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Abstract. Let Σ be a surface with either boundary or marked points, equipped with an arbitrary

framing. In this note we determine the action of the associated “framed mapping class group” on the

homology of Σ relative to its boundary (respectively marked points), describing the image as the

kernel of a certain crossed homomorphism related to classical spin structures. Applying recent work

of the authors, we use this to describe the monodromy action of the orbifold fundamental group of a

stratum of abelian differentials on the relative periods.

1. Introduction

Let (Σg, Z) be a surface endowed with a nonempty finite set of marked points; we assume throughout

that g ≥ 2 unless otherwise specified. A framing of (Σg, Z) is a trivialization of the tangent bundle of

Σg \Z; up to homotopy this is specified by a vector field vanishing only at Z. We say that two framings

φ and ψ are isotopic if the corresponding vector fields are isotopic through vector fields vanishing

only at Z. The (pure) mapping class group PMod(Σg, Z) of the marked surface (Σg, Z) admits a

well–defined action on the set of isotopy classes of framings, and we define the framed mapping class

group as the stabilizer of a chosen (isotopy class of) framing φ:

PMod(Σg, Z)[φ] := {f ∈ PMod(Σg, Z) | f · φ = φ up to isotopy}.

One of the most basic tools in the study of mapping class groups is the homological representation via

its action on the first homology of the surface. In the presence of marked points, we can define the

relative homological representation

Ψrel : PMod(Σg, Z)→ PAut(H1(Σg, Z;Z)),

where PAut(H1(Σg, Z;Z)) is the “pure automorphism group” of H1(Σg, Z;Z); see Section 4.2. In this

note we determine the action of PMod(Σg, Z)[φ] on H1(Σg, Z;Z) via Ψrel.

Recall that a crossed homomorphism is a map f : G→ A where G is a group and A is a Z[G]–module

such that f(g1g2) = f(g1) + g1f(g2) for all elements g1, g2 ∈ G. Kernels of crossed homomorphisms

are subgroups but are not necessarily normal subgroups.

Theorem A. For g ≥ 2, let φ be a framing of the marked surface (Σg, Z). Then there is a crossed

homomorphism

Θφ : PAut(H1(Σg, Z;Z))→ H1(Σg;Z/2Z)

such that

Ψrel(PMod(Σg, Z)[φ]) = ker(Θφ).
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An explicit description of Θφ appears at the end of the introduction; see Section 4 for full details.

Strata of translation surfaces. Our main application of Theorem A is to give an explicit description

of the homological monodromy groups of strata of abelian differentials. To formulate our results, we

recall that the moduli space ΩMg of genus g abelian differentials is divided into strata according to

the combinatorics of the zero locus. If κ = (κ1, . . . , κn) is a partition of 2g− 2 then we use ΩMg(κ) to

denote the set of all abelian differentials with n zeros of orders κ1, . . . , κn.

Over every connected component H of a stratum one can define a vector bundle (in the orbifold

sense) Hrel
1 whose fiber over a manifold point (X,ω) is the relative homology group H1(X,Div(ω);R).

The (orbifold) fundamental group of H therefore admits a monodromy action on this bundle

ρH : πorb
1 (H)→ PAut(H1(X,Div(ω);R)).

We observe that πorb
1 (H) may permute the zeros of Div(ω); set Ĥ → H to be the finite, connected 1

cover of H associated to the kernel of this action. The bundle Hrel
1 pulls back under this covering, and

we let ΓĤ denote the image of the monodromy homomorphism restricted to πorb
1 (Ĥ).

By deep results of Eskin, Filip, and Wright [EFW17], the Zariski closure of ΓĤ is equal to

Sp(2g,R)nRn−1 (i.e., it is “as big as possible” given the constraint arising from the intersection pairing

on absolute homology). The action of ΓĤ on absolute homology was determined by Gutierrez-Romo

[GR18], but explicit characterizations of the full group ΓĤ were only known for hyperelliptic components

of strata [AMY18][Corollary 2.8] and for the non-hyperelliptic components of ΩMg(g − 1, g − 1) (and

ΩMg(2g − 2)) [GR18][Theorem 5.1].

Together with recent work of the authors computing the image of an associated “topological

monodromy homomorphism” (see just below), Theorem A allows us to generalize the computations

listed above, identifying ΓĤ in terms of the crossed homomorphism Θφ.

Theorem B. Let κ = (κ1, . . . , κn) be a partition of 2g− 2 with g ≥ 5 and let H be a non-hyperelliptic

component of the stratum ΩMg(κ). Let Ĥ be the cover of H corresponding to the kernel of the

permutation action on the zeros and choose a basepoint (X,ω) ∈ Ĥ. Let φ be the induced framing of

(X,Div(ω)). Then the homological monodromy group ΓĤ 6 PAut(H1(X,Div(ω);Z)) is computed to be

ΓĤ = ker(Θφ)

for Θφ the crossed homomorphism of Theorem A.

Proof. We observe that there is a family of smooth curves X → Ĥ whose fiber over (X,ω) is X; the

monodromy of this family therefore gives rise to a topological monodromy homomorphism

ρ : πorb
1 (Ĥ)→ PMod(X,Div(ω)).

Theorem A of [CS20] computes that the image of ρ is exactly PMod(X,Div(ω))[φ] (for g ≥ 5). Now we

observe that the homological monodromy representation factors through the topological monodromy

via ρH = Ψrel ◦ ρ. Applying Theorem A yields the desired statement. �

1See, e.g., [Boi12, Proposition 4.1] for a proof that this cover is connected.
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Relatively framed mapping class groups. Theorem A is deduced from a somewhat stronger

statement, which can also be used to supply some more information about strata. Suppose now that

Σg,n is a surface with n ≥ 1 boundary components; then a nonvanishing vector field on Σg,n gives rise

to a framing φ of Σg,n. We say that framings φ and ψ are relatively isotopic if the associated vector

fields are isotopic through an isotopy which is trivial on ∂Σg,n. The mapping class group Mod(Σg,n)

admits a well-defined action on the set of relative isotopy classes of framings, and we can define the

relatively framed mapping class group as the stabilizer of a chosen relative framing:

Mod(Σg,n)[φ] := {f ∈ Mod(Σg,n) | f · φ = φ up to relative isotopy}.

In the case of a surface with boundary, we consider the relative homological representation as follows:

Ψrel : Mod(Σg,n)→ PAut(H1(Σg,n, ∂Σg,n;Z)).

Note that there is a natural isomorphism p∗ : H1(Σg,n, ∂Σg,n;Z) ∼= H1(Σg, Z;Z) induced by contracting

each boundary component to a marked point which extends to an isomorphism (also denoted p∗)

of the corresponding (pure) automorphism groups. The notion of relative isotopy is genuinely more

restrictive than standard isotopy, and the relatively framed mapping class group is “smaller” than

its absolute counterpart (see Section 2 for details). Despite this, we find that there are no further

restrictions on the action on relative homology.

Theorem C. For g ≥ 2, let φ be a relative framing of Σg,n. Then

Ψrel(Mod(Σg,n)[φ]) = ker(Θφ ◦ p∗)

where Θφ is the crossed homomorphism of Theorem A.

Remark 1.1. One may use Theorem C together with the analysis of [CS20, §7] to deduce that ΓĤ is

generated by the action of cylinder shears, certain deformations of abelian differentials along embedded

Euclidean cylinders.

Remark 1.2. Using Theorem C together with Theorem 7.13 of [CS20], one can also identify the

homological monodromy groups of either of the non-hyperelliptic components of strata of prong–marked

abelian differentials (see [CS20, §7.3]) with ker(Θφ). We leave it to the reader to formulate and prove

this (completely analogous) statement.

The crossed homomorphism Θφ. We now give an explicit description of the crossed homomorphism

which characterizes the homological actions of framed mapping class groups. Refer to Section 4 for

full details. Let φ be a framing of (Σg, Z); measuring the winding number of a curve with respect to

this framing gives rise to a “winding number function” from simple closed curves to Z (see §2.2). The

crossed homomorphism Θφ of Theorems A, B, and C is then induced by measuring the “change in

winding number mod 2,” a construction which generalizes the notion of a classical spin structure.

We recall that a classical spin structure on a surface Σg is a quadratic form q : H1(Σg;Z/2Z)→ Z/2,

i.e., a function which satisfies q(x+y) = q(x)+q(y)+〈x, y〉, where 〈x, y〉 denotes the mod 2 intersection
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pairing. Such q can be used to determine a crossed homomorphism q̂ : Sp(2g,Z/2Z)→ H1(Σg;Z/2Z)

by the formula

q̂(A)(x) = q(Ax)− q(x) (mod 2),

which measures the change in q–value of each homology class.

Not all framings induce classical spin structures. In particular, we find that in §6 that Θφ behaves

very differently depending on the combinatorics of φ. For each marked point pi of (Σ, Z), let ∆i denote

a small counterclockwise loop encircling pi and set κi = −1− φ(∆i) (here φ is viewed as a winding

number function). Set κ = (κ1, . . . , κn).

If φ is a framing with all elements of κ even then the winding number function descends to a

Z/2Z–valued winding number function on H1(Σg,Z/2Z); the change in winding number then induces

a classical spin structure q. In this case, we show in Proposition 6.4 there is an equality

Θφ = p∗(q̂);

here p : PAut(H1(Σg, Z;Z)) → Sp(2g,Z/2Z) is induced by the restriction to absolute homology

followed by the reduction of coefficients mod 2.

If some element of κ is odd, then φ does not induce a classical spin structure and Θφ is instead

“concentrated” on the action on relative homology. To describe this action, we note that we can write

PAut(H1(Σg, Z;Z)) as the extension of Sp(2g,Z) by

Hom(H̃0(Z;Z), H1(Σg;Z)),

which measures the transvection of the relative homology by absolute classes (see Section 4.2).

Define the element vκ ∈ H0(Z;Z) by vκ :=
∑
κipi. This in turn defines a homomorphism

v∗κ : Hom(H̃0(Z;Z), H1(Σg;Z))→ H1(Σg;Z/2Z)

by the formula

v∗κ(A)(x) = 〈A(vκ), x〉 (mod 2).

When κ has odd elements, we show in Lemma 6.1 that Θφ agrees with vκ on Hom(H̃0(Z;Z), H1(Σg;Z)),

which in turn leads to the characterization of ker(Θφ) in terms of the short exact sequence

1→ ker(v∗κ)→ ker(Θφ)→ Sp(2g,Z)→ 1.

Outline of the proof. By replacing each boundary component of Σg,n with a marked point, there is

a map p : Mod(Σg,n) → PMod(Σg, Z) inducing a map pφ : Mod(Σg,n)[φ] → PMod(Σg, Z)[φ]; in the

former we consider the relative framed mapping class group but in the latter we do not. The map pφ is

generally not surjective [CS20, Proposition 6.11], but to prove both Theorems A and C it will suffice to

(1) Construct the crossed homomorphism Θφ on PAut(H1(Σg, Z;Z)) and show the containment

Ψrel(PMod(Σg, Z)[φ]) 6 ker(Θφ),

(2) Show that Ψrel(pφ(Mod(Σg,n[φ]))) = ker(Θφ).

Step (1) is carried out in Section 4, where we define Θφ as a measure of “change of mod 2 winding

number” for simple closed curves. The construction of Θφ necessitates the discussions in Sections 2

and 3, where we respectively discuss how a framing gives rise to a “winding number function” on
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simple closed curves, and some basic properties of the “level 2 mapping class group” used to study the

set of simple closed curves in a fixed mod 2 homology class.

Starting with a purely geometric definition of Θφ as a function from PMod(Σg, Z) to a certain set,

we show in Lemmas 4.1 and 4.4 that Θφ actually has the structure of a crossed homomorphism and

that it is induced from a crossed homomorphism on PAut(H1(Σg, Z;Z)). From the geometric origins of

Θφ, it is then clear that PMod(Σg, Z)[φ] is contained in the kernel. At the heart of these arguments are

the “twist–linearity” and “homological coherence” properties of winding number functions discussed in

Lemma 2.4.

Step (2) is carried out in Section 5. The core result there is Proposition 5.1, which describes the

action of the “relative Torelli group” Irel(Σg,n) on the set of relative framings. The proof of Theorems

A and C conclude with Proposition 5.2, which establishes the surjectivity of Ψrel(Mod(Σg,n)[φ]) onto

ker(Θφ). The strategy here is to first find any mapping class f realizing an element A ∈ ker(Θφ), and

use Proposition 5.1 to adjust f so as to stabilize φ without altering Ψrel(f).

Finally in Section 6, we give a more explicit description of the group ker(Θφ), emphasizing the

difference in its structure caused by arithmetic properties of the framing φ (or equivalently, the

arithmetic of the partition κ of 2g − 2).
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2. Framings and framed mapping class groups

We briefly recall here the notion of a relative framing of a surface and the associated framed mapping

class group. For a more thorough discussion, see [CS20, Section 2]. Throughout this section, we will

formulate our results in the setting of surfaces with boundary. The theory of framings on a marked

surface (Σg, Z) exactly parallels the theory of “absolute” (i.e. non-relative) framings on Σg,n; we trust

the reader can make the cosmetic adjustments necessary to formulate results for framings of (Σg, Z).

2.1. (Relative) framings on surfaces with boundary. Let Σg,n be a surface with n ≥ 1 boundary

components; then a framing of Σg,n is a trivialization φ of the tangent bundle of Σg,n. After fixing

a Riemannian metric µ on Σg once and for all, a framing φ corresponds to a nowhere–vanishing

vector field ξφ. We say that framings φ and ψ are isotopic if ξφ and ξψ are homotopic through

nowhere-vanishing vector fields. If φ and ψ both restrict to the same framing δ of ∂Σg,n, then φ and ψ

are relatively isotopic if ξφ and ξψ are isotopic through vector fields restricting to δ on ∂Σg,n.
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2.2. Winding number functions. The data of a (relative) isotopy class of framing is equivalent to

a structure known as a (relative) winding number function, which is easier to work with in practice.

We first observe that if γ : S1 → Σg,n is a C1 immersion, then the framing φ assigns a winding number

φ(γ) ∈ Z measuring the winding number of the forward–pointing tangent vector γ′(t) with respect

to ξφ. It is not hard to see that φ(γ) is invariant under ambient isotopy. Let S(Σg,n) denote the set

of isotopy classes of oriented simple closed curves on Σg,n; then the framing φ determines a winding

number function

φ : S(Σg,n)→ Z, c 7→ φ(c).

Suppose now that each component ∆i ⊂ ∂Σg,n is equipped with a point pi ∈ ∆i such that ξφ is

orthogonally outward-pointing (such points pi always exist, possibly after adjusting ξφ by an isotopy

supported near ∂Σg,n). We call such a point pi a legal basepoint. Choose exactly one legal basepoint

on each boundary component. We say that a properly embedded arc a : [0, 1]→ Σg,n is legal if a(0)

and a(1) are distinct legal basepoints, a′(0) is orthogonally inward–pointing, and a′(1) is orthogonally

outward–pointing. The winding number of a legal arc is necessarily half–integral and is well–defined up

to isotopy through legal arcs. Therefore, a framing φ gives rise to a relative winding number function

φ : S+(Σg,n)→ 1
2Z; c 7→ φ(c)

where S+(Σg,n) denotes the set obtained from S(Σg,n) by including all isotopy classes of legal arcs.

We say that the signature of a boundary component ∆ ⊂ ∂Σg,n is the value φ(∆). On framed

surfaces with marked points, the signature of a marked point is the winding number of a small

counterclockwise loop encircling the marked point.

2.3. (Relative) isotopy classes of framings. The basic theory of relative isotopy classes of framings

was established by Randal–Williams [RW13]. To state his results, we define a distinguished geometric

basis on Σg,n to be a collection

B = {x1, y1, . . . , xg, yg} ∪ {a2, . . . , an}

of oriented simple closed curves x1, . . . , yg and legal arcs a2, . . . , an, subject to the following conditions.

Below, the function i(·, ·) denotes the geometric intersection number, and 〈·, ·〉 denotes the algebraic

intersection number.

(1) i(xi, yi) = 〈xi, yi〉 = 1 and each xi, yi is disjoint from all other xj , yj , ak.

(2) Each arc ai is a legal arc running from a fixed legal basepoint p1 ∈ ∆1 to the legal basepoint

pi ∈ ∆i, and the collection of ai are pairwise disjoint except at the common endpoint p1.

The following is a summary of the basic theory of relative winding number functions and relative

isotopy classes of framings. For further discussion, see [CS20, Section 2] or [RW13].

Proposition 2.1. Fix g ≥ 2 and n ≥ 1, and let δ be a framing of ∂Σg,n. Let φ, ψ be framings of Σg,n

restricting to δ on ∂Σg,n.

(1) φ and ψ are (relatively) isotopic if and only if the associated (relative) winding number functions

are equal.
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(2) The (relative) winding number functions φ and ψ are equal if and only if there are equalities

φ(b) = ψ(b) for all b ∈ B, where B is any distinguished geometric basis.

2.4. Mapping class group orbits. Randal–Williams classifies the set of orbits of relative framings

under the action of Mod(Σg,n). He finds that for g ≥ 2 there are always exactly two orbits, classified

by an element of Z/2Z known as the (generalized) Arf invariant. The orbit structure in the case of

absolute framings is somewhat different and was treated by Kawazumi [Kaw18], but we do not need to

discuss this here.

Definition 2.2 (Arf invariant; c.f. Section 2.2 of [CS20] and Section 2.4 of [RW13]). Let Σg,n be a

surface with g ≥ 2 and n ≥ 1, and let φ be a relative framing of Σg,n; we denote the associated relative

winding number function by the same symbol. Let B = {x1, . . . , yg, a2, . . . , an} be a distinguished

geometric basis. Define the element

Arf(φ,B) =

g∑
i=1

(φ(xi) + 1)(φ(yi) + 1) +

n∑
i=2

(φ(ai) + 1
2 )(φ(∆i) + 1) (mod 2). (1)

The Arf invariant classifies Mod(Σg,n)-orbits of relative framings in the following sense.

Proposition 2.3 (c.f. Proposition 2.8, Theorem 2.9 of [RW13]). If B,B′ are two distinguished

geometric bases for Σg,n, then Arf(φ,B) = Arf(φ,B′); consequently we write simply Arf(φ). If φ and

ψ are framings of Σg,n restricting to the same framing of ∂Σg,n, then there exists f ∈ Mod(Σg,n) such

that f · φ = ψ if and only if Arf(φ) = Arf(ψ).

2.5. Properties of relative winding number functions. Following Proposition 2.1, we know that

isotopy classes of framings can be studied by means of their relative winding number functions. The

results below establish some essential properties of relative winding number functions which were

identified by Humphries–Johnson in [HJ89].

Lemma 2.4. Let φ be a relative winding number function. Then φ satisfies the following properties:

(1) (Reversibility) Let c̄ denote the curve/arc c with the opposite orientation. Then φ(c̄) = −φ(c).

(2) (Twist-linearity) Let c ∈ S(Σg,n) and a ∈ S+(Σg,n) be given. Then

φ(T kc (a)) = φ(a) + k〈a, c〉φ(c).

(3) (Homological coherence) Let S ⊂ Σg,n be a subsurface with boundary components c1, . . . , ck.

Orient each ci so that S lies to the left. Then

n∑
i=1

φ(ci) = χ(S).

3. The level 2 mapping class group

We collect here some basic facts about the “level 2 mapping class group” that will be used in the

following section. Let Ψ2 be the homomorphism

Ψ2 : PMod(Σg, Z)→ Sp(2g,Z/2Z)
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obtained by reducing the symplectic representation Ψ mod 2. We define

PMod(Σg, Z)[2] = ker(Ψ2).

We emphasize that, as we have defined it, PMod(Σg, Z)[2] is the full preimage of the “classical”

level 2 subgroup PMod(Σg)[2] 6 PMod(Σg). In particular, no constraints are placed on the action

of PMod(Σg, Z)[2] on relative homology classes in H1(Σg, Z;Z/2Z). We adopt this definition (as

opposed to anything more restrictive) because we see below in Proposition 3.1 that PMod(Σg, Z)[2]

acts transitively on simple closed curves in a fixed mod-2 homology class.

Proposition 3.1. Let c, c′ ⊂ Σg \ Z be simple closed curves, and suppose that [c] = [c′] as elements

of H1(Σg;Z/2). Then there exists g ∈ PMod(Σg, Z)[2] such that g(c) = c′.

Proof. Let c̄, c̄′ denote the images of c, c′ in Σg. It is a folklore result that for Σg a closed surface,

PMod(Σg)[2] acts transitively on the set of simple closed curves c in a fixed mod 2 homology class

(compare [FM11, Proposition 6.14]), and thus there exists f ∈ PMod(Σg)[2] such that f(c̄) = c̄′.

Let f̃ be an arbitrary lift of f to PMod(Σg, Z). By our definition of PMod(Σg, Z)[2], we have

f̃ ∈ PMod(Σg, Z)[2], and by construction, the curve f̃(c) is isotopic to c′ after forgetting the set Z

of marked points. Let p : PMod(Σg, Z)→ PMod(Σg) be the forgetful map; then there is an element

h ∈ ker(p) such that h(f̃(c)) and c′ are isotopic rel Z. Therefore g = hf̃ ∈ PMod(Σg, Z)[2] is the

required element. �

Proposition 3.2. For g ≥ 1, the level 2 mapping class group PMod(Σg, Z)[2] is generated by two

classes of elements: “squared twists” T 2
a , and “point–push maps” TaT

−1
b , where a∪b bounds an annulus

containing a single element of Z.

Proof. According to [Hum92, Proposition 2.1], the closed level-2 mapping class group Mod(Σg)[2]

is generated by the set of square-twists. By definition, PMod(Σg, Z)[2] = p−1(PMod(Σg)[2]), where

p : PMod(Σg, Z) → PMod(Σg) is the forgetful map. The kernel ker(p) = PB(Σg, Z) is the pure

surface braid group on n strands. It is a classical fact (essentially a consequence of the Fadell-Neuwirth

fibration; c.f. [FM11, Section 9.1]) that PB(Σg, Z) is generated by point–push maps. �

4. From framings to crossed homomorphisms

In this section we begin the proof of Theorems A and C in earnest. In Lemma 4.1, we use the

winding number function associated to φ to define what turns out to be a crossed homomorphism on

PMod(Σg, Z). In Lemma 4.4, we show that this crossed homomorphism is pulled back from a crossed

homomorphism Θφ on PAut(H1(Σg, Z;Z)). In the intermediate Section 4.2, we present some basic

results about the structure of PAut(H1(Σg, Z;Z)) needed in the sequel.

4.1. A crossed homomorphism on the mapping class group.

Lemma 4.1. Let φ be a framing of (Σg, Z), and let ∆φ : PMod(Σg, Z)× S → Z/2Z be defined by

∆φ(f, c) = φ(f(c))− φ(c) (mod 2).
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Then ∆φ determines a crossed homomorphism

∆φ : PMod(Σg, Z)→ H1(Σg;Z/2Z)

by the formula

∆φ(f)([c]) = ∆φ(f, c).

Remark 4.2. Observe that by construction, PMod(Σg, Z)[φ] 6 ker(∆φ).

Proof. We begin with a simple but crucial observation: ∆φ satisfies a cocycle condition. For f, g ∈
PMod(Σg, Z) and any c ∈ S, it follows easily from the definition that

∆φ(fg, c) = ∆φ(f, g(c)) + ∆φ(g, c). (2)

We divide the remainder of the proof into two steps.

Convention. Throughout this section, all arithmetic is taken mod 2. The occasional presence of

minus signs serves to help the reader navigate the logic of the calculations.

Step 1: Descending to mod 2 homology. We suppose that c, c′ ∈ S satisfy [c] = [c′] in

H1(Σg;Z/2Z), and we wish to show that ∆φ(f, c) = ∆φ(f, c′) for f ∈ PMod(Σg, Z) arbitrary. If

[c] = [c′], then by Proposition 3.1, c′ = g(c) for some g ∈ PMod(Σg, Z)[2]. Thus

∆φ(f, c′) = ∆φ(f, g(c))

= φ(fg(c))− φ(g(c))

= φ(fgf−1(f(c)))− φ(g(c)).

By Proposition 3.2, g is a product of two kinds of mapping classes: squared twists T 2
a and point–push

maps. By the cocycle condition (2), it suffices to examine the expression φ(fgf−1(f(c)))− φ(g(c)) for

g one of these two forms. We claim that in either case,

φ(fgf−1(f(c)))− φ(g(c)) = φ(f(c))− φ(c) = ∆(f, c),

thereby completing Step 1. Observe that for both classes of generators, fgf−1 is an element of the

same form as g. In the case g = T 2
a , the twist–linearity formula (Lemma 2.4.2) shows that

φ(T 2
a (c)) = φ(c) + 2〈c, a〉φ(a) = φ(c) (3)

and therefore also φ(fgf−1(f(c))) = φ(f(c)).

Suppose now that g = TaiT
−1
a′i

with ai, a
′
i cobounding an annulus containing the marked point pi of

signature −1− κi. Then [ai] = [a′i] in H1(Σg;Z/2Z). The homological coherence property (Lemma

2.4.3) shows that φ(ai) + φ(a′i) = κi. Applying the twist-linearity formula (Lemma 2.4.2), we find

φ(TaiT
−1
a′i

(c)) = φ(c) + (φ(ai) + φ(a′i))〈[ai], c〉 = φ(c) + κi〈[ai], c〉.

and so

∆φ(TaiT
−1
a′i
, c) = κi〈[ai], c〉. (4)

Since 〈·, ·〉 is invariant under the action Sp(2g,Z/2Z), this computation also shows that

∆φ(fTaiT
−1
a′i
f−1, f(c)) = κi〈f([ai]), f(c)〉 = κi〈[ai], c〉 = ∆φ(TaiT

−1
a′i
, c)
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as required.

Remark 4.3. We note here for later use that this argument actually establishes something stronger,

namely, that if the signature of each marked point is odd then the value φ(c) (mod 2) is well-defined as

a function on H1(Σg;Z/2Z). In particular, observe that (3) shows that φ(T 2
a (c)) = φ(c) for arbitrary

curves a, c. When the signature of each marked point is odd then the κi are even, and (4) then shows

that φ(TaT
−1
b (c)) = φ(c) as well.

Step 2: Additivity. Following Step 1, we have established that ∆φ descends to a set-theoretic map

∆φ : PMod(Σg, Z)×H1(Σg;Z/2Z)→ Z/2Z

that satisfies the cocycle condition (2). In this step we complete the process of showing that ∆φ is a

crossed homomorphism by showing that ∆φ is additive in the second argument. We fix f ∈ PMod(Σg, Z)

and choose x, y ∈ H1(Σg;Z/2Z). There are two cases to consider: either 〈x, y〉 = 1 or else 〈x, y〉 = 0.

Suppose first that 〈x, y〉 = 1 (mod 2). Represent x, y by simple closed curves a, b satisfying

i(a, b) = 1; then [Ta(b)] = x+ y. By Step 1 and the cocycle condition (2),

∆φ(f, x+ y) = ∆φ(f, Ta(b)) = ∆φ(fTa, b) + ∆φ(Ta, b).

We find that

∆φ(fTa, b) = φ(fTa(b))− φ(b)

= φ(fTaf
−1(f(b)))− φ(b)

= ∆φ(Tf(a), f(b)) + ∆φ(f, b).

To evaluate the expressions ∆φ(Tf(a), f(b)) and ∆φ(Ta, b), we appeal to the definition of ∆φ and the

twist–linearity formula (Lemma 2.4.2):

∆φ(Ta, b) = φ(Ta(b))− φ(b) = 〈b, a〉φ(a) = φ(a).

Likewise,

∆φ(Tf(a), f(b)) = 〈f(b), f(a)〉φ(f(a)) = φ(f(a)),

since 〈f(b), f(a)〉 = 〈b, a〉 = 1. Altogether, we have shown

∆φ(f, Ta(b)) = ∆φ(fTa, b) + ∆φ(Ta, b)

= φ(f(a))− φ(a) + ∆φ(f, b)

= ∆φ(f, a) + ∆φ(f, b)

as required.

The other case 〈x, y〉 = 0 proceeds similarly, replacing Ta with a different mapping class. Given x, y

satisfying 〈x, y〉 = 0, represent x, y by simple closed curves a, b satisfying i(a, b) = 0. Let c be a curve

such that a ∪ b ∪ c bounds a pair of pants on (Σg, Z) containing no marked points. Then [c] = x+ y.

We choose g ∈ PMod(Σg, Z) such that g(a) = c. As before,

∆φ(f, x+ y) = ∆φ(f, g(a)) = ∆φ(fg, a) + ∆φ(g, a).
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We analyze the first summand ∆φ(fg, a) as before:

∆φ(fg, a) = φ(fg(a))− φ(a) = φ(fgf−1(f(a)))− φ(a) = ∆φ(fgf−1, f(a)) + ∆φ(f, a).

We are left with evaluating the expressions ∆φ(g, a) and ∆φ(fgf−1, f(a)). The following expression

holds by homological coherence (Lemma 2.4.3):

φ(a) + φ(b) + φ(c) = 1.

Thus,

∆φ(g, a) = φ(g(a))− φ(a) = φ(c)− φ(a) = φ(b) + 1. (5)

The same relation holds among the φ-values of f(a), f(b), f(c), showing that

∆φ(fgf−1, f(a)) = φ(f(b)) + 1. (6)

Adding together the three contributions ∆φ(f, a), (5), (6) to ∆(f, g(a)), we have

∆φ(f, x+ y) = ∆φ(f, ga)

= ∆φ(f, a) + φ(f(b)) + 1 + φ(b) + 1

= ∆φ(f, a) + ∆φ(f, b)

as required. �

4.2. The structure of PAut(H1(Σg,Z;Z)). Before proceeding to the second key result of the section

(Lemma 4.4), we must first consider some of the basic structural properties of the groups PMod(Σg, Z)

and PAut(H1(Σg, Z;Z)). We recall that the long exact sequence for the pair (Σg, Z) specializes to the

following short exact sequence:

0→ H1(Σg,Z)→ H1(Σg, Z;Z)→ H̃0(Z;Z)→ 0.

The action of PMod(Σg, Z) on H1(Σg, Z;Z) preserves the subspace H1(Σg,Z) and the action there

preserves the algebraic intersection pairing 〈·, ·〉. Define

PRelAut(H1(Σg, Z;Z)) := Hom(H̃0(Z;Z), H1(Σg;Z)).

The group PAut(H1(Σg, Z;Z)) is then characterized by the following short exact sequence:

1→ PRelAut(H1(Σg, Z;Z))→ PAut(H1(Σg, Z;Z))→ Sp(2g,Z)→ 1. (7)

Note that with the definitions above, we only consider automorphisms inducing a trivial action on

H̃0(Z;Z). If we were to consider Ψrel(Mod(Σg, Z)) (i.e. removing the purity assumption), we would

need to enlarge PRelAut(H1(Σg, Z;Z)) by taking the semi-direct product with (a subgroup of) the

symmetric group of Z.
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4.3. Crossed homomorphisms on PAut(H1(Σg,Z;Z)).

Lemma 4.4. The crossed homomorphism ∆φ is induced from a crossed homomorphism

Θφ : PAut(H1(Σg, Z;Z))→ H1(Σg;Z/2Z).

Proof. Define the “relative Torelli group”

Irel(Σg, Z) := ker Ψrel.

The claim amounts to showing that the restriction of ∆φ to Irel(Σg, Z) is trivial. We consider the

following commutative diagram of short exact sequences, where the rows are induced by the forgetful

map (Σg, Z)→ Σg and the columns are induced by considering the action of the (relative/absolute)

mapping class group on (relative/absolute) homology. By definition, K := ker(Ψrel |PB(Σg,Z)).

1

��

1

��

1

��
1 // K //

��

Irel(Σg, Z) //

��

I(Σg) //

��

1

1 // PB(Σg, Z) //

Ψrel

��

PMod(Σg, Z) //

Ψrel

��

PMod(Σg) //

Ψ

��

1

1 // PRelAut(H1(Σg, Z;Z)) //

��

PAut(H1(Σg, Z;Z)) //

��

Sp(2g,Z) //

��

1

1 1 1

To prove the claim, it suffices to show that ∆φ(f) = 0 for f ∈ Irel(Σg, Z) a generator. Below, we

determine a generating set for Irel(Σg, Z).

For g ≥ 3, the Torelli group I(Σg) is generated by “bounding pair maps:” these are elements of

the form TaT
−1
b where a, b are disjoint simple closed curves on Σg that bound a subsurface S ⊂ Σg.

For any such pair, there are simple closed curves ã, b̃ on (Σg, Z) which are isotopic to a and b after

forgetting Z and so that ã ∪ b̃ bounds a subsurface S̃ ⊂ (Σg, Z) which does not contain points of Z.

We call the corresponding mapping class TãT
−1

b̃
a strict bounding pair map. It is easy to see that

TãT
−1

b̃
∈ Irel(Σg, Z),

and hence Irel(Σg, Z) is generated by strict bounding pair maps and K.

Let TãT
−1

b̃
be a strict bounding pair map and let c ⊂ (Σg, Z) be a simple closed curve. Since

[ã] = [̃b] as elements of H1(Σg;Z/2Z), we find

∆φ(TãT
−1

b̃
, c) = φ(TãT

−1

b̃
(c))− φ(c)

= φ(c) + 〈c, ã〉φ(ã)− 〈c, b̃〉φ(b)− φ(c)

= 〈c, ã〉(φ(ã)− φ(̃b)).
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Since ã ∪ b̃ is a strict bounding pair, the bounded subsurface S̃ has two boundary components and

no punctures and hence has even Euler characteristic. By homological coherence (Lemma 2.4.3),

φ(ã) = φ(̃b) (mod 2). The above then shows that ∆φ(TãT
−1

b̃
) = 0 as required.

It remains to show that ∆φ(f, c) = 0 for f ∈ K arbitrary. For this, it suffices to show that the

restriction of ∆φ to PB(Σg, Z) factors through Ψrel. As noted in the proof of Proposition 3.2, the

group PB(Σg, Z) is generated by elements of the form TaiT
−1
a′i

, where ai ∪ a′i cobound an annulus on

Σg containing a unique point pi ∈ Z. Formula (4) above exactly shows that ∆φ factors through Ψrel

for elements of this form, and the claim for g ≥ 3 follows.

For g = 2, the Torelli group is instead generated by “separating twist maps”. A similar argument

shows that the result holds in this case as well. �

5. The action of Torelli on framings

5.1. The Torelli action. The results of the previous section imply that if f ∈ PMod(Σg, Z) preserves

a framing φ, then Θφ(Ψrel(f)) = 0. To establish the opposite containment, we must understand how

ker(Ψrel) acts on the set of framings. With Theorem C in mind, we work here in the setting of a

surface Σg,n with n ≥ 1 boundary components, equipped with a relative framing φ.

If framings φ and ψ are relatively isotopic, then by definition they restrict to the same framing of

∂Σg,n. Proposition 5.1 below shows that in this case, orbits are classified by the data of a “q-vector.”

To define this object, let B = {x1, . . . , yg, a2, . . . , an} be a distinguished geometric basis for Σg,n

(c.f. Section 2.3). We call the simple closed curves {x1, . . . , yg} the absolute elements, and the arcs

{a2, . . . , an} the relative elements. The q-vector ~q(B, φ) ∈ (Z/2Z)2g is the element

~q(B, φ) = (φ(x1), . . . , φ(yg)) (mod 2).

Proposition 5.1. Fix g ≥ 2 and n ≥ 1, and let φ and ψ be relative framings of Σg,n that restrict to the

same framing of ∂Σg,n. Suppose moreover that Arf(φ) = Arf(ψ) and that there exists a distinguished

geometric basis B such that ~q(B, φ) = ~q(B, ψ). Then there exists f ∈ Irel(Σg,n) such that f · φ = ψ.

Proof. The strategy is as follows: starting with the distinguished geometric basis B, we successively

modify the ψ-winding numbers of elements b ∈ B while preserving the relative homology classes. Under

the hypotheses of the proposition, we will find that it is possible to construct a new distinguished

geometric basis B′ such that φ(b) = ψ(b′) for all pairs of corresponding elements b ∈ B, b′ ∈ B′, and

moreover [b] = [b′] in H1(Σg,n, ∂Σg,n;Z) for all such pairs. Then a mapping class f taking B to B′

will necessarily act trivially on H1(Σg,n, ∂Σg,n;Z) and will also satisfy f · φ = ψ. Throughout, we will

discuss the notion of a “marking” of H1(Σg,n, ∂Σg,n;Z), by which we mean a specified ordered basis.

Step 1: absolute elements. We first modify the absolute elements {x1, . . . , yg} ∈ B using an

operation called a “connect–sum,” defined as follows: given some absolute element b of the form

b = xi, yi, we choose an index j 6= i and consider the boundary Sj of a regular neighborhood of xj ∪ yj .
It is possible to choose an arc ε connecting the left side of b to Sj that is otherwise disjoint from

all elements of B. The connect–sum b′ is then the curve obtained as the third boundary component

of a regular neighborhood of b ∪ ε ∪ Sj (the other boundary components being b and Sj). By the



14 AARON CALDERON AND NICK SALTER

xj

yj
Sj

ε
b

b′

Figure 1. The connect-sum operation used in Step 1 of Proposition 5.1.

homological coherence property (Lemma 2.4.3), φ(Si) = 1 when oriented with xj , yj to the right (i.e.

with b′ to the left). Applying homological coherence to the pair of pants P bounded by b, b′, Sj , we find

φ(b′) = φ(b) + φ(Sj) + 1 = φ(b) + 2

when b′ is oriented with P to the right (i.e. when [b] = [b′]). Likewise, if one takes ε to be an arc

connecting the right side of b to Sj , the resulting b′ satisfies φ(b′) = φ(b)− 2.

The set of curves and arcs obtained by replacing b with b′ is still a distinguished geometric

basis determining the same marking of H1(Σg,n, ∂Σg,n;Z). By hypothesis, ~q(B, φ) = ~q(B, ψ) and so

φ(b) = ψ(b) (mod 2). Thus by repeated use of the above operations, we can replace B with a new

distinguished geometric basis B′abs such that φ(b) = ψ(b′) for each pair of matching absolute elements

b, b′.

Step 2: relative elements. It remains to adjust the relative elements a2, . . . , an of B′abs so that

their ψ–winding numbers match the φ–winding numbers of the relative elements of B. By hypothesis,

Arf(φ) = Arf(ψ). Since also ~q(B, φ) = ~q(B, ψ), it follows that the “relative Arf invariants”

RelArf(γ) =

n∑
i=2

(γ(ai) + 1
2 )(γ(∆i) + 1) (mod 2)

must be equal for γ = φ, γ = ψ. The equality of relative Arf invariants implies that there must be an

even number of indices j for which φ(∆i) = ψ(∆i) is even and φ(aj) 6= ψ(aj).

For a pair of indices j1, j2 with ψ(∆j1) and ψ(∆j2) both even, we choose a curve d such that

i(d, b) = 1 if b = aj1 or b = aj2 , and otherwise equals zero. Such d necessarily bounds a pair of pants

with the other boundary curves given by ∆j1 and ∆j2 . By hypothesis, since ψ(∆j1) and ψ(∆j2) are

both even, the homological coherence property (Lemma 2.4.3) implies that ψ(d) is odd. Thus applying

the twist Td alters the parities of ψ(aj1), ψ(aj2) while leaving all other ψ-values, as well as the marking

of H1(Σg,n, ∂Σg,n;Z), fixed.

If ψ(∆j) is odd, then the parity of ψ(aj) can be altered by applying T∆j
; again this leaves the

other ψ values and the marking fixed. At this point, there are equalities φ(ai) = ψ(ai) (mod 2) for

all relative elements ai. By performing a series of connect–sum moves to the arcs as in the absolute

case, we can adjust the integral values of ψ(ai) in increments of 2 while preserving the homology

classes. At the end of this procedure, we have produced a distinguished geometric basis B′ such that

φ(b) = ψ(b′) for all pairs of matching elements b ∈ B, b′ ∈ B′, and such that B and B′ determine
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the same marking. Letting f ∈ Mod(Σg,n) be such that f(B) = B′, we find that f ∈ Irel(Σg,n) and

f · φ = ψ as required. �

5.2. Concluding the proof of Theorems A and C. We are now in a position to complete the proof

of Theorems A and C. As discussed in the introduction, there is a homomorphism pφ : Mod(Σg,n)[φ]→
PMod(Σg, Z)[φ], and so it suffices to establish the result in the setting of Mod(Σg,n)[φ]. This follows

from Proposition 5.2 below.

Proposition 5.2. Let φ be a relative framing of Σg,n. Then there is an equality

Ψrel(Mod(Σg,n[φ])) = ker(Θφ).

Proof. The containment Ψrel(Mod(Σg,n)[φ]) 6 ker(Θφ) is clear from the properties of Θφ established

in Section 4 (c.f. Remark 4.2 and Lemma 4.4).

To establish the opposite containment, let A ∈ ker(Θφ) be given; then A lifts to a mapping class

f ∈ Mod(Σg,n). By Lemmas 4.4 and 4.1, φ(f(c)) = φ(c) (mod 2) for every simple closed curve c ⊂ Σg.

In particular, if B is any distinguished geometric basis, then ~q(B, φ) = ~q(B, f · φ).

As Mod(Σg,n) preserves the Arf invariant (Proposition 2.3), we have that Arf(φ) = Arf(f · φ).

Now since φ and f · φ restrict to the same framing of ∂Σg,n, we can apply Proposition 5.1 to see

that there is an element g ∈ Irel(Σg,n) such that g · (f · φ) = φ. The mapping class gf satisfies

Ψrel(gf) = Ψrel(f) = A and gf · φ = φ as required. �

6. More on Θφ and its kernel

Theorems A and C give a uniform description of the homological action of framed mapping class

groups valid for arbitrary framings. We find it interesting that despite this, the crossed homomorphism

Θφ itself behaves quite differently depending on some arithmetic properties of φ. For i = 1, . . . , n,

define

κi = −1− φ(∆i);

note that in the case where φ is induced from a differential in the stratum ΩMg(κ), this agrees with

the definition of κi given there. Define r = gcd(κi).

To conclude this note, we offer below in Proposition 6.4 a more explicit description of ker(Θφ) which

makes apparent the different structure that appears in the regimes of r even and r odd. Recall from

Section 4.2 that by definition,

PRelAut(H1(Σg, Z;Z)) = Hom(H̃0(Z;Z), H1(Σg;Z)).

We define the element vκ ∈ H0(Z;Z) by vκ :=
∑n
i=1 κipi. We can use vκ to define a homomorphism

v∗κ : PRelAut(H1(Σg, Z;Z))→ H1(Σg;Z/2Z)

by the formula

v∗κ(A)(x) = 〈A(vκ), x〉 (mod 2).

Note that vκ (mod 2), and hence v∗κ, is trivial if all κi ∈ κ are even.
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Lemma 6.1. Restricted to PRelAut(H1(Σg, Z;Z)), there is an equality

Θφ = v∗κ.

In particular, if r is even, then Θφ is identically zero on PRelAut(H1(Σg, Z;Z)).

Proof. We evaluate the expression Θφ(A)(x) for A ∈ PRelAut(H1(Σg, Z;Z)) and x ∈ H1(Σg;Z/2Z)

arbitrary. By Proposition 4.4, we are free to choose f ∈ PMod(Σg, Z) representing our given element

A ∈ PRelAut(H1(Σg, Z;Z)), and by the cocycle condition (2), it suffices to restrict attention to A a

member of some generating set for PRelAut(H1(Σg, Z;Z)).

As

PRelAut(H1(Σg, Z;Z)) ∼= Hom(H̃0(Z;Z), H1(Σg;Z)),

we see that PRelAut(H1(Σg, Z;Z)) is generated by elements Pi,a sending the ith factor to a primitive

element a ∈ H1(Σg;Z) and acting trivially on the remaining factors. Such elements are represented by

mapping classes Πi,ã given as point-pushes TãiT
−1
ã′i

as in (4). Thus we must evaluate ∆φ(Πi,a, c̃) for c̃

an arbitrary simple closed curve with [c̃] = c. Formula (4) shows that

∆φ(Πi,ã, c̃) = v∗κ(Pi,a(c)),

and the result holds in general by linearity. �

To better understand the case of r even, we observe that homological coherence (Lemma 2.4.3)

implies that if φ is an framing of (Σg, Z) with r even, then the assignment

q(x) = φ(x̃) + 1 (mod 2), (8)

where x̃ is a simple closed curve with [x̃] = x in H1(Σg;Z/2Z), determines a classical spin structure.

See also Remark 4.3 or [Joh80, Theorem 1A] for more details.

We let Sp(2g,Z)[q] 6 Sp(2g,Z) denote the stabilizer of a classical spin structure q. This can be

extended to define the subgroup

PAut(H1(Σg, Z;Z))[q] 6 PAut(H1(Σg, Z;Z))

as the full preimage of Sp(2g,Z)[q] in PAut(H1(Σg, Z;Z)).

Lemma 6.2. Suppose that r is even, and define q := φ (mod 2) + 1 as in (8). Then there is an

equality

ker(Θφ) = PAut(H1(Σg, Z;Z))[q].

Proof. We recall Remark 4.3: if r is even, then q := φ (mod 2) is well-defined as a function on

H1(Σg;Z/2Z). Thus ker(Θφ) 6 PAut(H1(Σg, Z;Z))[q]. To establish the opposite containment, it

suffices to show that ker(Θφ) contains PRelAut(H1(Σg, Z;Z)), and this follows from the second

assertion of Lemma 6.1. �

Lemma 6.2 implies that the constraint imposed by Θφ is “concentrated” on the action on absolute

homology. For r odd, we find that the opposite is true: Lemma 6.1 implies that Θφ is nontrivial on

PRelAut(H1(Σg, Z;Z)), while Lemma 6.3 below shows that no constraints are imposed on the image

of ker(Θφ) on Sp(2g,Z).
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Lemma 6.3. For r odd, there is a surjection ker(Θφ)� Sp(2g,Z).

Proof. It suffices to show that PMod(Σg, Z)[φ] surjects onto Sp(2g,Z) via Ψrel. The group Sp(2g,Z)

is generated by transvections, automorphisms of the form Tv(x) = x+ 〈x, v〉v, as v ranges over the

set of primitive elements in H1(Σg,Z). Thus it suffices to construct, for such an arbitrary primitive

element v, a Dehn twist Tc such that [c] = v in H1(Σg;Z) and such that Tc ∈ PMod(Σg, Z)[φ]. By the

twist–linearity formula (Lemma 2.4.2), it is sufficient to construct a curve c such that [c] = v and such

that φ(c) = 0.

Let c′ be an arbitrary simple closed curve representing v. If φ(c′) is even, the techniques of

Proposition 5.1 can be used to construct a curve c with [c] = [c′] = v and with φ(c) = 0. Suppose then

that φ(c′) is odd. Since r is odd, there is some point pi for which the associated κi is odd. Let α be a

simple path based at pi that crosses c′ exactly once, and let Πα denote the associated point-pushing

map. Then (4) implies that φ(Πα(c′)) is even (and also [Πα(c′)] = [c′]), and hence the argument above

can be applied to Πα(c). �

We summarize the results of this section as follows.

Proposition 6.4. For r even, there is an isomorphism

ker(Θφ) ∼= Sp(2g,Z)[q] n PRelAut(H1(Σg, Z;Z)),

with q the classical spin structure associated to φ. For r odd, ker(Θφ) can be described by the (non-split)

extension

1→ ker(v∗κ)→ ker(Θφ)→ Sp(2g,Z)→ 1.
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