S1 → S1× S1 admits infinitely many fiberings as well. However, in
stark contrast with the 3-dimensional setting and with the case of surface bundles over
the torus, F.E.A. Johnson showed in [9] that if Σg → E → Σh is a surface bundle over a
surface with g, h ≥ 2, then there are only finitely many distinct fibrations pi : E → Σhi

realizing E as the total space of a surface bundle over a surface (see Proposition 2.1 for
a precise definition of what is meant by “distinct”). The book [8] contains a treatment
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of results of this type, as does the preprint [13], in which the case of surface bundles
over surfaces is situated in the larger context of “fibering rigidity” for a wide class of
manifolds.

A particularly simple example of a surface bundle over a surface admitting two fiberings
is that of a trivial bundle, i.e. a product of surfaces Σg ×Σh . At the time of Johnson’s
result, there was essentially one known method for producing nontrivial surface bundles
over surfaces with multiple fiberings, due independently to Atiyah and Kodaira (see
[1], [10], as well as the summary in [12]). Their construction is built by taking a certain
cyclic branched covering p : E → Σg ×Σh of a product of surfaces. The two fibering
maps are inherited from the projections of Σg×Σh onto either factor. While Johnson’s
argument produces a bound on the number of possible fiberings of a surface bundle
E that is super-exponential in the Euler characteristic χ(E), until recently all known
examples of surface bundles over surfaces had at most two fiberings, leaving a large
gap between upper and lower bounds on the number of possible fiberings.

In [15], the author gave a new method for constructing surface bundles over surfaces
with multiple fiberings, including the first examples of bundles admitting an arbitrarily
large number of fiberings. In fact, the methods of [15] are capable of producing families
En of surface bundles admitting exponentially many fiberings as a function of χ(En).
The results of this paper can be seen as a complement to the work of [15], in that our
concern here is in addressing the question of when surface bundles over surfaces admit
unique fiberings.

A central theme in the study of surface bundles is the “monodromy - topology dictio-
nary”. For any reasonable base space M , there is a well-known correspondence (see,
e.g. [3])
(1){

Bundle-isomorphism classes of
oriented Σg-bundles over M

}
←→

{
Conjugacy classes of representations

π1(M)→ Mod(Σg)

}
.

This raises the question of translating between topological and geometric properties of
surface bundles on the one hand, and on the other, algebraic or geometric properties of
the monodromy representation. Certain entries in this dictionary are well-established,
for instance Thurston’s landmark result that a fibered 3-manifold Σg → Mφ → S1
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admits a complete hyperbolic metric if and only if the monodromy is a so-called
“pseudo-Anosov” element of Mod(Σg). In this paper we add to the dictionary by
relating the cohomology ring of a surface bundle over a surface to its monodromy
representation, and apply these results to give various obstructions for the surface
bundle to admit more than one fibering.

From the perspective of the monodromy representation, the phenomenon of multiple
fibering remains mysterious. The central result of this paper shows that there is a strong
interaction between the existence of multiple fiberings and the theory of the Torelli
group Ig . Recall that the Torelli group is the kernel of the symplectic representation
Ψ : Mod(Σg) → Sp2g(Z) and that the Johnson kernel Kg is defined as the group
generated by Dehn twists Tγ with γ a separating curve.1

Theorem 1.1 Let π : E → B be a surface bundle over a surface with monodromy in
the Johnson kernel Kg . If E admits two distinct fiberings then E is diffeomorphic to
B × B′ , the product of the base spaces. In other words, any nontrivial surface bundle
over a surface with monodromy in Kg admits a unique fibering.

The surface bundles over surfaces of [15] can be constructed so as to have monodromy
contained in Ig . It follows that the hypothesis in Theorem 1.1 that the monodromy be
contained in Kg is effectively sharp with respect to the Johnson filtration (see Chapter
6 of [3] for the definition of the Johnson filtration).

Theorem 1.1 is proved by first relating the monodromy representation of a surface
bundle over a surface E4 → B2 to the cohomology ring H∗(E). This analysis will
show that the integral cohomology of a surface bundle over a surface with monodromy
in Kg is as simple as possible. It is then shown that in these circumstances, obstructions
to possessing alternative fiberings can be extracted from H∗(E).

In a similar spirit we also have the following general criterion which we believe to
be of independent interest, for a surface bundle over a surface to possess a unique
fibering. It can be viewed as the 4-manifold analogue of a well-known fact about

1As discussed further in section 5.1, there is an alternative characterization of Kg as the
kernel of the Johnson homomorphism (to be defined in section 5.1). We will pass between
these two perspectives as the situation dictates.
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fibered 3-manifolds (see Remark 3.6).

Theorem 3.5. Let p : E → B be a surface bundle over a surface B of genus g ≥ 2
with monodromy representation ρ : π1B → Mod(Σg). Suppose that the space of
invariant cohomology (H1(F,Q))ρ (equivalently, the coinvariant homology of the fiber
(H1(F,Q))ρ ) vanishes. Then E admits a unique fibering.

The paper is organized as follows. In Section 2, we give various characterizations of
the notion of equivalence under consideration. In Section 3, we prove Theorem 3.5.
Sections 4 - 7 are devoted to the proof of Theorem 1.1. Section 4 is devoted to a
lemma in differential topology that features in later stages of the proof of Theorem
1.1. The technical heart of the paper is Section 5. In it, we first give an overview of
the classical description of the Johnson homomorphism τ in terms of the intersection
theory of surfaces in 3-manifolds that fiber over S1 . Using this description of τ we
then carry out a construction of 3-manifolds embedded in surface bundles over surfaces
that realizes the relationship between the Johnson homomorphism and the intersection
product in the homology of the surface bundle. We give a complete description of the
product structure in (co)homology for a surface bundle over a surface with monodromy
in Ig . These methods of Section 5 extend to an arbitrary surface bundle over a surface,
but we do not state them in this level of generality since we have no need for them here.

Section 6 is devoted to some technical results concerning multisections of surface
bundles, and their connection to splittings on rational cohomology. These results are
used in the course of proving Theorem 1.1.

In Section 7 we turn finally to the proof of Theorem 1.1. The result follows from
an analysis of the intersection product structure in H∗(E) for a surface bundle over
a surface Σg → E → Σh with monodromy in Kg . The results of Section 5 are
applied to show that when the monodromy of Σg → E → Σh is contained in Kg ,
then E , which necessarily has H∗E ≈ H∗Σg ⊗ H∗Σh as an additive group, in fact has
H∗E ≈ H∗Σg ⊗ H∗Σh (with Z coefficients) as a graded ring. This condition is then
exploited to prove Theorem 1.1.

Acknowledgements. The author would like to express his gratitude to Tom Church,
Sebastian Hensel, Jonathan Hillman, Andy Putman, and Alden Walker for illuminating
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discussions at various stages of this work. He is grateful to anonymous referees for
many helpful suggestions. He would also like to extend his warmest thanks to Benson
Farb for his extensive comments as well as his invaluable support from start to finish.

2 Equivalence

If E is a smooth n-manifold and pi : E → Bi, i = 1, . . . , k are projection maps for
various fiber bundle structures on E , we can consider the product of all the projection
maps:

p1 × · · · × pk : E → B1 × · · · × Bk.

In particular, if E4 is the total space of a surface bundle over a surface with two
fiberings, the bi-projection p1 × p2 : E → B2 × B2 is defined. As remarked in the
introduction, ultimately we are concerned with fiberwise-diffeomorphism classes of
surface bundles. However, it is convenient to consider a more restrictive notion of
equivalence which will turn out to have the advantage of being describable purely on
the level of the fundamental group.
We say that two fiberings p1 : E → B1 , p2 : E → B2 are π1 -fiberwise diffeomorphic
if (1) - they are fiberwise diffeomorphic, i.e. there exists a commutative diagram

E
φ //

p1

��

E

p2

��
B1 α

// B2

with φ, α diffeomorphisms, and (2) - φ∗(π1F1) = π1F1 (here, as always, Fi denotes a
fiber of pi ). Certainly if p1, p2 are π1 -fiberwise diffeomorphic bundle structures, then
they are fiberwise-diffeomorphic in the usual sense. We are interested in this notion
because we want to always regard the trivial bundle Σg × Σh as having two distinct
fiberings. In the setting of fiberwise-diffeomorphism, the projections onto either factor
of Σg × Σg yield equivalent fiberings via the factor-swapping map φ(x, y) = (y, x),
which covers the identity on Σg , but φ∗(π1(Σg×{p})) 6= π1(Σg×{p}). The following
proposition asserts that π1 -fiberwise diffeomorphism classes are in correspondence
with the fiber subgroups π1F C π1E . Recall that this is the setting in which F.E.A.
Johnson proved his finiteness result (see [9]).
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Proposition 2.1 Suppose E is the total space of a surface bundle over a surface in two
ways: p1 : E → B1 and p2 : E → B2 . Let F1,F2 denote fibers of p1, p2 respectively.
Then the following are equivalent:

(1) The fiberings p1, p2 are π1 -fiberwise diffeomorphic.

(2) The fiber subgroups π1F1, π1F2 ≤ π1E are equal.

If deg(p1 × p2) 6= 0 then the bundle structures p1 and p2 are distinct.

Proof First suppose that p1 and p2 are equivalent. Appealing to the long exact
sequence in homotopy, we see that

1 // π1F1 //

φ∗
��

π1E //

φ∗
��

π1B1 //

α∗
��

1

1 // π1F2 // π1E // π1B2 // 1.

By assumption φ∗(π1F1) = π1F1 , so that (2.1.1) =⇒ (2.1.2) as claimed.
Conversely, suppose that π1F1 = π1F2 . Therefore the bundle structures p1 and p2

give rise to the same splitting

1→ π1F → π1E → π1B→ 1

on fundamental group. The monodromy for each bundle can be obtained from this
sequence via the map π1B→ Out(π1F) ≈ Mod(Σg). This shows that the monodromies
for the two bundle structures are conjugate, and so via the correspondence (1), there is
a bundle-isomorphism φ : E → E covering the identity on B. To see that φ∗(π1F1) =

π1F1 , consider the induced map on the long exact sequence in homotopy coming from
φ:

1 // π1F1 //

φ∗
��

π1E //

φ∗
��

π1B // 1

1 // π1F2 // π1E // π1B // 1.

This shows φ∗(π1F1) = π1F2 , and π1F1 = π1F2 by assumption.

Having established the equivalence of (2.1.1) and (2.1.2), it remains to show that if
deg(p1×p2) 6= 0, then p1 and p2 are distinct. We establish the contrapositive. Suppose
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that π1F1 = π1F2 . For i = 1, 2, we view π1Bi as the quotient π1Bi ≈ π1E/π1Fi . If
p1 × p2 is the bi-projection, then in this notation,

(p1 × p2)∗ : π1E → π1B1 × π1B2

is given by
(p1 × p2)∗(x) = (xπ1F1, xπ1F2) = ([x], [x]),

where [x] = x (mod π1F1) = x (mod π1F2). As π1F1 = π1F2 , the quotients π1B1

and π1B2 are isomorphic, and as they are K(G, 1)’s, there is a homotopy equivalence

f : B1 → B2.

Let g be the map
g = (f × id) ◦ (p1 × p2) : E → B2 × B2.

By the above,
Im(g) = ∆ = {(x, x) | x ∈ B2}.

Being non-surjective, g has degree 0. As p1 × p2 is the composition of g with a
homotopy equivalence, we conclude that also deg(p1 × p2) = 0.

In general the condition deg(p1 × p2) = 0 on a bi-projection does not imply that the
associated fiberings are equivalent. However, in the setting of the Johnson kernel, this
is indeed the case.

Proposition 2.2 Suppose E is the total space of a surface bundle over a surface in two
ways: p1 : E → B1 and p2 : E → B2 . Let F1,F2 denote fibers of p1, p2 respectively.
Suppose that ρ1 : π1B1 → Mod(F1) is contained in the Johnson kernel Kg . Then the
following are equivalent:

(1) The fiberings p1, p2 are not π1 -fiberwise diffeomorphic.

(2) The fiber subgroups π1F1, π1F2 ≤ π1E are distinct.

(3) deg(p1 × p2) 6= 0.

(4) E is diffeomorphic to B1 × B2 .

The additional assertions in Proposition 2.2 will be proved in the course of establishing
Theorem 1.1 (see Remark 7.6).
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3 Surface bundles over surfaces with unique fiberings

In this section, we prove Theorem 3.5. The additive structure of H∗E is central to
everything that follows in the paper, and so we begin with a review of the relevant results.
The following theorem was formulated and proved by Morita in [11] for the case of
field coefficients of characteristic not dividing χ(F); subsequently this was improved
to integral coefficients in the cohomological setting by Cavicchioli, Hegenbarth and
Repovš in [2].

Proposition 3.1 (Morita, Cavicchioli - Hegenbarth - Repovš) Let F be a closed
surface of genus g ≥ 2. The Serre spectral sequence (with twisted coefficients) of
any surface bundle F → E → B collapses at the E2 page. Consequently, there are
noncanonical isomorphisms for all k

Hk(E,Q) = Hk(B,Q)⊕ Hk−1(B,H1(F,Q))⊕ Hk−2(B,Q)

Hk(E,Z) = Hk(B,Z)⊕ Hk−1(B,H1(F,Z))⊕ Hk−2(B,Z)

The Hk−2B summand of HkE is canonical, and is realized by the Gysin map p! which
associates to a homology class x ∈ B the induced sub-bundle Ex sitting over x .
Similarly, the HkB summand is canonical via the pullback map p∗ : HkB→ HkE .
If F → E → B has monodromy in Ig , then the coefficient system is untwisted and
H∗(E,Z) ≈ H∗(B,Z) ⊗ H∗(F,Z) additively. In particular, H∗(E,Z) is torsion free,
and so by the universal coefficients theorem, there is also an isomorphism H∗(E,Z) ≈
H∗(B,Z)⊗ H∗(F,Z).

Because the surface bundles we will be considering in this paper have monodromy
lying in Ig , we will subsequently take all coefficients to be Z without further mention.
A remark which is obvious from Proposition 3.1 is that if ∗ generates H0(B), then
p!(∗) is a primitive class; we will use this fact later on. Here and throughout, we will
use the notation

[F] = p!(∗) ∈ H2(E)

to denote the (pushforward of the) fundamental class of the fiber.

The following result is a well-known application of the theory of the Gysin homomor-
phism, and we state it without proof.



Cup products, Johnson homomorphism, and surface bundles over surfaces 9

Proposition 3.2 Let p : E → B be a surface bundle with fiber F . If χ(F) 6= 0, then
there are injections

p∗ :H∗(B,Q)→ H∗(E,Q)

p! :Hk(B,Q)→ Hk+2(E,Q).

In the case where H∗(E,Z) is torsion-free, the same statements hold with Z coefficients.
In particular, this is true whenever E has monodromy lying in Ig , since in this case
H∗(E,Z) is isomorphic to H∗(F,Z) ⊗ H∗(B,Z) as an abelian group (see Proposition
3.1).

For surface bundles over surfaces with multiple fiberings, there is an extension of the
previous result.

Lemma 3.3 Let E be a 4-manifold with two distinct surface bundle structures p1 :
E → B1 and p2 : E → B2 . Then the intersection

p∗1(H1(B1,Q)) ∩ p∗2(H1(B2,Q)) = {0},

and so by Proposition 3.2, there is a canonical injection

p∗1 × p∗2 : H1(B1,Q))⊕ H1(B2,Q) ↪→ H1(E,Q).

Proof By the universal coefficients theorem, for any space X there is an identification

H1(X,Q) ≈ Hom(π1X,Q).

Under this identification, a character α ∈ Hom(π1Bi,Q) is pulled back to p∗i (α) ∈
Hom(π1E,Q) by precomposition with (pi)∗ . In particular, p∗i (α) vanishes on π1Fi =

ker(pi)∗ . Therefore, any character α ∈ p∗1(H1(B1,Q))∩ p∗2(H1(B2,Q)) must vanish on
the subgroup generated by (π1F1)(π1F2).
By Lemma 3.4 below, (π1F1)(π1F2) has finite index in π1E . For any group Γ, any
character α : Γ → Q vanishing on a finite-index subgroup must vanish identically,
proving the claim.

Lemma 3.4 Let E be a surface bundle over a surface with two distinct fiberings
pi : E → Bi ; let the fibers be denoted F1 and F2 , respectively. Then (π1F1)(π1F2) has
finite index in π1E .
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Proof Consider the cross-projection π1F1 → π1B2 . Let the image of π1F1 in π1B2

be denoted Γ. This is a finitely-generated normal subgroup of π1B2 . For any surface
group of genus g ≥ 2, any nontrivial finitely-generated normal subgroup has finite
index (see Property (D6) in [9]). If Γ is the trivial group, then π1F1 ≤ π1F2 ,
necessarily again of finite index. In this case, the image of π1F2 in π1B1 is therefore
finite, but π1B1 is torsion-free. We conclude that Γ ≤ π1B2 has finite index. The
kernel of the map π1E → (π1B2/Γ) is exactly (π1F1)(π1F2).

Recall that if ρ : G→ GL(V) is a representation, then the invariant space Vρ is defined
via

Vρ = {v ∈ V : ρ(g)(v) = v for all g ∈ G}.

The space of co-invariants Vρ of the representation is defined as

Vρ = V/W, where W = {v− ρ(g)(v)|v ∈ V, g ∈ G}.

Theorem 3.5 Let p : E → B be a surface bundle over a surface B of genus g ≥ 2
with monodromy representation ρ : π1B → Mod(Σg). Suppose that the space of
invariant cohomology (H1(F,Q))ρ (equivalently, the coinvariant homology of the fiber
(H1(F,Q))ρ ) vanishes. Then E admits a unique fibering.

Proof For any surface bundle p : E → B with monodromy ρ and any choice of
coefficients, there is a (noncanonical) splitting

H1(E) = p∗(H1(B))⊕ (H1(F))ρ.

(see Proposition 3.1). If (H1(F,Q))ρ = 0, then this reduces to

H1(E,Q) = p∗H1(B,Q).

If p2 : E → B2 is a second, distinct fibering, the above shows that p∗2(H1(B2,Q)) ≤
p∗H1(B,Q). However, this contradicts Lemma 3.3.

Remark 3.6 Recall that a surface bundle over S1 , viewed as the mapping torus M
of some diffeomorphism φ of a surface F , admits a unique fibering if and only if
b1(M) = 1. This is the case exactly when (H1(F,Q))φ = 0, so Theorem 3.5 is the
counterpart to this fact in dimension 4. Moreover, a random element φ ∈ Mod(Σg)
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satisfies (H1(F,Q))φ = 0 (see [14]). It easily follows that a generic monodromy rep-
resentation will also have (H1(F,Q))ρ = 0: “most” surface bundles over surfaces have
a single fibering. The proof of Theorem 3.5 is special to the case of surface bundles
over surfaces and it is not clear if Theorem 3.5 is true in greater generality.

4 Bi-projections

In this section we state and prove the key lemma from differential topology needed for
the proof of Theorem 1.1.

Proposition 4.1 Let E be a 4-manifold with surface bundle structures p1 : E → B1

and p2 : E → B2 . Let F1,F2 denote fibers of p1, p2 lying over a regular value of
p1 × p2 . If deg(p1 × p2 : E → B1 × B2) 6= 0, then the following five quantities are
equal:

(1) deg(p1 × p2 : E → B1 × B2)
(2) deg(p1|F2 : F2 → B1)
(3) deg(p2|F1 : F1 → B2)
(4) IE(F1,F2) (the algebraic intersection number)
(5) |F ∩ F2| (the cardinality of the intersection).

As (5) indicates, this quantity is always positive.

Proof As p1 and p2 are projection maps for fiber bundle structures on E , they are
everywhere regular, and ker(dp1)x is identified with the tangent space to the fiber of
p1 through x . Let z = (b1, b2) ∈ B1 × B2 be a regular value for p1 × p2 . It follows
from the assumption that deg(p1 × p2 : E → B1 × B2) 6= 0 that d(p1 × p2)x is an
isomorphism for all x ∈ (p1 × p2)−1(z) (and that this preimage is non-empty). The
kernel of d(p1 × p2)x is just the intersection of the kernels of d(p1)x and d(p2)x . It
follows that for all x ∈ (p1 × p2)−1(z),

(2) TxE ≈ TxF1 ⊕ TxF2.

Note that this shows that the fibers F1,F2 over b1, b2 respectively are transverse.
If orientations on E,B1,B2 are chosen properly, then this specifies an orientation on
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each fiber of p1 and p2 via the following decomposition, where Hx is any complement
to TxF1 = ker d(p1)x :

TxF1 ⊕ Hx ≈ TxE.

The orientation on Hx is specified by the isomorphism Hx ≈ Tp1(x)B1 . Of course an
analogous convention orients each fiber of p2 . In particular, it follows from (2) that at
any regular point for p1×p2 , we can take Hx = TxF2 , and that the restriction of d(p1)x

to TxF2 is an isomorphism.

Recall that if f : Xn → Yn is a smooth map of oriented closed n-manifolds, then

deg(f ) =
∑

x∈f−1(y)

ε(x),

where y is any regular value of f , and ε(x) = 1 if the orientation on TyY induced
by dfx agrees with the pre-chosen orientation on Y , and ε(x) = −1 otherwise. If
Y,Z are smoothly embedded and transversely intersecting oriented submanifolds of
the oriented manifold X such that dim(X) = dim(Y) + dim(Z), then the algebraic
intersection number of Y and Z is computed as

IX(Y,Z) =
∑

w∈Y∩Z

ε(w),

where ε(w) = 1 if the orientation on TwX given by TwY ⊕ TwZ agrees with the
pre-chosen orientation on X , and ε(w) = −1 otherwise.

It follows from the definitions that

(p1 × p2)−1(b1, b2) = p1|−1
F2

(b1) = p2|−1
F1

(b2) = F1 ∩ F2.

Therefore each of the sums computing (4.1.1) − (4.1.5) take place over the same set
of points. So it remains only to show that in each of the contexts (4.1.1)− (4.1.4), the
relevant orientation convention assigns a positive value.

The orientation number assigned to x ∈ (p1 × p2)−1(b1, b2) is given by the sign of the
determinant of the map

d(p1 × p2)x : TxE → Tb1B1 ⊕ Tb2B2.

By the above discussion, our orientation convention stipulates that

d(p1|F2)x : TxF2 → Tb1B1



Cup products, Johnson homomorphism, and surface bundles over surfaces 13

is an orientation-preserving isomorphism, and similarly for d(p2|F1). This proves the
equality of (4.1.2) and (4.1.3) with (4.1.5).
As

TxF1 = ker d(p1)x and TxF2 = ker d(p2)x

it follows that d(p1 × p2)x has a block-diagonal decomposition

d(p1 × p2)x = d(p1)x ⊕ d(p2)x : TxF1 ⊕ TxF2 → Tb2B2 ⊕ Tb1B1,

from which it follows that x also carries a positive orientation number in setting
(4.1.1). Finally, the orientation number for x as a point of intersection between F1

and F2 records whether the orientations of TxE and TxF1 ⊕ TxF2 agree, but we have
already seen that they necessarily do.

5 Cup products and the Johnson homomorphism

The goal of this section is to give a construction of embedded submanifolds in a surface
bundle over a surface E that will be explicit enough to compute the intersection form
on homology, or dually the cup product structure in cohomology. One of the original
definitions of the Johnson homomorphism was via the cup product structure in surface
bundles over S1 . In this section we turn this perspective on its head and explain how the
Johnson homomorphism computes the cup product structure in a surface bundle over
a surface (in fact, these methods extend to surface bundles over arbitrary manifolds).
The submanifolds we construct will be codimension-1 (i.e. 3-manifolds), and built so
that their intersection theory is explicitly connected to the Johnson homomorphism.

To this end, in Section 5.1 we give a discussion of the definition of the Johnson
homomorphism in the setting of the cup product in surface bundles over S1 . The
centerpiece of this is the construction of geometric representatives for classes in H1 ,
via embedded surfaces which we call “tube-and-cap surfaces”. Then in Section 5.2,
we return to the original problem of constructing representatives for classes in H1

of a surface bundle over a surface as embedded 3-manifolds. The construction is
carried out so that the intersection of particular pairs of these 3-manifolds is a tube-
and-cap surface, thereby realizing the link between cup products in surface bundles
over surfaces and the Johnson homomorphism.
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5.1 From the intersection form to the Johnson homomorphism, and back
again

In this subsection we will begin to dive into the theory of the Torelli group in earnest,
so we begin with a brief review of the relevant defintions. The Torelli group Ig is the
kernel of the symplectic representation Ψ : Mod(Σg)→ Sp2g(Z). The Johnson kernel
Kg is the subgroup of Ig generated by all Dehn twists Tγ about separating curves
γ . It is a deep theorem of D. Johnson that Kg can alternately be characterized as the
kernel of the Johnson homomorphism τ to be defined below.

Let φ ∈ Ig be a Torelli mapping class, and build the mapping torus Mφ = Σg ×
I/{(x, 1) ∼ (φ(x), 0)}. As φ ∈ Ig for any curve γ ⊂ Σg , the homology class
[γ]− φ∗[γ] is zero. Thus there exists a map of a surface i : S→ Σg which cobounds
γ ∪ φ(γ). Indeed, there exists an embedded surface S ≤ Σg × I whose boundary is
given by

∂S = γ × {1} ∪ φ(γ)× {0}.

To see this, recall that since S1 is a K(Z, 1), there is a correspondence

H1(Σg,Z) ≈ [Σg, S1].

Via Poincaré duality,

H1(Σg,Z) ≈ H1(Σg,Z).

The induced correspondence

H1(Σg,Z) ≈ [Σg, S1]

is realized by taking the preimage of a regular value, which will be an embedded
submanifold. Under this correspondence, homotopic maps f , g : Σg → S1 yield
homologous submanifolds, and conversely. Therefore, the maps f , g : Σg → S1 which
determine γ, φ(γ) are homotopic. This gives the desired map F : Σg × I → S1 such
that the preimage of a regular value is an embedded surface S cobounding γ and φ(γ).

In fact, the choice of S is not unique. Let i′ : S′ → Mφ be any map of a closed surface
to Mφ . Then the chain S + S′ satisfies ∂(S + S′) = ∂S = γ − φ(γ). Nonetheless,
given any S satisfying ∂(S) = γ − φ(γ), we can form a closed submanifold of Mφ in
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Figure 1: A tube surface

the following way. We begin with a tube, diffeomorphic to S1 × I , embedded into Mφ

as φ(γ) × [0, 1/3] ∪ γ × [2/3, 1]. We may then glue in S to Σg × [1/3, 2/3]. The
result is a smoothly-embedded oriented submanifold Σγ ⊂ Mφ , which will descend to
a homology class Σz (here z = [γ]). See Figure 1.

For convenience, we introduce the following terminology for these surfaces, which
we will refer to as tube surfaces. The tube of a tube surface is the cylinder S1 × I =

φ(γ)× [0, 1/3] ∪ γ × [2/3, 1], and the cap is the subsurface S .

We assign an orientation to Σγ as follows. The tangent space to a point x contained in
the tube has a direct sum decomposition via

(3) TxΣγ = V ⊕ Txγ,

where V is any preimage of Tπ(x)S1 and Txγ is interpreted as the tangent space to
the copy of γ sitting in the fiber containing x . Both of the summands in (3) have
orientations induced from those on S1 and γ respectively, and this endows TxΣ with
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an orientation. This can then be extended over the cap surface in a coherent way, since
S was chosen to be a boundary for [γ]− [φ(γ)] with Z coefficients.

Recall however that the choice of S was not unique. Any closed surface mapping
into Σg is homologous to some multiple of the fundamental class, and so the above
procedure really defines a homomorphism H1(Σg) → H2(Mφ)/[F], where [F] is the
fundamental class of the fiber. If the bundle has a section σ : S1 → Mφ , then we can
choose S so that Imσ and Σz have zero algebraic intersection, which gives a canonical
lift H1(Σg) → H2(Mφ). In the absence of such auxiliary data, we instead just choose
an arbitrary lift, and we will account for the consequences later.
Having chosen an embedding i : H1(Σg) ↪→ H2(Mφ) such that z 7→ Σz , there is an
associated direct sum decomposition of H2(Mφ), namely

H2(Mφ) = 〈[F]〉 ⊕ Im i.

Relative to such an embedding, we form the map τ (φ) ∈ Hom(∧3H1(Σg),Z) by

τ (φ)(x ∧ y ∧ z) = Σx · Σy · Σz,

the term on the right being interpreted as the triple algebraic intersection of the given
homology classes. Suppose a section exists, and that the Σx have been constructed
accordingly. In this case, D. Johnson showed that the map

τ : Ig,∗ → Hom(∧3H1(Σg),Z)

φ 7→ τ (φ)

is a surjective homomorphism. See [3, Chapter 6] for a summary of the Johnson
homomorphism, including two alternative definitions. The (pointed) Johnson kernel
Kg,∗ is defined analogously to the case of closed surfaces, as the subgroup of Mod(Σg,∗)
generated by Dehn twists about separating simple closed curves. As in the closed case,
D. Johnson established that Kg,∗ coincides with the kernel of τ . In our context this
exactly means that all triple intersections between the various Σx vanish.

Having fixed a family of Σx , it is then easy to compute the entire intersection form on
∧3H2(Mφ). Certainly [F]2 = 0. It is also fairly easy to see that

[F] · Σx · Σy = i(x, y),

where i(x, y) denotes the algebraic intersection pairing in H1(Σg). Indeed, by picking
the choice of fiber to intersect Σx on the tube, it is clear that the result is simply the
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curve x , so that [F] · Σx · Σy computes the intersection of x, y on F , at least up to
a sign that may be introduced by the (non)compatibilities of the various orientation
conventions in play. A quick check reveals this sign to be positive.
We will now be able to account for the ambiguity introduced by our choice of embedding
i : H1(Σg) ↪→ H2(Mφ), which will in turn lead to the definition of the Johnson
homomorphism on the closed Torelli group Ig . Suppose that Σ′w = Σw + kw[F] is
some other set of choices which is coherent in the sense that Σ′w + Σ′z = Σ′w+z (i.e.
x 7→ kx ∈ H1(Σg)). By linearity,

Σ′x · Σ′y · Σ′z = Σx · Σy · Σz + kxi(y, z) + kyi(z, x) + kzi(x, y)

= τ (φ)(x ∧ y ∧ z) + kxi(y, z) + kyi(z, x) + kzi(x, y)

= τ (φ)(x ∧ y ∧ z) + C∗(k);

here C : ∧3H1(Σg) → H1(Σg) is the contraction with the symplectic form i(·, ·), and
k ∈ Hom(H1(Σg),Z) is the form such that k(w) = kw . The upshot of this calculation
is that τ (φ) is well-defined as an element of Hom(∧3H1(Σg),Z)/ Im C∗ , which can be
identified with the more familiar space ∧3H/H (here we adopt the usual convention
that H = H1(Σg)). The Johnson homomorphism on the closed Torelli group is then
defined via

τ : Ig → Hom(∧3H1(Σg),Z)/ Im C∗ ≈ ∧3H/H

φ 7→ τ (φ).

As mentioned above, work of D. Johnson shows that the kernel of τ coincides with the
previously-defined subgroup

Kg = 〈Tγ | γ separating scc〉.

Remark 5.1 The construction given above with the tube-cap surfaces is a concrete
realization of the isomorphism H1(Σg) ≈ H2(Mφ)/[F] coming from the Serre spectral
sequence for p : Mφ → S1 . In fact, this same construction will work for an arbitrary
φ ∈ Mod(Σg), yielding an isomorphism (H1(Σg))φ ≈ H2(Mφ)/[F], but we do not
pursue this here.

The above discussion shows how to construct the Johnson homomorphism in terms
of the intersection form on Mφ . Conversely, we will show next how to reconstruct
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the intersection form on Mφ from the data of the Johnson homomorphism τ (φ) ∈
∧3H/H ≈ Hom(∧3HΣg,Z)/ Im C∗ . Begin by selecting an arbitrary lift τ̃ (φ) of τ (φ)
(of course, the presence of a section gives a canonical such choice). Next, construct
a coherent family of homology classes Σ′x by making choices arbitrarily. Define
τ ′(φ) ∈ Hom(∧3H,Z) by

τ ′(φ)(x ∧ y ∧ z) = Σ′x · Σ′y · Σ′z.

There is no reason to suspect that τ ′(φ) = τ̃ (φ). However, as we saw above, we do
know that τ ′(φ) − τ̃ (φ) ∈ Im C∗ , and so there is some functional α ∈ H1(Σg) such
that τ ′(φ) − τ̃ (φ) = C∗(α). This functional α will allow us to choose the correct set
of Σx so that the triple intersections are computed by our choice of τ̃ (φ).

Lemma 5.2 We assume the notation of the above setting. By taking

Σx = Σ′x − α(x)[F],

there is an equality for all x, y, z:

Σx · Σy · Σz = τ̃ (φ)(x ∧ y ∧ z).

Proof Compute:

Σx · Σy · Σz = Σ′x · Σ′y · Σ′z − α(x)i(y, z)− α(y)i(z, x)− α(z)i(x, y)

= τ ′(φ)(x ∧ y ∧ z)− C∗(α)(x ∧ y ∧ z)

= τ̃ (φ).

5.2 Intersections in surface bundles over surfaces, and beyond

The methods of the previous subsection can be adapted to give a description of certain
cup products in H1(E), where p : En+2 → Bn has monodromy lying in Ig . The idea
will be to define an embedding, as before,

i : H1(Σg) ↪→ Hn+1(E),

by constructing submanifolds Mγ for curves γ ⊂ Σg by means of a higher-dimensional
“tubing construction”. Then the triple intersections of collections of Mx will be partially
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computable via the Johnson homomorphism in a certain sense to be described below. In
this subsection we will first briefly sketch the properties we require of the submanifolds
Mγ , then we will give the construction. Then in Section 5.3, we will determine much
of the intersection pairing in H∗(E,Z).
Our construction will provide, for each simple closed curve γ ⊂ F , a submanifold
Mγ , such that if [γ] = [γ′], then also [Mγ] = [Mγ′]. If [γ] = x , we write Mx in
place of [Mγ]. Let p : E → B be a surface bundle with monodromy in Ig , and let
ρ : π1B → Ig be the monodromy. By post-composing with τ : Ig → ∧3H/H , we
obtain a map from π1B to an abelian group, and so τ ◦ ρ factors through H1(B). By
an abuse of notation we will write τ (b) for b ∈ H1(B).
This map computes (most of) the intersection form in H∗(E). Recall the notation from
Proposition 3.1: given a curve α ⊂ B, there is an induced bundle Eα over α , which
determines a homology class Ea . A given Mγ can be intersected with Eα to yield a
surface Σα,γ inside Eα . Our construction will be set up so that

Mx ·My ·Mz · Eb = τ (b)(x ∧ y ∧ z),

possibly up to a sign. This is the sense in which Mx ·My ·Mz is partially computable.
As a remark, the intersections Mx ·My ·Mz · X for arbitrary X ∈ H3E will all involve
intersections with further Mw , and are describable (at least in the case of bundles with
section) in terms of the higher Johnson invariants

τ : Hi(Ig,∗)→ ∧i+2H,

but we will not pursue this point of view further in this paper.

The construction. As usual, let π : E → B be a surface bundle over a surface
with monodromy ρ : π1B → Ig . We turn now to the question of constructing
suitable homology classes Mx ∈ H3(E), for x ∈ H1(Σg). The construction will be a
higher-dimensional analogue of the construction of tube-and-cap surfaces given in the
previous subsection. The reader may find it helpful to consult Figure 2 as they read
this subsection.

When the base space B has dimension 2, a new layer of complexity is introduced by
the potential absence of sections σ : B → E , and this will require some additional
preparatory work in order to construct geometric representatives for homology classes.
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Our construction method proceeds by exploiting the fact that it is always possible to
find sections defined on B′ := B \ D2 . We define E′ := π−1(B′), and refer to a section
σ : B′ → E′ as a partial section of the bundle E . We say that two sections σ0, σ1 of a
fiber bundle are homotopic through sections if there exists a homotopy σt between σ0

and σ1 such that σt is a section for each fixed t .

Lemma 5.3 Let π : E → Σh be a surface bundle over a surface with monodromy
ρ : π1Σh → Mod(Σg). Let E′ = π−1(Σh \ D2), and note that π restricts to give E′

the structure of a Σg -bundle over Σh \ D2 . Then there is a one-one correspondence
between the set of classes of partial sections σ : Σh \ D2 → E′ up to homotopy
through sections, and homomorphisms ρ̃ : F2h → Mod(Σg,∗) making the diagram
below commute:

1 // K //

ρ̃

��

F2h //

ρ̃

��

π1Σh //

ρ

��

1

1 // π1Σg // Mod(Σg,∗) // Mod(Σg) // 1.

Proof This follows immediately from the well-known fact that there is a homotopy
equivalence

K(Mod(Σg,∗), 1) ' B(Diff(Σg, ∗)),

the latter space being the classifying space of Σg -bundles with section.

The kernel K C F2h is normally generated by a single element ω , represented geo-
metrically by the boundary of Σh \ D2 . The element ρ̃(ω) ∈ π1Σg associated to a
section σ will be denoted by ωσ . It is called the index curve. The following lemma is
immediate from the definitions.

Lemma 5.4 Assume the notation of Lemma 5.3. Let σ be a partial section of E , and
let ωσ ∈ π1Σg be the corresponding index curve. Then there exists a local trivialization
of E

t : π−1(D2)→ D2 × Σg

relative to which σ(∂D2) is in the free homotopy class of ωσ .

The next lemma will be used in the course of the construction in Proposition 5.6.
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Lemma 5.5 Let S ⊂ Σg × S1 be an embedded closed oriented subsurface. Suppose
γ : S1 → Σg × S1 is a section of the projection Σg × S1 → S1 , and that p∗[γ] = 0 ∈
H1(Σg,Z) (where p : Σg × S1 → Σg is the obvious projection). Let i : Σg × S1 →
Σg × D2 be the natural inclusion. If the algebraic intersection number [γ] · [S] = 0
(computed in Σg × S1 ), then there exists an oriented, properly-embedded 3-manifold
M ⊂ Σg × D2 , such that ∂M = S .

Proof The first step is to establish that i∗[S] = 0 in H2(Σg × D2). The Künneth
formula establishes natural splittings

H1(Σg × S1) ≈ H1(Σg)⊕ H1(S1)

H2(Σg × S1) ≈ H2(Σg)⊕
(
H1(Σg)⊗ H1(S1)

)
.

In these coordinates, the map i∗ : H2(Σg × S1) → H2(Σg × D2) ≈ H2(Σg) is given
simply by projection onto the H2(Σg) factor. The assumptions on γ imply that [γ]
generates H1(S1) ≤ H1(Σg×S1). Under the intersection pairing, H1(S1) is orthogonal
to H1(Σg) ⊗ H1(S1). From the assumption [γ] · [S] = 0, it then follows easily that
i∗[S] = 0. Consequently, there exists a 3-chain Cp in Σg × D2 with ∂Cp = S .

It remains to explain why Cp can be replaced with a smooth, oriented, properly-
embedded 3-manifold. This will follow from general results on representing (relative)
codimension-one homology classes by smooth submanifolds (with boundary). The
argument proceeds along very similar lines to the construction of embedded cap surfaces
in fibered 3-manifolds described above. For an oriented manifold X with boundary,
Lefschetz duality gives an isomorphism

Hn−1(X, ∂X,Z) ≈ H1(X,Z) ≈ [X, S1]

In our setting, the surface S ⊂ Σg × S1 is represented by a map

f : Σg × S1 → S1,

such that S = f−1(∗) for some regular value ∗ ∈ S1 . Similarly, the (relative) homology
class of Cp in H3(Σg × D2,Σg × S1,Z) corresponds to a map

F : Σg × D2 → S1.

Moreover, as ∂Cp = S , they represent the same homology class in H2(Σg × S1,Z).
This means that the maps f and F |Σg×S1 are homotopic. We can therefore concatenate
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this homotopy with F , to obtain a map

F̃ : Σg × D2 → S1.

On the boundary, F̃ = f , and is therefore transverse to ∗ ⊂ S1 . In order to replace Cp

by a smooth submanifold such that ∂Cp = C , we must therefore perturb F̃ away from
a neighborhood of ∂(Σg × D2) and make the result everywhere transverse to ∗ ⊂ S1 .
The Extension Theorem (see [4, p. 72]) asserts that we can do precisely this.

The theory of index curves established above will allow us to construct embedded
representatives of homology classes in surface bundles over surfaces, when suitable
conditions on the monodromy are satisfied.

Proposition 5.6 Let π : E → B be a surface bundle over a surface with monodromy
ρ : π1B → Ig contained in the Torelli group. Suppose there is a partial section
σ : B′ → E′ for which the associated index curve ωσ lies in the commutator subgroup
[π1Σg, π1Σg]. Then there is an embedding

ι : H1(F,Z)→ H3(E,Z)

constructed so that if c ∈ H1(F,Z) is a primitive class, then ι(c) can be represented by
some embedded, oriented, piecewise-smooth 3-submanifold Mc of E .

Proof Let c ∈ H1(F,Z) be given. By assumption, c is primitive, so that there exists a
simple closed curve γ ⊂ Σg with [γ] = c. We will use this to construct a 3-manifold
Mγ .

Consider a cell decomposition

B = B0 ⊂ B1 ⊂ B2

of B, where B0 consists of the single point p, there are 2g one-cells {a1, b1, . . . , ah, bh},
and a single two-cell D. For each one-cell e, there is an associated element of the
monodromy, ρ(e), such that the effect of transporting a curve γ across e (from the
negative to the positive side, relative to orientations of B and e) sends the isotopy class
of γ to ρ(e)γ . For a one-cell e, let N(e) ≈ e × I be a (closed) regular neighborhood
in B. We also let N(p) be a small closed neighborhood of p. If necessary, shrink the
N(e) so that

N := N(a1) ∪ · · · ∪ N(bh) \ N(p)
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is a union of 2h disjoint rectangles.
Let γ ⊂ F be a simple closed curve on a fiber F over a point in

D′ := D \ (N(p) ∪ N(a1) ∪ · · · ∪ N(bh)).

By construction, D′ is nothing more than a closed disk (in the upper-left portion of
Figure 2, D′ is the closure of the complement of the shaded regions). The submanifold
Mγ will be constructed in three stages, denoted Mi

γ for i = 1, 2, 3: first over D′ , then
over N , and finally over N(p). Choose a trivialization π−1(D′) ≈ D′ × F , and define
M1
γ = γ × D′ relative to this trivialization. Then ∂(M1

γ) ⊂ π−1(∂D′). We specify
an orientation on M1

γ as follows: a point x ∈ M1
γ has a decomposition of the tangent

space via

(4) TxM1
γ ≈ Tπ(x)B⊕ Txγ.

Both of these two summands carry pre-existing orientations, and M1
γ is then oriented

by specifying the above isomorphism to be orientation-preserving. By analogy with
the construction of tube surfaces, we refer to M1

γ as the tube region of Mγ .

Next we construct M2
γ . Let e be a one-cell, and consider the intersection M1

γ ∩
π−1(N(e) ∩ N). The base space N(e) ∩ N is just a rectangle, and so the bundle
π−1(N(e) ∩ N) is trivializable. We can therefore find a diffeomorphism

ψ : π−1(N(e) ∩ N) ≈ I × I × Σg

under which M1
γ ∩ π−1(N(e) ∩ N) is identified with(

I × {0} × γ
)
∪
(
I × {1} × γ′

)
,

where γ′ is some curve in the isotopy class of ρ(e)(γ). As we saw in the previous
subsection, for each e there exists a family of properly-embedded surfaces Se in I×Σg

such that ∂Se = {0} × γ ∪ {1} × γ′ .

Our choice of Se will be dictated by the section σ . Applying ψ , the image of σ in
{t}×I×Σg is a properly-embedded arc ασ . This determines a preferred homology class
in H2(I×Σg, ∂(I×Σg),Z) among the set of possible Se , by the relation [ασ] ·[Se] = 0.

Let Se be any properly-embedded subsurface of I × Σg satisfying the conditions
∂Se = {0}× γ ∪{1}× γ′ and [ασ] · [Se] = 0. We can then fill in π−1(N(e)∩N) with
I× Se for each e, creating M2

γ . As in the case of a tube surface, the orientation for M1
γ
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can be extended over each of these pieces coherently. We refer to M2
γ \M1

γ as the cap
region of Mγ .

It therefore remains to construct M3
γ = Mγ . By construction, ∂M2

γ ⊂ π−1(∂N(p)).
We would like to be able to fill this boundary in by inserting a “plug” contained in
π−1(N(p)). A priori, there is a homological obstruction to this: if [∂M2

γ] 6= 0 in
H2(π−1(N(p))) then this problem is not solvable even on the chain level.

However, the assumption that the index curve ωσ ∈ [π1Σg, π1Σg] will imply that
this obstruction vanishes. Let t : π−1(N(p)) → D2 × Σg be the trivialization of
Lemma 5.4, and define γ = t(σ(∂(N(p)))). Set S = t(∂(M2

γ)). By Lemma 5.4,
[γ] = 0 ∈ H1(π−1(N(p))) ≈ H1(Σg). We wish to show that [γ] · [S] = 0. By
construction, ∂(M2

γ) consists of 4g subsurfaces, corresponding to the 2g surfaces
Sa1 , . . . , Sbg , each appearing twice (one for each component of N(e)∩N(p)). Similarly,
γ is comprised of 4g segments, again indexed by the components of N(e) ∩ N(p). On
each one of these components, the relevant Se was selected to have zero algebraic
intersection with the relevant portion of γ , and so the same holds true globally:
[γ] · [S] = 0.

Applying Lemma 5.5, we obtain a 3-manifold Mp ⊂ N(p) × Σg , such that ∂Mp =

t(∂(M2
γ)). Extending the orientation of M2

γ over Mp , the result is an oriented, piecewise-
smooth submanifold Mγ ⊂ E .

While in general, not every surface bundle over a surface satisfies the hypotheses of
Proposition 5.6 (specifically, the requirement that there exist a partial section with
[ωσ] = 0 ∈ H1(Σg,Z)), it turns out that this is always the case for surface bundles over
surfaces with monodromy in Kg .

Lemma 5.7 Let ρ : π1Σh → Kg be given. Then for any lift ρ̃ : F2h → Kg,∗ of ρ, the
index curve satisfies ωσ ∈ [π1Σg, π1Σg].

Proof When restricted to Kg , the Birman exact sequence takes the form

1→ [π1Σg, π1Σg]→ Kg,∗ → Kg → 1.

The result follows.
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Figure 2: Upper left: The neighborhoods N(e) and N(p). Upper right: M1
γ intersected with

four different fibers. Lower left: Cap surfaces, lying over different portions of N . Lower right:
A depiction of M2

γ ∩ π−1(∂N).
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An essential feature of the above construction is the relationship between an Mγ and a
sub-bundle Eα lying over a curve α ⊂ B. Suppose α is chosen so that relative to the
cell decomposition of B used in constructing Mγ , α is transverse to all the one-cells
e, and does not pass through N(p). Then a little visual imagination reveals that the
intersection of Mγ and Eα is given by a tube surface for γ sitting inside Eα . We call
the resulting surface Σα,γ , and then [Σα,γ] is denoted by Σa,x , where [α] = a and
[γ] = x .

We define a family of Mx to be a set of Mx for each x ∈ H1(F) such that for all c ∈ Z
and x, y ∈ H1(F),

Mcx+y = cMx + My.

Different choices of Mx lead to different spaces of Σb,x , but conversely, a choice of a
family of Mx leads to a corresponding distinguished summand of H2(E).

5.3 Determination of the intersection form

From this point onwards, we assume without further comment that our surface bundle
over a surface π : E → B satisfy the hypotheses of Proposition 5.6 (as a special
case, these results apply to all surface bundles over surfaces with monodromy in Kg ,
by Lemma 5.7). The purpose of this subsection is to give a description of the cup
product structure on H∗(E,Z); equivalently, we will describe the intersection form.
By Poincaré duality, it suffices to determine, for each X , the set of pairings X · Y .

Proposition 5.8 Let iB and iF denote the algebraic intersection pairing on the
homology of the base and on the fiber, respectively.

(1) There exists a unique class C ∈ H2(E) such that C ·Σb,z = 0 for all b ∈ H1(B),
z ∈ H1(Σg), and C · [F] = 1. The intersection pairing H2(E) ⊗ H2(E) → Z is
given as follows, where e = C2 by definition.

C [F] Σa,z

C e 1 0

[F] 1 0 0

Σb,w 0 0 −iB(a, b)iF(z,w)
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In the case where the monodromy is contained in the Johnson kernel, we have e
= 0.

(2) For any family of Mx , we have

Ea · Eb = iB(a, b)[F]

Mx · Eb = Σb,x

Mz ·Mw · [F] = iF(z,w).

(3) Let σ : B′ → E′ be a partial section for which [ωσ] = 0 ∈ H1(F). Associated
to such a section is a lift of τ : H1(B) → ∧3H/H to τ̃ : H1(B) → ∧3H . The
choice of σ gives rise to a splitting

H3(E) = π!(H1(B))⊕ H1(M) = {Eb, b ∈ H1(B)} ⊕ {Mz, z ∈ H1(F)}

relative to which

Mx ·My ·Mz · Eb = Mx ·My · Σb,z = τ̃ (b)(x ∧ y ∧ z).

In the case where the monodromy is contained in the Johnson kernel, we can
take the canonical lift τ̃ ≡ 0, and for this family of Mx we have

C ·Mx = 0

C2 = 0

for all x ∈ H1(Σg).

Remark. The intersection pairing Hn−kE⊗HkE → Z identifies Hn−kE with Hom(HkE,Z)
and hence with HkE by the universal coefficients theorem, since the homology of a
surface bundle over a surface with monodromy in Ig is torsion-free (see Proposition
3.1). Therefore, Proposition 5.8 can also be viewed as a description of the cup product
in H∗(E).

Proof Before beginning with the proof of the statements, a comment on orientations
is in order. Recall that if X,Y are embedded surfaces intersecting transversely, then
X ∩ Y is oriented via the convention that

N(X)⊕ N(Y)⊕ T(X ∩ Y)
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should be positively oriented, where, for W = X or W = Y , N(W) is oriented by the
convention that N(W) ⊕ T(W) be positively oriented with respect to the orientation
fixed on W . Note that relative to this convention, if X is of odd codimension, then
X · X = 0; we will often employ this fact without comment in the sequel.
Recall that the submanifolds Σx ⊂ Mφ and Mz ⊂ E have been oriented using a “base-
first” convention; see (3) and (4). As remarked already in the proof of Proposition 4.1,
E itself is oriented by selecting orientations for B and F . It is a somewhat tedious
process to go through and verify the signs on all of the intersections being asserted in
this theorem, and we omit the full verification of these results. At the same time, the
reader who is interested in verifying the calculations should have no trouble doing so
by carefully tracking the orientation conventions we have laid out.

It will turn out to be most natural to construct C after verifying the other statements not
involving C . We begin with computing Σa,z ·Σb,w . These are represented by surfaces
contained in some Eα,Eβ respectively, where they are tube surfaces constructed from
curves γ, δ . We can arrange it so that α, β intersect transversely, and such that over
these points, the surfaces intersect in their tube regions. Following the orientation
conventions as above, one verifies that the local intersection at such a point (p, q),
written I(p,q) is equal to −IpIq , where Ip denotes the local intersection of α, β relative
to the orientation on B, and Iq is the local intersection of γ, δ relative to the orientation
on F . Summing over all local intersections gives the result in the lower-right hand
corner of the table in Proposition 5.8.1.
The relation [F] · Σa,z = 0 is easy to verify, by taking [F] to be represented by a fiber
not contained in the Eα containing Σa,z . This same idea also shows [F]2 = 0, by
picking representative fibers over distinct points.

Let us turn now to Proposition 5.8.2. If Eα,Eβ intersect transversely at a point,
then Eα ∩ Eβ = F , the fiber over the point of intersection; a check of the orientation
conventions shows that the orientation on F given by the intersection convention agrees
with the predetermined orientation, so that

Ea · Eb = iB(a, b)[F]

as asserted.
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The manifolds Mγ were constructed so as to intersect each Eb in a tube surface, and
so the relation

Mz · Eb = Σb,z

can be taken as a definition of the orientation on Σb,z . We choose this over the
alternative because it can be verified that under this convention, the orientation on Σb,z

agrees with the “base first” convention discussed above.
Now let Mx,My be given, and consider Mx ·My · [F]. By perturbing the one-skeleton
of B, it can be arranged so that the plugs for Mx and My are disjoint and so that the
cap regions intersect transversely, and so that the representative fiber intersects Mx,My

in their tube regions. The local picture therefore becomes the intersection of x and y
on F . A check of the orientation convention then shows

Mx ·My · [F] = iF(x, y).

Turning to Proposition 5.8.3, consider now a four-fold intersection

Mx ·My ·Mz · [Eβ].

We will assume without further comment that the intersection of representative sub-
manifolds has been made suitably transverse by choosing one-skeleta wisely. The Mw

were constructed so that the problem of computing Mx ·My ·Mz · [Eβ] is exactly the
same as the problem of computing the corresponding Σx ·Σy ·Σz inside the 3-manifold
Eβ , up to a sign which records whether the orientation on Mx · [Eβ] agrees with the
orientation on the corresponding Σx ⊂ Eβ ; the convention Mx · Eb = Σx,b makes
this sign positive. Lemma 5.2 shows that within Eb , there exist choices of homology
classes Σx such that

Σx · Σy · Σz = τ̃ (b)(x ∧ y ∧ z).

Recall from Lemma 5.2 that the Σx ’s are obtained by starting with an arbitrary family
Σ′x , and adding appropriate multiples of [F]. By the preceding, if a ∈ B satisfies
iB(a, b) = 1, then

(Mz + Ea) · Eb = Mz · Eb + [F].

This shows that by adding appropriate multiples of Ea to Mz (as specified by the
formulas in Lemma 5.2), for a given b, the formula

(5) Mx ·My ·Mz · [Eβ] = τ̃ (b)(x ∧ y ∧ z)
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can be made to hold. By choosing a symplectic basis for H1(B), this can be made to
hold for all b ∈ H1(B) simultaneously.

It therefore remains to construct the class C . If x, y ∈ H1(Σg) satisfy iF(x, y) = 1, then
[F] ·Mx ·My = 1. Similarly, if α, β are loops in B intersecting transversely exactly
once, and Mx , My are as above, then

(6) Σα,x · Σβ,y = Σα,x ·Mx · Eβ = ±1.

As the space spanned by [F] and the Σb,x classes has codimension one in H2(E), (5)
and (6) together show that the space of classes in H2(E) pairing trivially with the space
of Mx has dimension at most one. We claim that

C = Mx1 ·My1 +
∑

(b,z)∈B×F
τ̃ (b)(x1 ∧ y1 ∧ z)Σb̂ẑ

has all the required properties; here B,F are symplectic bases for H1(B),H1(F),
respectively, the map x 7→ x̂ satisfies i(x, x̂) = 1, x1 ∈ B , and x̂1 = y1 . Recall that
C is asserted to have the following properties: C · [F] = 1 and C · Σb,z = 0 for all
b ∈ H1(B), z ∈ H1(Σg). Additionally, when the monodromy of E is contained in the
Johnson kernel, we require C2 = 0 and C ·Mx = 0 for Mx in the family associated to
the lift of τ to the zero homomorphism. The proof is a direct calculation. For C · [F],
one has by Proposition 5.8.1 and then Proposition 5.8.2

C · [F] =

Mx1 ·My1 +
∑

(b,z)∈B×F
τ̃ (b)(x1 ∧ y1z)Σb̂ẑ

 · [F]

= Mx1 ·My1 · [F]

= 1.

Computation of C · Σb,z proceeds by Proposition 5.8.3 and Proposition 5.8.1 respec-
tively.

C · Σb,z = Mx1 ·My1 · Σb,z + τ̃ (b)(x1 ∧ y1 ∧ z)(Σb̂ẑ) · Σb,z

= τ̃ (b)(x1 ∧ y1 ∧ z)− τ̃ (b)(x1 ∧ y1 ∧ z)

= 0.
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When the monodromy of E is contained in Kg , the above formula for C simplifies to
C = Mx1 ·My1 , from which it is apparent that C2 = 0. To see that C ·Mx = 0 for all
x , we will apply Poincaré duality to see that it suffices to show that

C ·Mx · Y = 0

for all classes Y ∈ H3E . Since Mx · Eb = Σbx and we have shown C · Σbx = 0, it
remains only to consider C · Mz · Mw . Expanding Mz · Mw in the additive basis for
H2(E),

Mz ·Mw = α[F] + βC +
∑

(b,z)∈B×F
γb,zΣb̂,ẑ.

As the monodromy of E is contained in Kg , we have Mz ·Mw ·Σb,x = 0; applying this
in coordinates for some (b, x) ∈ B × F gives, by applying the prior formulas,

0 =

α[F] + βC +
∑

(b,z)∈B×F
γb,zΣb̂,ẑ

 · Σb,x

= −γb,x,

so that all γb,z = 0. Consequently, Mz·Mw = α[F]+βC . Recalling that [F]2 = C2 = 0
and that (Mz ·Mw)2 = 0, this implies αβ = 0.

Also,
iF(z,w) = Mz ·Mw · [F] = β.

Therefore, we conclude that in the case iF(z,w) 6= 0,

Mz ·Mw = iF(z,w)C.

As C2 = 0 this shows the result in this case. Now suppose that iF(z,w) = 0. Then we
can find z′ such that Mz ·Mz′ = cC by above, with c 6= 0, and then

0 = Mz ·Mw ·Mz ·Mz′ = cMz ·Mw · C.

This shows that Mz ·Mw ·C = 0 for all z,w, finishing the proof of Proposition 5.8.

6 Multisections and splittings on rational cohomology

Let p : E → B be a surface bundle over an arbitrary base space B equipped with a
section σ : B → E . Then there is an associated splitting of H1(E,Z) as a direct sum,
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via

(7) H1(E,Z) = Im p∗ ⊕ kerσ∗.

The condition that p : E → B admit a section is restrictive. However, recent work
of Hamenstädt shows that all surface bundles over surfaces with zero signature admit
multisections (see Theorem 6.2). In this section, we develop some necessary machinery
showing how a multisection of a surface bundle gives rise to a splitting of H1(E,Q),
similarly to (7). The results of this section will be required in the proof of Theorem
1.1.

Remark 6.1 Theorem 6.2 is the only result in this section that requires the base space
B to be a surface of genus g ≥ 2. Lemma 6.3 and Proposition 6.4 are valid for any
base space B.

Let Confn(E) denote the configuration space of n unordered distinct points in E , and
let PConfn(E) denote the space of n ordered distinct points in E . The symmetric group
on n letters Sn acts freely on PConfn(E) by permuting the order of the points, and
PConfn(E)/Sn = Confn(E).

By a multisection of p : E → B, we mean a map

σ : B→ Confn(E)

for some n ≥ 1, such that the composition

B→ Confn(E)→ Bn/Sn

is given by x 7→ [x, . . . , x]. In other words, a multisection selects n distinct unordered
points in each fiber. A pure multisection is a map

σ : B→ PConfn(E)

such that the composition
B→ PConfn(E)→ Bn

is given by x 7→ (x, . . . , x). Our interest in multisections is due to the following result
of Hamenstädt (see [5], [6]):

Theorem 6.2 (Hamenstädt) Let p : E → B be a surface bundle over a surface such
that the signature of E is zero (e.g. a bundle with at least one fibering with monodromy
lying in Ig ). Then p : E → B has a multisection σ of cardinality 2g− 2.
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We will use this result to obtain a splitting on H∗(E,Q). As (7) indicates, this is
straightforward when the multisection is pure; the work will be to obtain the required
maps for general multisections. First note that by taking a finite cover B̃ → B, we
can pull the bundle back to p̃ : Ẽ → B̃, such that the multisection pulls back to a pure
multisection:

ψ : B̃→ PConfn(Ẽ).

Moreover, we can assume that the covering B̃→ B is normal, with deck group Γ. By
pulling back the Γ action on B̃, we see that Γ also acts on Ẽ , by sending the fiber
over b to the fiber over γ(b). Then the multisection ψ is in fact Γ-equivariant. This
suggests the following lemma.

Lemma 6.3 Let σ̃ : B̃→ Ẽ be a Γ-equivariant section. Then there is an induced map
on Γ-invariant cohomology:

σ̃∗ : H∗(Ẽ,Q)Γ → H∗(B̃,Q)Γ.

As a result, the transfer map

τ∗ : H∗(B̃,Q)→ H∗(B,Q)

is injective when restricted to σ̃∗(H∗(Ẽ,Q)Γ).

Proof If f : X → Y is any Γ-equivariant map of topological spaces, then f ∗ :
H∗(Y) → H∗(X) will be equivariant, and so will restrict to a map on the Γ-invariant
subspaces. Transfer (see [7]) gives an identification H∗(B̃,Q)Γ ≈ H∗(B,Q), and the
remaining statement follows.

We now come to the main result of the section. This asserts that when p : E → B
is a surface bundle with a multisection σ : B → Confn(E), there exists a map σ̂∗ :
H∗(B,Q)→ H∗(E,Q) with many of the same properties as (the pullback of) an actual
section map.

Proposition 6.4 Suppose σ : B→ Confn(E) is a multisection. Then there exist maps

σ̂∗ :H∗(E,Q)→ H∗(B,Q)

σ̂∗ :H∗(B,Q)→ H∗(E,Q)

with the following properties:
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(1) The composition

σ̂∗ ◦ p∗ : H∗(B)→ H∗(B) = id

and similarly

p∗ ◦ σ̂∗ : H∗(B)→ H∗(B) = id .

(2) The maps σ̂∗ and σ̂∗ are adjoint under the evaluation pairing. That is, for all
α ∈ H∗(E), x ∈ H∗(B),

〈α, σ̂∗x〉 = 〈σ̂∗α, x〉.

(3) If α ∈ ker σ̂∗ , then for any β ∈ H∗(E,Q) and any x ∈ H∗(B,Q),

〈α ^ β, σ̂∗(x)〉 = 0.

Consequently, σ̂∗ induces a splitting

(8) H1(E,Q) = Im p∗ ⊕ ker σ̂∗.

Proof Begin by assuming that the multisection is pure. For i = 1, . . . , n let pi :
PConfn(E)→ E be the projection onto the ith coordinate. We define

σ̂∗(α) =
1
n

n∑
i=1

σ∗(p∗i (α))

σ̂∗(x) =
1
n

n∑
i=1

(pi)∗(σ∗(x)).

Then properties (6.4.1) - (6.4.3) follow by direct verification.

In the general case, let c : B̃ → B be a normal covering such that σ pulls back
to a pure multisection ψ . We will use c̄ to denote the covering Ẽ → E . Let
τ∗ : H∗(B̃,Q)→ H∗(B,Q) be the transfer map, normalized so that c∗ ◦ τ∗ = id. Then
define σ̂∗ : H∗(E,Q)→ H∗(B,Q) by

σ̂∗ = τ∗ ◦ ψ̂∗ ◦ c̄∗.

Similarly, define σ̂∗ : H∗(B,Q)→ H∗(E,Q) by

σ̂∗ = c̄∗ ◦ ψ̂∗ ◦ τ∗.
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For what follows, it will be useful to refer to the following diagram.

H∗(Ẽ)

ψ̂∗

��

τ∗ //
H∗(E)

c̄∗
oo

σ̂
��

H∗(B̃)

p̃∗
OO

τ∗ //
H∗(B)

c∗
oo

p∗
OO

By definition,
σ̂∗ ◦ p∗ = τ∗ ◦ ψ̂∗ ◦ c̄∗ ◦ p∗.

By commutativity, c̄∗ ◦ p∗ = p̃∗ ◦ c∗ . Then

τ∗ ◦ ψ̂∗ ◦ c̄∗ ◦ p∗ = τ∗ ◦ ψ̂∗ ◦ p̃∗ ◦ c∗

= τ∗ ◦ c∗

= id .

Here, we have used the property ψ̂∗ ◦ p̃∗ = id for the pure multisection ψ , as well as
our normalization convention τ∗ ◦ c∗ = id for the transfer map. A similar calculation
proves the corresponding result for ψ̂∗ , and (6.4.1) follows.

Statement 6.4.2 follows from the observation that the cohomology and homology
transfer maps are adjoint under the evaluation pairing. That is, if X̃ → X is a normal
covering space with deck group Γ, then for x ∈ H∗(X) and α ∈ H∗(X̃),

〈α, τ∗(x)〉 = 〈τ∗(α), x〉.

As ψ̂∗ and c̄∗ certainly also enjoy this adjointness property, so does σ̂∗ , and (6.4.2)
follows.

To establish (6.4.3), suppose α ∈ ker σ̂∗ , and take β ∈ H∗(E,Q), x ∈ H∗(B,Q). As
the transfer map is not a ring homomorphism, (6.4.3) does not follow immediately
from (6.4.2). However, we see that

〈α ^ β, σ̂∗(x)〉 = 〈σ̂∗(α ^ β), x〉

= 〈τ∗((ψ̂∗ ◦ c̄∗)(α) ^ (ψ̂∗ ◦ c̄∗)(β)), x〉.

It therefore suffices to show that ψ̂∗ ◦ c̄∗(α) = 0. This follows by Lemma 6.3. Indeed,
c̄∗(α) ∈ H∗(Ẽ,Q)Γ , and ψ̂∗ , being a sum of Γ-equivariant maps, is itself Γ-equivariant,
and so ψ̂∗ ◦ c̄∗ takes image in H∗(B̃,Q)Γ . On the one hand, we have

0 = σ̂∗α = τ∗ ◦ ψ̂∗ ◦ c̄∗(α)
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by assumption. By Lemma 6.3, τ∗ is injective on the image of ψ̂∗ ◦ c̄∗ , so that
ψ̂∗ ◦ c̄∗(α) = 0 as desired.

7 Unique fibering in the Johnson kernel

This section is devoted to the proof of Theorem 1.1. The outline is as follows. Let
p1 : E → B1 be a surface bundle with monodromy in the Torelli group Ig , and suppose
there is a second distinct fibering p2 : E → B2 with fiber F2 . The proof proceeds by
analyzing [F2] in the coordinates on H∗(E) coming from the Torelli fibering p1 . On
the one hand, the intersection form in these coordinates is completely understood by
virtue of Proposition 5.8. On the other, [F2] is realizable as an intersection of classes
induced from H1(B2). Under the assumption that the monodromy of p1 is contained
in Kg and not merely Ig , it will follow that there is a unique possibility for [F2]. The
final step will be to extract the condition that the genera of F2 and B1 must be equal
from the cohomology ring H∗(E) and to argue that this enforces the triviality of either
bundle structure.

The fundamental class of a second fiber. In this subsection we will compute [F2]
in the coordinates on H2 coming from the fibering p1 . The results are formulated
under the more general assumption that the monodromy of p1 lie in Ig rather than
Kg , because we feel that the arguments are clearer in this larger context. The main
objective is Lemma 7.3.
Suppose that p1 : E → B1 is a bundle with monodromy lying in Ig . Suppose there is
a partial section σ : B′ → E′ such that [ωσ] = 0 ∈ H1(F), giving rise to a lift τ̃ of the
Johnson homomorphism to ∧3H ; then by Proposition 5.8.3, there is a natural splitting

H3(E) ≈ p!
1H1(B1)⊕ H1(F1)

We use this direct sum decomposition to define the projections

P : H3(E)→ p!
1H1(B1) and Q : H3(E)→ H1(F),

and we consider the restrictions of P and Q to p!
2(H1(B2)) for a second fibering

p2 : E → B2 . Where convenient, we will also define P and Q on H1(B2) directly, by
precomposing with the injection p! .
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Lemma 7.1 For any second fibering p2 : E → B2 , the restriction of Q to H1(B2)
is a symplectic mapping, with respect to d iF1 on H1(F1) and iB2 on H1(B2), where
d = [F1] · [F2] is the algebraic intersection number of the two fibers.

Proof There exist classes x, y ∈ H1(B2) such that x · y = 1 ∈ H0(B2), so that
[F2] = p!

2x · p!
2y, and there are expressions

p!
2x = Px + Qx, p!

2y = Py + Qy.

Consequently,
[F2] = Px · Py + Px · Qy− Py · Qx + Qx · Qy.

By Proposition 5.8, [F1] · Pz = 0 for all z ∈ H1(B2), so that

d = [F1] · [F2] = [F1] · Qx · Qy,

with the first equality holding by assumption. The condition [F2] = p!
2x · p!

2y is
equivalent to iB2(x, y) = 1. By Proposition 5.8,

d = [F1] · Qx · Qy = iF1(Qx,Qy),

proving the claim.

As in the above proof, let x, y ∈ H1(B2) satisfy x · y = 1. By Poincaré duality,
in order to determine [F2] it suffices to determine the collection of cup products
[F2] · Z for Z ∈ H2(E). Relative to the splitting of H2(E) coming from p1 (where the
monodromy lies in Ig ), in particular we must determine [F2] ·Σb,z , where b ∈ H1(B1)
and z ∈ H1(F1).

Lemma 7.2 Take x, y ∈ H1(B2) satisfying x ·y = 1. For b ∈ H1(B1) and z ∈ H1(F1),
let Σb,z be the associated element of H2(E). Then

(9) [F2] · Σb,z = iB1(Px, b)iF1(Qy, z)− iB1(Py, b)iF1(Qx, z) + τ (b)(Qx ∧ Qy ∧ z).

In particular, if z ∈ 〈Qx,Qy〉⊥ , then (9) simplifies to

(10) [F2] · Σb,z = τ (b)(Qx ∧ Qy ∧ z).

In fact, for all z ∈ H1(F1), there exists a pair xz, yz ∈ H1(B2) such that z ∈ 〈Qxz,Qyz〉⊥

holds, so that for all b, z, (10) is satisfied for this choice of xz, yz .
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Proof The formulas in (9) and (10) follow directly from the description of the inter-
section form given in Proposition 5.8. The existence of a suitable x, y for a given z
is nothing but a matter of symplectic linear algebra. Since we will use some features
of the construction later on, we give a detailed explanation. Lemma 7.1 shows that
W = Im Q is a symplectic subspace of H1(F1), and so we can take a symplectic com-
plement W⊥ . Any z can therefore be written as w + w′ with w ∈ W and w′ ∈ W⊥ . If
w = 0 there is nothing to show. Otherwise, extend w to a symplectic basis for W so
that w = x1 . As B2 has genus ≥ 2, this basis includes x2, y2 , and as W = Im Q, we
can select xz, yz in H1(B2) with Qxz = x2 and Qyz = y2 .

We conclude this subsection by amalgamating the work we have done in the previous
two propositions in order to give a description of [F2].

Lemma 7.3 Let p2 : E → B2 be a second fibering. The choice of partial section
σ : B′ → E′ furnishes H2(E) with the following splitting

H2(E) = 〈[F1]〉 ⊕ (H1(B1)⊗ H1(F1))⊕ H2(B1),

with H1(B1)⊗H1(F1) spanned by the set of Σb,z where b, z range in symplectic bases
B,F for H1(B1),H1(F1) respectively, and H2(B1) spanned by C as in Proposition 5.8.
Relative to this splitting of H2(E) there is the following expression for [F2]:

(11) [F2] = (δ − 2de)[F1] + dC +
∑

b∈B,z∈F
τ̃ (b)(Qxz ∧ Qyz ∧ z)Σb̂ẑ.

Here, δ = iB1(Px,Py)+Qx ·Qy ·C for any choice of x, y ∈ H1(B2) satisfying x ·y = 1,
e = C2 , and d = [F1] · [F2] (the algebraic intersection of the two fibers). Also x̂
denotes the symplectic dual of x relative to the chosen symplectic basis.

Proof Suppose V is a free Z-module equipped with a nondegenerate symmetric
bilinear pairing 〈·, ·〉. Suppose moreover that there exists a generating set A =

{a1, . . . , ak, b1, . . . , bk} with the property that 〈ai, aj〉 = 〈bi, bj〉 = 0 for all i, j,
〈ai, bj〉 = 0 for i 6= j, and 〈ai, bi〉 = 1. Then any element x ∈ V is expressible in the
form

(12) x =

k∑
i=1

〈x, ai〉bi +

k∑
i=1

〈x, bi〉ai.
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We will apply this to V = H2(E) with the intersection pairing; in order to do this we
must find a suitable generating set A. Via Proposition 5.8, the space H1(B1)⊗H1(F1)
is orthogonal under · to H2(B2) and to H2(F1), and moreover, the collection of Σb,z

for (b, z) ∈ B×F is such a generating set on this subspace. We also have [F1] ·C = 1,
as well as ([F1])2 = 0 and C2 = e. Therefore, we can take

A = {[F1],C − e[F1]} ∪ {Σb,z | (b, z) ∈ B × F}.

The only intersection that remains to be computed is [F2] · C . As Px · Py =

iB1(Px,Py)[F1], a direct computation gives

[F2] · C = (Px · Py + Px · Qy− Py · Qx + Qx · Qy) · C

= Px · Py · C + Qx · Qy · C

= iB1(Px,Py) + Qx · Qy · C = δ.

By assumption, [F1] · [F2] = d , and Formula (10) computes [F2] ·Σb,z . Therefore we
may insert these computations into Formula (12) to obtain (11).

Rigidity in the Johnson kernel. We now assume, as is required for Theorem 1.1,
that the monodromy of p1 is contained in Kg . As noted in the previous section, the
closed Johnson kernel Kg coincides with the kernel of τ : Ig → ∧3H/H ; similarly
the pointed Johnson kernel Kg,∗ is the kernel of τ : Ig,∗ → ∧3H . We also noted
above that if τ ◦ ρ : H1(B) → ∧3H/H is identically zero then there is a canonical
lift τ̃ : H1(B) → ∧3H , namely zero. This furnishes the (co)homology of E with a
canonical splitting in which all cup products in (10) vanish.
In order to prove the main result of this section, we will compute [F2] and see that
it is “as simple as possible” in the coordinates coming from p1 , the fibering with
monodromy in Kg . This will be accomplished via Lemma 7.3. Per our choice of lift
τ̃ , the terms expressed via the Johnson homomorphism all vanish, so that

[F2] = a[F1] + dC,

for some a ∈ Z. The coefficient a is determined by [F2] · C , or equivalently δ =

iB2(Px,Py) (by Proposition 5.8.3, the term Qx · Qy · C = 0). This can be determined
from Lemma 7.2.
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Lemma 7.4 Let E be a 4-manifold with two fiberings as a surface bundle over a
surface: p1 : E → B1 and p2 : E → B2 . Define the projection P : H1(B2)→ H1(B1).
Suppose the monodromy for the bundle structure associated to p1 lies in Kg . Then
P ≡ 0, and consequently δ = 0.

Proof Returning to (9), in the Johnson kernel setting, both [F2] · Σb,z and τ̃ (b)(Qx ∧
Qy ∧ z) are zero for all x, y, z. Taking z to be any element satisfying iF1(Qy, z) 6= 0
and iF1(Qx, z) = 0, (9) simplifies to iB1(Px, b) = 0. Since this is true for all b, we
conclude that Px = 0, and since any x ∈ H1(B2) has a suitable y so that (9) holds, we
conclude that P ≡ 0 and δ = 0 as claimed.

With this in hand, we can apply Lemma 7.3 (recalling from Proposition 5.8.3 that
e = 0) to see that [F2] is as simple as possible:

(13) [F2] = dC.

As was noted following the statement of Proposition 3.1, [F2] must be a primitive
class, and so d = ±1. We conclude that d = 1 (as d ≥ 0 by Proposition 4.1). We
record this fact for later reference:

Lemma 7.5 Let p1 : E → B1 be a surface bundle over a surface with monodromy in
Kg . Suppose there is a second fibering p2 : E → B2 . Then

deg(p1 × p2) = 1.

Proposition 4.1 asserts the equality of deg(p1 × p2) with deg(p2|F1 : F1 → B2) and
with deg(p1|F2 : F2 → B1). Consequently

deg(p2|F1 : F1 → B2) = deg(p1|F2 : F2 → B1) = 1.

Remark 7.6 Observe that Lemma 7.5 supplies a proof of the missing assertion
(2.2.1) =⇒ (2.2.3) in Proposition 2.2, namely that if E is a surface bundle over
a surface with monodromy in the Johnson kernel, then any second fibering necessarily
yields a bi-projection with nonzero degree. Of course, the assertion that any of the
conditions (2.2.1), (2.2.2), (2.2.3), are equivalent to the bundle E being a product is
the content of Theorem 1.1.
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Cohomology - splittings coming from multisections. In order to complete the proof
of Theorem 1.1, we will combine the work we have done above with an analysis of
what the (co)homology of E looks like with respect to the coordinates coming from
the second fibering (where the monodromy need not be contained in Ig ). The most
convenient setting for this portion of the argument is in the cohomology ring, so we
pause briefly to establish some preliminaries.

Most of what we have established vis a vis the intersection pairing on H∗(E) is directly
portable to the setting of the cup product in cohomology. In particular, the maps

p∗i : H∗(Bi)→ H∗(E)

for i = 1, 2 are injections. We let ηi ∈ H2(Bi) be an integral generator compatible with
the chosen orientations; it is easy to see that p∗i (ηi) is Poincaré dual to [Fi]. Relative
to a choice of splitting

H1(E) = p∗1H1(B1)⊕ H1(F1),

there are the projection maps P : H1(B2) → H1(B1) and Q : H1(B2) → H1(F1), and
Lemma 7.4 carries over to show that P ≡ 0. We can also transport our analysis of the
intersection form on H∗(E). In the cohomological setting, we have proved:

Proposition 7.7 Let F1 → E → B1 be a surface bundle over a surface with mon-
odromy in the Johnson kernel Kg . Then E is an integral cohomology B1 × F1 , i.e.
there exists a canonical isomorphism

H∗(E) ≈ H∗(B1)⊗ H∗(F1)

as graded rings.

We now continue with the proof of Theorem 1.1.

Lemma 7.8 Suppose that the genus of B2 is strictly smaller than that of F1 . Then
there exist classes x, y ∈ H1(E) annihilating p∗2H1B2 (that is, x ^ p∗2z = y ^ p∗2z = 0
for all z ∈ H1(B)), such that x ^ y = Φ1 , where Φ1 ∈ H2(F1) is a generator.

Proof The cohomological formulation of Lemma 7.4 shows that

p∗2H1(B2) ≤ H1(F1).
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By (the cohomological reformulation of) Lemma 7.1, p∗2H1(B2) is in fact a symplectic
subspace of H1(F), and so there exists a symplectic complement. We can then take
the desired x, y to be suitable elements of this complement.

To finish the proof of Theorem 1.1, we will examine where x, y must live, relative to
coordinates on H∗(E) coming from the fibering p2 . At this point, the results of Section
6 come into play. In particular, (8) endows H1(E,Q) with a splitting via

H1(E,Q) = Im p∗ ⊕ ker σ̂∗.

For the remainder of the proof, we will assume that all of our cohomology groups have
rational coefficients.

Lemma 7.9 Let p : E → B be any surface bundle over a surface with multisection σ .
Suppose that there exists x ∈ H1(E) annihilating p∗H1(B). Then x ∈ ker σ̂∗ .

Proof Write

x = v + p∗b,

with v ∈ ker σ̂∗ and b ∈ H1(B). If b 6= 0, then there exists c ∈ H1(B) with b ^ c 6= 0.
On the one hand, x ^ p∗c = 0 by assumption. On the other, letting [B] ∈ H2(B)
denote the fundamental class, we have by Proposition 6.4

〈x ^ p∗c, σ̂∗[B]〉 = 〈(v + p∗b) ^ p∗c, σ̂∗[B]〉

= 〈v ^ p∗c, σ̂∗[B]〉+ 〈p∗(b ^ c), σ̂∗[B]〉

= 0 + 〈σ̂∗p∗(b ^ c), [B]〉

= 〈b ^ c, [B]〉 6= 0,

since v ∈ ker σ̂∗ . In this case we have reached a contradiction, and so b = 0 as
desired.

Lemma 7.10 Let F1 → E → B1 be a surface bundle over a surface with monodromy
in Kg , and suppose there is a second fibering p2 : E → B2 . Let g denote the genus of
F1 , and h denote the genus of B2 . Then g = h.
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Proof We have already established (Lemma 7.5) that

deg(p2|F1) = 1.

As p2 has positive degree, we conclude immediately that g ≥ h. Suppose g > h.
Then there exist classes x, y ∈ H1(E) as in the statement of Lemma 7.8. We will make
use of the existence of a multisection σ of p2 : E → B2 , so that by Lemma 7.9, we
must have x, y ∈ ker σ̂∗ . So by Proposition 6.4,

〈x ^ y, σ̂∗[B2]〉 = 0.

In the notation of Proposition 7.7, both p∗2H1(B2) and the classes x, y are contained in
H1(F1), and as the image of

^: ∧2H1(F1)→ H2(F1)

is one-dimensional (since F1 is a surface), we conclude that x ^ y = p∗2(η2), where
η2 ∈ H2(B2) is a generator. So then

〈x ^ y, σ̂∗[B2]〉 = 〈p∗2(η2), σ̂∗[B2]〉 = 〈η2, [B2]〉 = 1.

This is a contradiction; necessarily g = h.

This shows that p2|F1 is a map of degree one between surfaces of the same genus, and
as is well-known, therefore

(p2)∗ : π1F1 → π1B2

must be an isomorphism.

Finishing Theorem 1.1. At this point, we turn to an analysis of the fundamental group.
Via the long exact sequence in homotopy for a fibration, there is an exact sequence

1→ π1Fi → π1E → π1Bi → 1,

for i = 1, 2. Consequently, the kernel of

(p1 × p2)∗ : π1E → π1B1 × π1B2

is given by π1F1∩π1F2 . On the other hand, this is also the kernel of the cross-projection

π1F1 → π1B2
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which was just shown to be an isomorphism. We conclude that (p1 × p2)∗ is an
isomorphism.
The monodromy of the bundle E can be read off from the fundamental group, as
the map π1B1 → Out(π1F1) ≈ Mod(Σg) (the latter isomorphism coming from the
theorem of Dehn, Nielsen, and Baer). Since π1E is a product, this map is trivial. The
correspondence (1) then shows that E , being a surface bundle with trivial monodromy,
is diffeomorphic to B1 × B2 . This completes the proof of Theorem 1.1.

References

[1] M F Atiyah, The signature of fibre-bundles, from: “Global Analysis (Papers in Honor
of K. Kodaira)”, Univ. Tokyo Press, Tokyo (1969) 73–84
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