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In this paper we give the first example of a surface bundle over a surface with
at least three fiberings. In fact, for each n ≥ 3 we construct 4-manifolds E
admitting at least n distinct fiberings pi : E → Σgi as a surface bundle over a
surface with base and fiber both closed surfaces of negative Euler characteristic.
We give examples of surface bundles admitting multiple fiberings for which the
monodromy representation has image in the Torelli group, showing the necessity of
all of the assumptions made in the main theorem of our recent paper [Sal14]. Our
examples show that the number of surface bundle structures that can be realized
on a 4-manifold E with Euler characteristic d grows exponentially with d .
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1 Introduction

Let M3 be a 3-manifold fibering over S1 with fiber Σg (g ≥ 2). If b1(M) ≥ 2,
Thurston1 showed that there are in fact infinitely many ways to express M as a surface
bundle over S1 , with finitely many fibers of each genus h ≥ 2 [Thu86]. In contrast,
F.E.A. Johnson showed that every surface bundle over a surface Σg → E4 → Σh

with g, h ≥ 2 has at most finitely many fiberings (see [Joh99], [Hil02], [Riv11] or
Proposition 3.1 for various accounts). It is possible to deduce from Johnson’s work
that there is a universal upper bound on the number of fiberings that any surface
bundle over a surface E4 can have, as a function of the Euler characteristic χ(E).
Specifically, Proposition 3.1 shows that if E4 satisfies χ(E) = 4d , then E has at most
σ0(d)(d + 1)2d+6 fiberings as a surface bundle over a surface, where σ0(d) denotes the
number of positive divisors of d .

The simplest example of a surface bundle over a surface with multiple fiberings 2 is that
of a product Σg×Σh , which has the two projections onto the factors Σg and Σh . Prior

1While the theory of the Thurston norm gives the most complete picture of the ways in which
a 3-manifold fibers over S1 , earlier examples of this phenomenon were found by J. Tollefson
[Tol69] and D. Neumann [Neu76].

2The most straightforward notion of “distinction” for fiberings is that of fiberwise diffeo-
morphism. In this paper, we will also have occasion to consider a strictly stronger notion known

http://www.ams.org/mathscinet/search/mscdoc.html?code=57R22
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to the results of this paper, there was essentially one general method for constructing
nontrivial examples of surface bundles over surfaces with multiple fiberings, and they
all yielded bundles with only two known fiberings (although it is in theory possible
that these examples could admit three or more, cf Question 3.4). Such examples were
first constructed by Atiyah and Kodaira (see [Ati69], [Kod67], as well as the account
in [Mor01]), and proceeded by taking a fiberwise branched covering of particular
“diagonally embedded” submanifolds of products of surfaces.

It is worth remarking that if one is willing to relax the requirement that both the base
and fiber surface have negative Euler characteristic, then it is possible to construct
examples of 4-manifolds E admitting infinitely many fibrations over the torus T2 . If
M3 is a 3-manifold admitting infinitely many fibrations over S1 , then E = M3×S1 has
the required properties. However, Johnson’s result indicates that when g, h ≥ 2, the
situation is necessarily much more rigid and correspondingly richer. The mechanism
by which E = M3 × S1 admits infinitely many fiberings is completely understood
via the theory of the Thurston norm. In contrast, in the case g, h ≥ 2, entirely new
phenomena will necessarily occur.

This paucity of examples, combined with the interesting features of the known con-
structions, led to the author’s interest in surface bundles over surfaces with multiple
fiberings. In [Sal14], the author established the following theorem which shows a
certain rigidity among a particular class of surface bundles over surfaces. Let Modg

denote the mapping class group of the closed surface Σg , and let Ig denote the Torelli
group, i.e. the subgroup of Modg that acts trivially on H1(Σg,Z). The Johnson
kernel Kg is defined to be the subgroup of Ig generated by the set of Dehn twists
about separating simple closed curves. Recall that the monodromy of a surface bundle
Σg → E → B is the homomorphism ρ : π1B→ Modg recording the mapping class of
the diffeomorphism obtained by transporting a fiber around a loop in the base.

Theorem 1.1 (Uniqueness of fiberings: [Sal14], Theorem 1.2) Let π : E → B be a
surface bundle over a surface with monodromy in the Johnson kernel Kg . If E admits
two distinct structures as a surface bundle over a surface then E is diffeomorphic to
B × B′ , the product of the base spaces. In other words, any nontrivial surface bundle
over a surface with monodromy in Kg fibers as a surface bundle in a unique way.

This result would seem to reinforce the impression that surface bundles over surfaces
with multiple fiberings are extremely rare, and that examples with three or more

as “π1 -fiberwise diffeomorphism”. See Section 2 for the precise definition of π1 -fiberwise
diffeomorphism, and see Proposition 2.2, as well as Remark 2.4, for a discussion of why we
adopt this convention.
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fiberings should be even more exotic. However, the constructions of this paper show
that there is in fact a great deal of flexibility in constructing surface bundles over
surfaces with many fiberings. The following is a summary of the constructions given
in Section 2.

Theorem 1.2 (Existence of multiple fiberings)

(1) For each n ≥ 3 and each g1 ≥ 2 there exists a 4-manifold E , integers g2, . . . , gn

(which can be chosen so that g1, . . . gn are pairwise distinct), and maps pi : E →
Σgi(i = 1, . . . , n) realizing E as the total space of a surface bundle over a surface
in at least n ways, distinct up to π1 -fiberwise diffeomorphism. If gi 6= gj , the
fibers of pi and pj have distinct genera; consequently pi and pj are inequivalent
up to fiberwise diffeomorphism whenever gi 6= gj .

(2) There exist constructions as in (1) for which at least one of the monodromy
representations ρi : π1Σgi → Modhi has image contained in the Torelli group
Ihi ≤ Modhi .

(3) There exists a sequence of surface bundles over surfaces En for which χ(En) =

24n− 8 and such that En admits 2n fiberings as a surface bundle over a surface,
distinct up to π1 -fiberwise diffeomorphism.

The bound of Proposition 3.1 makes it sensible to define the following function:

N(d) := max
{

n there exists E4, χ(E) ≤ 4d, E admits n surface bundle structures
distinct up to π1-fiberwise diffeomorphism.

}
Phrased in these terms, (3) of Theorem 1.2, in combination with the upper bound of
Proposition 3.1 implies that

2(d+2)/6 ≤ N(d) ≤ σ0(d)(d + 1)2d+6,

where σ0(d) denotes the number of positive divisors of d . This should be compared
to the previous lower bound N(d) ≥ 2.

An additional corollary of Theorem 1.2 is that it demonstrates the optimality of Theorem
1.1. The Johnson filtration is a natural filtration Ig(k) on Modg recording how mapping
classes act on nilpotent quotients of π1Σg . The first three terms in the filtration are
given by Ig(1) = Modg , and Ig(2) = Ig , and Ig(3) = Kg . It follows from Theorem
1.2 (2) that Theorem 1.1 is optimal with respect to the Johnson filtration, in that there
exist surface bundles over surfaces with multiple fiberings with monodromy contained
in Ig and Modg .

Acknowledgements. I would like to thank Dan Margalit for extending an invitation to
the 2014 Georgia Topology Conference where this project was begun, for bringing the
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Korkmaz construction to our attention and for other helpful discussions and comments.
I would also like to thank Inanc Baykur, Jonathan Hillman, Andy Putman, and Bena
Tshishiku for helpful conversations and suggestions. I would like to thank the referees
for their detailed suggestions and corrections. Lastly I would like to thank Benson
Farb for his continued support and guidance, as well as for extensive comments and
corrections on this paper.

2 The examples

The basic construction. To illustrate our general method we start by describing a
construction of a surface bundle over a surface E admitting four fiberings p1, p2, p3, p4 :
E → Σg . The monodromy of this bundle was first considered by Korkmaz3, as
an example of an embedding of a surface group inside the Torelli group. Related
constructions were also used by Baykur and Margalit to construct Lefschetz fibrations
that are not fiber-sums of holomorphic ones in [BM12]. For what follows it will be
necessary to give a direct topological construction of the total space.

The method of construction is to perform a “section sum” of two surface bundles
over surfaces (see [BM13] for a discussion of the section sum operation, including
an equivalent description on the level of the monodromy representation). Let Σg1 →
M1 → Σh and Σg2 → M2 → Σh be two surface bundles over a base space Σh , and
for i = 1, 2 let σi : Σh → Mi be sections of M1,M2 . If the Euler numbers of σ1, σ2

are equal up to sign, then it is possible to perform a fiberwise connect-sum of M1,M2

along tubular neighborhoods of Im(σi) (possibly after reversing orientation), giving
rise to a surface bundle Σg1+g2 → M → Σh . In what follows, we will give a more
detailed description of this construction and explain how it can be used to produce
surface bundles over surfaces with many fiberings.

Remark 2.1 We have chosen to present an example here where all of the fiberings
have the same genus. In fact, the four fiberings presented here are equivalent up to
fiberwise diffeomorphism, but not up to π1 -fiberwise diffeomorphism. We stress here
that this is not an essential feature of the general method of construction described
in the paper, but merely the simplest example which requires the least amount of
cumbersome notation. See Remark 2.4 for more on why π1 -fiberwise diffeomorphism
is an important notion of equivalence for our purposes, and see Theorem 2.12 for the
most general method of construction, which can produce 4-manifolds that fiber as

3Unpublished; communicated to the author by D. Margalit.
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Figure 1: A cartoon rendering of E , depicted as shaded. The boundaries are identified.

surface bundles in arbitrarily many ways with surfaces of distinct genera. It is worth
noting that if E4 fibers as a Σg -bundle and a Σh -bundle, for g 6= h, then clearly these
two fiberings are distinct, up to bundle isomorphism, fiberwise diffeomorphism, or
π1 -fiberwise diffeomorphism, since the fibers are not even homeomorphic!

For g ≥ 2, consider the product bundle E1 = Σg × Σg with projection maps pV , pH :
E1 → Σg onto the first (resp. second) factor. Let N be an open tubular neighborhood
of the diagonal ∆. The manifold E is then constructed as the double

E = (E1 \ N) ∪∂N (E1 \ N),

where the boundary components ∂N are identified via the identity map. We let E+,E−

denote the “upper” and “lower” copies of E1 \ N contained in E . See Figure 1.

E is equipped with four fiberings p1, p2, p3, p4 : E → Σg . These correspond to the
four combinations of horizontal and vertical fiberings on E+ and E− . For each pi , we
will exhibit collar neighborhoods of ∂E± relative to which the given pi will be smooth.

To describe these collar neighborhoods, we endow Σg with the structure of a Riemann
surface. Via uniformization, this gives rise to a Riemannian metric, inducing a path
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metric d on Σg . Relative to d , there is a neighborhood N of the diagonal ∆, for
suitably small ε, given via

N = {(z,w) ∈ Σg × Σg | d(z,w) < ε}.

The boundary ∂N is parameterized via the Riemannian exponential map expz at each
z ∈ Σg (for convenience we locally parameterize the circle of radius ε about 0 ∈ TzΣg

using the complex exponential):

∂N = {(z,w) | |z− w| = ε}
= {(z, expz(εe

iθ)) | θ ∈ [0, 2π)}
= {(expz(−εeiθ), z) | θ ∈ [0, 2π)}.

p1 is defined using the vertical projection pV on each component. A suitable collar
neighborhood (on either component) is given locally (for t ∈ [1, 2)) by

θV (z, ε, t) = (z, expz(tεe
iθ)).

Similarly p2 is defined using the horizontal projection pH on each component. A
suitable collar neighborhood of either boundary component is now given locally (again
for t ∈ [1, 2)) by

θH(z, ε, t) = (expz(−tεeiθ), z).

The remaining projections p3, p4 are defined using pV on one component and pH

on the other. To realize these as smooth maps it will be necessary to modify the
choice of boundary identification made in the construction of E . Consider the isotopy
ht : ∂N × [0, 1]→ ∂N given locally by

ht(z, expz(εe
iθ)) = (expz(−tεeiθ), expz((1− t)εeiθ))).

More intrinsically, ht acts by rigidly translating the pair (z,w) a distance tε along the
geodesic ray from w to z; from this point of view it is clear that ht is a diffeomorphism,
and so h is indeed an isotopy.

As h0 = id, there is a diffeomorphism

f : E → (E1 \ N) ∪h1 (E1 \ N).

p3 is defined on (E1 \ N) ∪h1 (E1 \ N) using pV on the first component and pH on the
second. Note that

pV (z, expz(εe
iθ)) = (pH ◦ h1)(z, expz(εe

iθ)) = z,
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so p3 is well-defined. Moreover, p3 is smooth relative to the collar neighborhoods θV

on the first component and θH on the second.

Completely analogously, p4 is defined on (E1 \ N) ∪h1 (E1 \ N) using pH on the first
component and pV on the second. See Figures 2 and 3 for some depictions of the
fibering p4 .

It is clear that each pi is a proper surjective submersion; consequently by Ehresmann’s
theorem each pi realizes E as the total space of a fiber bundle. In each case the base
space is Σg , while the fiber is Σg#Σg ∼= Σ2g .

We next recall the notion of π1 -fiberwise diffeomorphism from [Sal14]. We say that
two fiberings p1 : E → B1 , p2 : E → B2 of a surface bundle are π1 -fiberwise
diffeomorphic if

(1) The bundles p1 : E → B1 and p2 : E → B2 are fiberwise diffeomorphic. That
is, there exists a commutative diagram

E
φ //

p1

��

E

p2

��
B1 α

// B2

with φ, α diffeomorphisms.
(2) The induced map φ∗ preserves π1F1 , i.e. φ∗(π1F1) = π1F1 (here, as always,

Fi denotes a fiber of pi ).

In [Sal14], we gave the following criterion for two bundle structures to be distinct up
to π1 -fiberwise diffeomorphisms (Proposition 2.1 of that paper):

Proposition 2.2 Suppose E is the total space of a surface bundle over a surface in two
ways: p1 : E → B1 and p2 : E → B2 . Let F1,F2 denote fibers of p1, p2 respectively.
Then the following are equivalent:

(1) The fiberings p1, p2 are π1 -fiberwise diffeomorphic.

(2) The fiber subgroups π1F1, π1F2 ≤ π1E are equal.

If deg(p1 × p2) 6= 0 then the bundle structures p1 and p2 are distinct.

With this characterization in mind, we will establish the following theorem.

Theorem 2.3 The fiberings pi : E → Σg for i = 1, 2, 3, 4 constructed above are
pairwise distinct up to π1 -fiberwise diffeomorphisms.
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Figure 2: The fibering p4 : E → Σg . The fiber over w ∈ Σg is shaded. On the upper portion
of the bundle it intersects each of the pV -fibers in a single point.

Proof To show that the projections pi as defined are pairwise distinct, we will appeal
to condition (2) of Proposition 2.2. For each i, the long exact sequence in homotopy
of a fibration reduces to a short exact sequence

1 // π1Fi // π1E
pi,∗ // π1Σg // 1.

To show that π1Fi and π1Fj are distinct for distinct i, j, it therefore suffices to produce
an element x ∈ π1Fi such that pj,∗(x) 6= 1 in π1Σg . Let i and j be distinct. Without
loss of generality, suppose that pi is defined via pV on E+ , while pj is defined on E+

via pH . Let Fi and Fj denote generic fibers of pi, pj respectively. Both of Fi ∩E+ and
Fj∩E+ are homeomorphic to Σ1

g , the surface of genus g and one boundary component.

Let γ ⊂ Σ1
g be a non-peripheral loop representing a nontrivial element of π1Σ1

g , and
identify γ with a loop in Fi . Then [γ] ∈ π1Fi by construction (and is nontrivial),
while pj(γ) = pH(γ) = γ . Here γ is viewed as a loop in Σg under the natural
inclusion of Σ1

g . As γ was chosen to be non-peripheral and essential in Σ1
g , it remains

homotopically nontrivial in Σg . It follows that π1Fi and π1Fj are distinct for all distinct
i, j ∈ {1, 2, 3, 4}. Per Proposition 2.2, pi and pj are not π1 -fiberwise diffeomorphic as
claimed.
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Figure 3: A second cartoon sketch of the fibering p4 .
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Remark 2.4 As remarked above, the four fiberings constructed above are in fact
fiberwise diffeomorphic, by applying factor-swapping involutions (x, y) → (y, x) on
one or more of the components E± . This same phenomenon appears for trivial bundles
Σg × Σh . When g 6= h the projections onto the first and second factors clearly yield
inequivalent bundles, as the fibers are not even the same manifold. On the other hand,
when g = h, the factor-swapping involution yields a bundle isomorphism between the
horizontal and vertical projections of Σg×Σg . However, in both of these examples the
fiberings are not π1 -fiberwise diffeomorphic. Moreover, Proposition 2.2 shows that
π1 -fiberwise diffeomorphism is equivalent to the natural notion of equivalence on the
group-theoretic level. For this reason, we believe that π1 -fiberwise diffeomorphism
is an important notion of equivalence for surface bundles over surfaces. By using
the techniques of Theorem 2.12, one can construct surface bundles over surfaces with
arbitrarily many fiberings for which the fibers all have distinct genera, and therefore
certainly give examples of bundles where the fiberings are not fiberwise diffeomorphic.

Remark 2.5 Via the Seifert-van Kampen theorem, it is possible to compute

(1) π1E ∼= Γ ∗π1UTΣg Γ,

where Γ = π1(Σg × Σg \ N) and UTΣg denotes the unit tangent bundle. Let

$1 : Σg × Σg \ N → Σg

denote the vertical projection, and define $2 similarly as the horizontal projection.
Relative to the isomorphism of (1), the induced maps of the four fiberings (pi)∗ : π1E →
π1Σg correspond to the four amalgamations ($i)∗ ∗ ($j)∗ : Γ ∗π1UTΣg Γ→ π1Σg .

As remarked above, the bundle p1 : E → Σg was originally considered by Korkmaz
(see Footnote 1 of [BM12]), who constructed its monodromy representation as an
example of an embedding ρ : π1Σg → I2g . We now give a description of this
embedding. Let Mod1

g denote the mapping class group of a surface with one boundary
component (where as usual the isotopies are required to fix the boundary component
pointwise). We will denote this boundary curve by η . Consider the embedding

f : π1(UT(Σg))→ Mod1
g×Mod1

g

α 7→ (Push(α),F−1 ◦ Push(α) ◦ F),

where F : Σ1
g → Σ1

g is any orientation-reversing diffeomorphism. Compose this with
the map

h : Mod1
g×Mod1

g → Mod2g
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obtained by juxtaposing the mapping classes (x, y) on the two halves of Σ2g . Let γ ∈
π1(UT(Σg)) denote the loop around the circle fiber in UTΣg in the positive direction
as specified by the orientation on Σg . The map Push(γ) ∈ Mod(Σ1

g) corresponds to a
positive twist about η . We claim that h(f (γ)) = id. Indeed, the notion of “positive”
twist is relative to a choice of orientation, and after the boundary components of the
two copies of Σ1

g have been identified, the two twists correspond to a positive and
negative twist about η , and so the result is isotopic to the identity.

The element γ ∈ π1(UT(Σg)) generates a normal subgroup, and the quotient π1(UT(Σg))/〈γ〉 ≈
π1Σg . Therefore, we arrive at an embedding ρ : π1Σg → Mod2g as follows.

π1(UT(Σg))
f //

��

Mod1
g×Mod1

g
h // Mod2g

π1Σg

ρ

33

Lemma 2.6 The image of ρ is contained in the Torelli group I2g .

Proof Let {α1, β1, . . . , αg, βg} be a collection of simple closed curves for which
the homology classes {[α1], . . . , [βg]} comprise a generating set for H1(Σ1

g). Let
F : Σ1

g → Σ1
g be the orientation-reversing map in the definition of f . We can then view

Σ2g as Σ1
g ∪∂Σ1

g
F(Σ1

g). Define

B = {α1, . . . , βg,F(α1), . . . ,F(βg)}.

It follows that the homology classes {[α1], . . . , [βg], [F(α1)], . . . , [F(βg)]} comprise
a generating set for H1(Σ2g). To determine whether a mapping class φ ∈ Mod(Σ2g) is
contained in I2g , it suffices to show that the homology class of each αi, βi,F(αi),F(βi)
is preserved by φ. Up to isotopy, η is preserved by the action of π1Σg via ρ, so it
suffices to consider how π1Σg acts on both copies of Σ1

g . If x ∈ π1Σg is given, then
on Σ1

g , the effect of ρ(x) is to push the boundary component around a loop in Σg in
the homotopy class of x . As is well-known (see, for example, [FM12], section 6.5.2),
the curves η and ρ(x)(η) are homologous, for any choice of x ∈ π1Σg and η a simple
closed curve on Σ1

g . In particular,

[ρ(x)(α1)] = [α1], . . . , [ρ(x)(βg)] = [βg],

where these homologies hold in Σ1
g and so necessarily also in Σ2g . The element

x ∈ π1Σg acts on the other half of Σ2g via conjugation by F , and so similarly the
curves F(α1), . . . ,F(βg) are preserved on the level of homology. As we have shown
that each homology class of a generating set for H1(Σ2g) is preserved under Im(ρ), it
follows that Im(ρ) ≤ I2g as claimed.
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Theorem 2.7 The monodromy of any of the surface bundle structures pi : E →
Σg (i = 1, 2, 3, 4) is the map ρ : π1Σg → I2g described above.

Proof We begin by considering p1 . Let x ∈ π1Σg be given. The image of the
monodromy representation µ(x) ∈ Mod2g is computed by selecting some immersed
representative γ for x , considering the pullback of the bundle E → Σg along the
immersion map S1 → Σg specified by γ , and determining the monodromy of this
fibered 3-manifold.

The bundle p1 : E → Σg is constructed so that the fiber over w ∈ Σg consists of two
disjoint copies of Σg connect-summed along disks centered at w. This means that
as one traverses a loop γ ⊂ Σg , the effect of the monodromy is to drag the cylinder
connecting the two halves along the loops in either half corresponding to γ . As a
mapping class, this is exactly the map ρ(x) described above.

Now let π1E = Γ∗π1UTΣg Γ as in Remark 2.5. There is an involution ι : Γ→ Γ induced
from the factor-swapping map on Σg×Σg\ν(∆). Let $1, $2 denote the vertical (resp.
horizontal) projection Σg×Σg \ (ν(∆))→ Σg . Then ($i)∗ ◦ ι = ($i+1)∗ for i = 1, 2
interpreted mod 2. As ι preserves π1UTΣg , it can be extended to an automorphism
of either factor of π1E = Γ ∗π1UTΣg Γ. In other words, the four surface-by-surface
group extension structures on π1E are in the same orbit of the action of Aut(π1E).
Consequently, the monodromy representations r : π1Σg → Out(π1Σ2g) are the same.
As r is identified with the topological monodromy representation ρ : π1Σg → Mod2g

under the Dehn-Nielsen-Baer isomorphism Mod2g ≈ Out+(π1Σ2g), this shows that
any of the four monodromy representations are equal.

We summarize the results of the basic construction in the following theorem.

Theorem 2.8 For any g ≥ 2, there exists a 4-manifold E which admits four fiberings
pi : E → Σg, i = 1, 2, 3, 4 as a Σ2g -bundle over Σg that are pairwise distinct up to
π1 -fiberwise diffeomorphism. For each i, the monodromy ρi : π1Σg → Mod2g of
pi : E → Σg is contained in the Torelli group I2g .

Surface bundles over surfaces with n distinct fiberings. We next extend the con-
struction given in the previous subsection to yield examples of surface bundles over
surfaces with n distinct (up to π1 -fiberwise diffeomorphism) fiberings for arbitrary n.
Let X be a connected bipartite graph with vertex set V(X) and edge set E(X) of cardi-
nalities C,D respectively. As X is bipartite, it admits a coloring c : V(X) → {+,−}
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Figure 4: An example of a graph X equipped with a labeling of the half-edges by elements of
G = Z/3 ≈ {1, ω, ω2} the group of third roots of unity.

in such a way that if v is colored with ±, then all the vertices w adjacent to v are
colored ∓. Consequently we define δ± : E(X) → V(X) be the map which sends e to
the vertex v ∈ e colored ±.

Let G be a finite group with |G| = n, where n is an integer such that every v ∈ V(X)
has valence at most n. Assign labelings g± : E(X)→ G to the half-edges of X , subject
to the restriction that g± is an injection when restricted to

{e ∈ E(X) | δ±(e) = v}

for any v ∈ V(X). In other words, the set of half-edges adjacent to any vertex must
have distinct labelings. See Figure 4.

Let Σ be a surface admitting a free action of G, such as the one depicted in Figure
5. For each v ∈ V(X), consider the 4-manifold Ev

1 = Σ × Σ, oriented so that the
orientations on Ev

1 and Ew
1 disagree whenever c(v) 6= c(w). Each Ev

1 admits two
projections pv,1, pv,2 : Ev

1 → Σg onto the first (resp. second) factor.

For x ∈ G, let
∆x = {(w, x · w) | w ∈ Σ} ⊂ Σ× Σ

be the graph of x : Σ→ Σ. By abuse of notation we can view ∆x as embedded in any
of the Ev

1 . Let ∆ be the disconnected surface embedded in E1 =
⋃

v∈V(X) Ev
1 for which

∆ ∩ Ev
1 =

⋃
v∈e

∆gc(v)(e).
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Figure 5: A surface Σ admitting a free action of G = {1, ω, ω2} . With respect to the labeling
in Figure 4, the fiber of Ea

2 over x ∈ Σ has neighborhoods of x, ω · x, and ω2 · x removed.

Let N denote the ε-neighborhood of ∆. There is a decomposition

N =
⋃

e∈E(X)

Ne

and a further decomposition

Ne = Ne,+ ∪ Ne,− with Ne,± ⊂ Eδ
±(e)

1 .

Each Ne,± is the ε-neighborhood of a single component of ∆.

Define
E2 = E1 \ int(N)

and, for v ∈ V(X),
Ev

2 = E2 ∩ Ev
1.

The orientation convention ensures that for each e ∈ E , the Euler numbers of the disk
bundles Ne,± are given by ±χ(Σ). Their boundaries can therefore be identified via
an orientation-reversing diffeomorphism. As in the previous construction, it will be
convenient to specify the gluing maps only up to isotopy, and as before we will take
the isotopy class of the identity.

With these conventions in place, we define the (connected oriented) 4-manifold

EX =
⋃

v∈V(X)

Ev
2
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Figure 6: A schematic rendering of the 4-manifold EX associated to the graph X of Figure 4
and the surface Σ of Figure 5. The lines connecting the components indicate how the various
Ñe are attached.

glued together as prescribed by the labeled graph X with all identifications of boundary
components in the isotopy class of the identity. Figure 5 depicts a portion of the fiber
of EX for the graph X of Figure 4. Figure 6 depicts the total space of EX . The portion
of the fiber shown in Figure 5 is the portion contained in the central component of
Figure 6.

Theorem 2.9 Let X be a finite bipartite graph, possibly with multiple edges, with
vertex set V(X) and edge set E(X) of cardinalities C,D respectively. Then,

(1) The manifold EX constructed above admits 2C fiberings pf : E → Σ as a
surface bundle over a surface, indexed by the set of maps f : V(X) → {1, 2}.
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The fiberings are pairwise-inequivalent up to π1 -fiberwise diffeomorphism.
(2) The fiber of any of the fiberings is a surface of the form Σ̃ = Σ#C#Σ1−C+D .
(3) The total space EX has the structure of a graph of groups modeled on X where

the vertex groups are free-by-surface group extensions Γ and the edge groups
are given by π1UTΣ (with notation as in Remark 2.5).

Proof Given f : V(X) → {1, 2}, define pf on each component Ev
2 via pv,f (v) . To

realize pf as a smooth map, it is necessary to specify gluing maps identifying the
various components of E2 , as well as appropriate collar neighborhoods. We proceed
exactly as in Theorem 2.8. For each x ∈ G, there is an identification of (neighborhoods
of) ∆x with ∆1 via the action of the diffeomorphism id×x−1 of Σ × Σ. Relative to
these identifications, we will speak of identifying ∂(Ne,+) and ∂(Ne,−) via id or by h1

as in Theorem 2.8. Likewise, we will speak of the collar neighborhoods θ1 and θ2 of
∂(Ne,±) (referred to as θV and θH respectively in Theorem 2.8).

The identifications are indexed via E(X). As in Theorem 2.8, identify ∂(Ne,+) and
∂(Ne,−) via id if f (δ+(e)) = f (δ−(e)) and via h1 otherwise. Then a collar neighborhood
of ∂(Ne,±) for which pf is smooth is given by θf (δ±(e)) .

The argument that each of the fiberings are distinct up to π1 -fiberwise diffeomorphism
proceeds along the same lines as in Theorem 2.3. If f1, f2 : V(X)→ {1, 2} are distinct,
then there exists at least one v for which f1(v) 6= f2(v). Arguing as in Theorem 2.3,
one produces an essential loop γ ⊂ Ev

2 contained in the fiber of f1 that projects onto
an essential loop under f2 .

By definition, a graph of groups on a graph X is constructed by connecting Eilenberg-
Mac Lane spaces K(Γv, 1) indexed by the vertices, along mapping cylinders induced
from homomorphisms φe : Γe → Γv . In our setting, for each v ∈ V(X), the space
Ev

2 is a K(π1Ev
2, 1) space, since it is the total space of a fibration Σ′ → Ev

2 → Σ,
where Σ′ is obtained from Σ by removing n open disks, one for each edge incident
to v. As the base and the fiber of this fibration are both aspherical, it follows from the
homotopy long exact sequence that Ev

2 is aspherical as well. The edge spaces are given
by ∂(Ne,±), each of which is diffeomorphic to the aspherical space UTΣ. It follows
that EX is indeed a graph of groups.

Remark 2.10 In contrast with the construction in Theorem 2.8, the monodromy
representations associated to an arbitrary EX need not be contained in the Torelli
group. For example, let X be a graph with two vertices and two edges connecting
them. We can take Σ to be a surface of genus 3. Then it is easy to find elements of
the monodromy that do not preserve the homology of the fiber. See Figure 7.
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It can also be seen from this point of view that the images of the monodromy rep-
resentations will be contained in the Lagrangian mapping class group Lg , defined
as follows. The algebraic intersection pairing endows H1(Σg,Z) with a symplectic
structure, and there is a decomposition

H1(Σg,Z) = Lx ⊕ Ly

as a direct sum, with the property that the algebraic intersection pairing restricts trivially
to Lx and to Ly . Then

Lg := {f ∈ Modg | f (Lx) = Lx}.

Suppose Σ̃ has been constructed from a finite graph X as in Theorem 2.9. Let
ρ : π1Σ→ Mod(Σ̃) be the associated monodromy. There is a Lagrangian subspace of
H1(Σ̃) of the form

L =
⊕

v∈V(X)

Lv ⊕ C,

where Lv is a Lagrangian subspace of the fiber of Ev
2 , and C ≤ H1(Σ̃) is the (pos-

sibly empty) subspace generated by the homology classes of the former boundary
components in Σ̃. By construction, for all x ∈ Lv and all g ∈ π1(Σ), the equation

ρ(g)(x) = x + c

holds in H1(Σ̃), for some appropriate c ∈ C . As C is fixed elementwise by the action
of ρ, it follows that L is indeed a ρ-invariant Lagrangian subspace.

In [Sak12], Sakasai showed that the first MMM class e1 ∈ H2(Modg,Z) vanishes
when restricted to Lg . It follows that the surface bundles over surfaces constructed
in this section all have signature zero. More generally, suppose Σg → E → Σh is a
surface bundle over a surface with monodromy representation ρ : π1Σh → Γ, where
Γ ≤ Modg is a subgroup. We can view the bundle E → Σh as giving rise to a homology
class [E] ∈ H2(Γ,Z), e.g. by taking the pushforward ρ∗([Σh]) of the fundamental
class.

Question 2.11 Do the examples of surface bundles over surfaces given in Theorem
2.9 determine nonzero classes in Lg ? For a fixed g, what is the dimension of the space
spanned in H2(Lg,Q) by the examples in Theorem 2.9 with fiber genus g?

Further constructions. It is possible to extend the constructions in Theorem 2.8 and
Theorem 2.9 to obtain examples where the base and fibers of distinct fiberings do not
all have the same genus. The author is grateful to D. Margalit for suggesting the basic
idea underlying the constructions in this subsection.
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Figure 7: The lighter curve is taken to the darker one under the monodromy action associated
to the loop on the base surface. The dark and the light curves are not homologous. The
identifications of the boundary components have been indicated by cylinders.

Theorem 2.12 Let Σ be a surface admitting a free action by a finite group G of order
n, let X be a connected bipartite graph of maximal valence n, and let f v : Σ̃→ Σv for
v ∈ V(X) be covering maps, not necessarily distinct. Then there exists a 4-manifold EX

admitting |V(X)|+ 1 fiberings p0, pv(v ∈ V(X)), with p0 : EX → Σ and pv : EX → Σv

all projection maps for surface bundle structures on E , distinct up to π1 -fiberwise
diffeomorphism. If the surfaces Σv and Σw have distinct genera, the fiberings pv, pw

are distinct up to fiberwise diffeomorphism.

Proof Let Σ0 be a closed surface of genus g that admits coverings f 1 : Σ0 → Σ1

and f 2 : Σ0 → Σ2 of degree d1, d2 respectively. For i = 1, 2, consider the graphs
Γi ⊂ Σ0 × Σi of the coverings f i . Thicken these to tubular neighborhoods Ni . Each
∂Ni is an S1 -bundle over Σ0 with Euler number χ(Σ0). By reversing the orientation
on one of the components, it is therefore possible to fiberwise connect-sum Σ0 × Σ1

and Σ0 × Σ2 along N1 and N2 to make the 4-manifold E .

Let pV : E2 → Σ0 and pi
H : Ei

2 → Σi be the vertical and horizontal projections. These
can be combined in various ways to define three distinct fiberings on E . The first
fibering p0 : E → Σ0 is given by the projection onto the first factor on both coordinates
of E2 , so that the fiber is Σ1#Σ2 . The second fibering p1 : E → Σ1 is given by p1

H on
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E1
2 , and by f 1 ◦ pV on E2

2 . Let F1 denote the fiber of p1 over w ∈ Σ1 . Then (relative
to an appropriate metric d and a suitable ε > 0)

F1 ∩ E1
2 = {(y,w) ∈ Σ0 × Σ1 | d(f 1(y),w) ≥ ε}

is a copy of Σ0 with d1 disks removed (recall that di is the degree of the covering
f i : Σ0 → Σi ). In turn,

F1 ∩ E2
2 = {(v, y) ∈ Σ0 × Σ2 | f 1(v) = w, d(f 2(v), y) ≥ ε}

consists of d1 copies of Σ2 , each with one boundary component. In total then,

F1 = Σ0#
(
Σ2)#d1 .

When d1 > 1, the monodromy of p1 is not contained in the Torelli group Ig . Let γ be
a loop on Σ1 which lifts to an arc γ̃ ⊂ Σ0 with endpoints v1, v2 . Then the component
of F1 ∩ E2

2 lying over v1 ∈ Σ0 is sent to the component lying over v2 . If x is a loop in
the first component representing some nontrivial homology class in F1 , then ρ(γ)(x)
is a distinct homology class in F1 , and so the monodromy of p1 has a nontrivial action
on H1(Σg,Z).

The construction of p2 : E → Σ2 is completely analogous. The fibering p2 is given by
f 2 ◦ pV on E1

2 and by p2
H on E2

2 . The fiber is of the form

F2 = Σ0#
(
Σ1)#d2 .

As in the previous constructions it is necessary to specify the precise identification
maps as well as collar neighborhoods. The internal details proceed along similar
lines as before, except that the boundary identifications require some further comment.
Realize ∂Ni as a subset of Σ0 ×Σi . Then ∂Ni is the total space of two different fiber
bundle structures inherited respectively from pV and pi

H . The identification maps for
the various pi will be constructed so as to preserve fibers of these various fiberings.

For p0 , identify ∂N1 and ∂N2 in a fiber-preserving way with respect to pV on both
∂N1 and ∂N2 . For p1 , identify ∂N1 and ∂N2 so that p1

H -fibers on ∂N1 correspond to
pV -fibers ∂N2 . More precisely, given z ∈ Σ1 , the p1

H -fiber of z consists of d1 disjoint
circles projecting down to circles in Σ0 centered at the points of (f 1)−1(z). For every
x ∈ Σ0 , the identification of ∂N1 and ∂N2 identifies p−1

V (x) with the component of
(p1

H)−1(f 1(x)) centered over x . The identification of ∂N1, ∂N2 appropriate for p2 is
constructed analogously, matching pV -fibers of ∂N1 with p2

H -fibers of ∂N2 .

The straight-line isotopy ht constructed in the course of Theorem 2.8 was purely local
in its definition. The same formulas as before show that the three gluing maps con-
structed in the above paragraph are mutually isotopic, and the construction proceeds
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as before.

It is also possible to generalize the construction of Theorem 2.9, so that the surfaces
used in the construction of EX are all covered by Σ. For v ∈ V(X), let f v : Σ→ Σv be
a covering. Suppose that each Σv admits a free action of a group Gv , such that |Gv| is
at least the valence of v. We may then repeat the construction of Theorem 2.9, taking
Ev

1 = Σ× Σv . Since Gv acts freely, for g, h ∈ Gv , the graphs of g ◦ f v and h ◦ f v are
disjoint as submanifolds of Ev

1 . We may then remove neighborhoods of these graphs
to produce Ev

2 and connect the boundaries as in Theorem 2.9. The resulting EX has at
least |V(X)|+ 1 fiberings p0, pv(v ∈ V(X)). The first fibering p0 is defined on each Ev

2
via pV , and the result is a fiber bundle p0 : EX → Σ. For v ∈ V(X), define pv on the
components Ev

2 via

pv|Ew
2

{
pv

H w = v

f v ◦ pV w 6= v.

The result is a fibering pv : EX → Σv .

Example 2.13 Let Σ be a surface admitting a free action of Z/2n for some n. For
0 ≤ k ≤ n define Σk = Σ/(Z/2k). Let f k : Σ → Σk be the associated covering.
Each Σk admits an action of Z/2n−k , so that for k ≤ n − 1, each Σk admits a free
involution τ k . Let X be the “line graph” with vertex set V(X) = {0, 1, . . . , n}, such
that {i, j} ∈ E(X) whenever |i− j| = 1.

In this setting, the construction of Theorem 2.12 produces a 4-manifold E4 which fibers
as a surface bundle over Σk for each 0 ≤ k ≤ n. In more detail, define Ek

1 = Σ× Σk .
For 0 ≤ k ≤ n− 1, the graphs of f k and τ k ◦ f k are disjoint, and we attach Ek

1 to Ek+1
1

by joining the graph of τ k ◦ f k ⊂ Ek
1 to the graph of f k+1 ⊂ Ek+1

1 . Although En
1 does

not necessarily admit a free involution, the vertex n ∈ X has valence 1, and En−1
1 can

still be joined to En
1 using the rule described above, resulting in a 4-manifold EX .

For 0 ≤ k ≤ n, there are fiberings pk : EX → Σk defined on components Ej
2 ⊂ EX via

pk|Ej
2

=

{
pk

H j = k

f k ◦ pV j 6= k

Together, these realize EX as the total space of a surface bundle over Σk for each
0 ≤ k ≤ n.
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3 Further questions

In this final section we collect together some questions about surface bundles over
surfaces with multiple fiberings. Our first line of inquiry concerns the number of
possible fiberings that surface bundles over a surface with given Euler characteristic
can admit.

Proposition 3.1 Let E4 be a 4-manifold with χ(E) = 4d . Then E admits at most4

F(d) = σ0(d)(d + 1)2d+6

fiberings as a surface bundle over a surface which are distinct up to π1 -fiberwise
diffeomorphism, where σ0(d) denotes the number of divisors of d .

Proof To obtain the explicit bound given above, we will first reproduce F.E.A. John-
son’s original argument, incorporating some improvements suggested by J. Hillman.
Let p : E → Σh be the projection for a Σg -bundle structure on E . There is an
associated short exact sequence of fundamental groups

(2) 1→ K → π1E → π1Σh → 1,

with K ≈ π1Σg the fundamental group of the fiber.

We will first show that if g < h, then p determines the unique Σg -bundle structure on
E , up to π1 -fiberwise diffeomorphism. Equivalently (by Proposition 2.2), it suffices to
show that (2) is the unique splitting of π1E as an extension of π1Σh by π1Σg .

Suppose p′ : E → Σh is a second fibering, giving rise to a short exact sequence

1→ K′ → π1E → Σh → 1.

Consider the projection p∗|K′ . Suppose first that p∗(K′) = {1}, or equivalently
K′ ≤ ker p∗ = K . As K and K′ are both isomorphic to π1Σg , in this case K = K′ .

Suppose next that Im(p∗|K′) is nontrivial. In this case, the image p∗(K′) is a nontrivial
finitely generated normal subgroup of the surface group π1Σh . It is a general fact
that if N C π1Σh is any nontrivial finitely-generated normal subgroup, then N has
finite index in π1Σh (cf Theorem 3.1 of [Riv11]). No finite-index subgroup of π1Σh is
generated by strictly fewer than 2h generators. On the other hand, K′ is generated by 2g
generators by assumption. This is a contradiction, and it follows that Im(p∗|K′) = {1}.

4In fact, an additional argument, such as the one given in section 5.2 of [Hil02], can be used
to obtain the slightly better bound σ0(d)d2d+6 . The bound given here is good enough for our
purposes.
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By the argument of the previous paragraph, this shows that necessarily K = K′ , and
so p : E → Σh is the unique Σg -bundle structure on E as claimed.

Returning to the general setting, suppose p : E → Σh is a Σg -bundle over Σh .
As before, let K ≈ π1Σg denote the fundamental group of the fiber. The Euler
characteristic is multiplicative for fiber bundles:

χ(E) = χ(Σg)χ(Σh) = 4(g− 1)(h− 1).

Let d = (g− 1)(h− 1), so that χ(E) = 4d . Any d + 1-sheeted cover of Σh has genus
(h − 1)d + h = (h − 1)2(g − 1) + h, and this quantity is strictly larger than g. Let
Σ̃→ Σh be such a cover, and let p̃ : Ẽ → Σ̃ denote the pullback of p along this cover.
Then p̃ has the property that the genus of the fiber is strictly smaller than the genus of
the base. By the above argument, K is the unique normal subgroup of π1Ẽ isomorphic
to π1Σg with surface group quotient.

Let α̃ : π1E → Z/(d +1)Z be an epimorphism. If α̃(K) = 0, then α̃ is induced from a
map α : π1Σh → Z/(d +1)Z. Let Σ̃ denote the cover of Σh associated to α . Carrying
out the construction of the previous paragraph, it follows that to each such α̃ there is at
most one Σg -bundle structure on E . As χ(Σg) must divide χ(E), it follows that E can
be the total space of a Σg -bundle for only finitely many g. As Hom(π1E,Z/(d + 1)Z)
is finite, this completes the portion of the argument due to F.E.A. Johnson.

Our own extremely modest contribution to Proposition 3.1 is to determine an explicit
upper bound on the maximal cardinality of Hom(π1E,Z/(d + 1)Z) over all possible
surface bundles E of a fixed Euler characteristic 4d . It follows from (2) that a surface
bundle Σg → E → Σh admits a generating set for π1E of size 2g + 2h. As g, h range
over all possible pairs such that (g − 1)(h − 1) = d , the largest value of 2g + 2h is
obtained for g = d + 1, h = 2. This shows that any surface bundle over a surface E
with χ(E) = 4d has a generating set with at most 2d + 6 generators. It follows that

|Hom(π1E,Z/(d + 1)Z)| ≤ (d + 1)2d+6.

As noted above, for each α ∈ Hom(π1E,Z/(d + 1)Z), the corresponding cover Ẽ has
at most one Σg -bundle structure for each g ≥ 2 such that g− 1 divides d . The bound
in the statement of the Proposition follows.

We defined the function N(d) in the Introduction,

N(d) := max
{

n there exists E4, χ(E) ≤ 4d, E admits n surface bundle structures
distinct up to π1-fiberwise diffeomorphism.

}
Proposition 3.1 shows that N(d) ≤ σ0(d)(d + 1)2d+6 . Prior to the results of this paper,
the best known lower bound on N(d) was N(d) ≥ 2. Drastic improvements can
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be made by making use of the construction of Theorem 2.9. Let Σ be a surface of
genus 3 admitting a free involution τ , and let X be the “line graph” with vertex set
V(X) = {1, 2, . . . , n}, such that {i, j} ∈ E(X) whenever |i− j| = 1. According to
Theorem 2.9, the corresponding EX has 2n fiberings. For each fibering, the base has
genus 3 and the fiber has genus 3n; consequently χ(EX) = 4 · 2 · (3n− 1). This shows
that

N(6n− 2) ≥ 2n.

Combining this with Johnson’s upper bound, we obtain

2(d+2)/6 ≤ N(d) ≤ σ0(d)(d + 1)2d+6.

Problem 3.2 Study the function N(d). Sharpen the known upper bounds on N , and
construct new examples of surface bundles over surfaces to improve the lower bounds.

One feature of the constructions given here is that they all take place within the smooth
category, and cannot be given complex or algebraic structures. Indeed, all of the
monodromy representations of the constructions of Section 2 globally fix the isotopy
class of a curve contained in the fiber (one of the former boundary components). H.
Shiga has shown ([Shi97]) that if E is a 4-manifold with a complex structure, B a
Riemann surface, and p : E → B a holomorphic map realizing E as the total space of
a holomorphic family of Riemann surfaces, then the monodromy cannot globally fix
the isotopy class of any curve. On the other hand, it has been shown independently by
J. Hillman, M. Kapovich, and D. Kotschick (cf. Theorem 13.7 of [Hil02]) that if E
and B are as above and p : E → B is a smooth fibration of E over B, then there exists
a holomorphic map p′ : E → B that realizes E as the total space of a holomorphic
family of Riemann surfaces. Combining these results with the known reducibility of
the monodromies of the examples in this paper, one sees that our examples cannot be
given complex structures. On the other hand, the examples of Atiyah and Kodaira that
admit two fiberings take place in the algebraic category, prompting the following.

Question 3.3 Let E4 be a complex surface that is the total space of a surface bundle
over a surface p : E → X . Can such an E admit three or more such fiberings? More
generally, can a 4-manifold with nonzero signature admit three or more structures as a
surface bundle over a surface?

This question is closely related to a point raised briefly in the introduction, and we
remark that it is possible that the list of known fiberings of a given 4-manifold need
not be exhaustive. There can be “hidden” fiberings that are not immediately apparent.
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Question 3.4 Are the two known fiberings of surface bundles over surfaces of the
Atiyah-Kodaira type the only surface bundle structures on these manifolds? Do the
manifolds constructed in Section 2 admit more fiberings than described in this paper?
Is there some finite-sheeted cover of an Atiyah-Kodaira manifold that admits three or
more fiberings?
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