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Abstract. In this paper we prove a family of results connecting the problem of computing

cup products in surface bundles to various other objects that appear in the theory of the

cohomology of the mapping class group Modg and the Torelli group Ig. We show that

N. Kawazumi’s twisted MMM class m0,k can be used to compute k-fold cup products in

surface bundles, and that m0,k provides an extension of the higher Johnson invariant τk−2

to Hk−2(Modg,∗,∧kH1). These results are used to show that the behavior of the restriction

of the even MMM classes e2i to H4i(I1g ) is completely determined by Im(τ4i) ≤ ∧4i+2H1,

and to give a partial answer to a question of D. Johnson. We also use these ideas to show

that all surface bundles with monodromy in the Johnson kernel Kg,∗ have cohomology rings

isomorphic to that of a trivial bundle, implying the vanishing of all τi when restricted to

Kg,∗.

1. Introduction

The theme of this paper is the central role that the structure of the cup product in surface

bundles plays in the understanding of the cohomology of the mapping class group and its

subgroups. We use this perspective to gain a new understanding of the relationships between

several well-known cohomology classes, and we also use these ideas to study the topology of

surface bundles.

Denote by Modg (resp. Modg,∗,Mod1
g) the mapping class group of a closed oriented surface of

genus g (resp. of a closed oriented surface with a marked point, of a surface with one boundary

component). The Torelli group Ig is defined as the kernel of the symplectic representation

Ψ : Modg → Sp(2g,Z); there are analogous definitions of Ig,∗ and I1
g . When left unspecified, all

homology and cohomology groups will be taken to have coefficients in Q. In particular, we will

use the abbreviations H1 := H1(Σg;Q) and H1 := H1(Σg;Q).

For i ≥ 1, there is a class ei ∈ H2i(Modg) known as the ith Mumford-Morita-Miller class

(hereafter abbreviated to MMM class). See Definition 3.1. The Madsen-Weiss theorem [MW07]

asserts that the so-called “stable” rational cohomology of Modg is generated by the MMM classes,

and apart from a few sporadic low-genus examples, the algebra generated by the classes ei are

the only known elements of H∗(Modg). In [Kaw98], N. Kawazumi introduced a generalization
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of the MMM classes, defining classes mij ∈ H2i+j−2(Modg,∗;H
⊗j
1 ), specializing to mi,0 = ei−1.

Again, see Definition 3.1.

The content of Theorem A below is that the cup product form on the total space E gives a

characteristic class for surface bundles. Theorem A also gives an “intrinsic meaning” to the

twisted MMM class m0,k in much the same way that the first MMM class e1 ∈ H2(Modg) has

an interpretation as the signature of the total space of a surface bundle over a surface (see

[Mor01, Proposition 4.11]).

Theorem A (Cup product as characteristic class). For all k ≥ 2 and g ≥ 2, the twisted MMM

class m0,k ∈ Hk−2(Modg,∗;∧kH1) computes the cup product in surface bundles in the following

sense:

Suppose B is a paracompact Hausdorff space and f : B → K(Modg,∗, 1) is a map classifying

a surface-bundle-with-section π : E → B. Then for all i ≥ 0 there is a splitting of vector spaces

Hi(E) ∼= Hi−2(B)⊕Hi−1(B;H1)⊕Hi(B). (1)

Let ε : Hi−1(B;H1)→ Hi(E) denote the inclusion associated to this splitting. For 1 ≤ i ≤ k
and any d1, . . . , dk, let xi ∈ Hdi−1(B;H1); for convenience set D :=

∑
di. Then there are the

following expressions for the components of the product ε(x1) . . . ε(xk) ∈ HD(E) in the splitting

(1):

HD−2(B)- component: (−1)γm0,ky(x1, . . . , xk) (2)

HD−1(B;H1)- component: (−1)γ+1ε(m0,k+1y(x1, . . . , xk)) (3)

HD(B)- component: 0 (4)

(see Definition 3.4 for the meaning of m0,jy(x1, . . . , xk), and Equation (13) for the definition of

γ).

The line of thought culminating in Theorem A begins with D. Sullivan [Sul75], who showed

that every element of ∧3V (for V an arbitrary finitely generated torsion-free Z-module) arises as

the cup product form ∧3H1(M ;Z)→ Z for some 3-manifold M . Johnson [Joh80] incorporated

some of these ideas in his far-reaching theory of the Johnson homomorphism τ : H1(Ig,∗)→ ∧3H1,

one definition of which is by means of the cup product form in a 3-manifold fibering as a surface

bundle over S1.

In one direction, the Johnson homomorphism was generalized by S. Morita [Mor93], who

constructed an extension of τ by means of a class k̃ ∈ H1(Modg,∗;∧3H1) restricting to τ on

Ig,∗. In [Mor96], he showed that all of the MMM classes ei can be expressed in terms of k̃.

Another generalization of the Johnson homomorphism was given by Johnson himself [Joh83],

who gave a definition of “higher Johnson invariants” τk : Hk(Ig,∗)→ ∧k+2H1 (see Definition

5.1), but his definition was formulated as a generalization of a different method of constructing

the Johnson homomorphism. Theorem B below can be viewed as a synthesis of Morita’s and
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Johnson’s perspectives, in that it shows that the twisted MMM classes m0,k restrict on Ig,∗ to

(a multiple of) τk−2.

Theorem B (Extending the higher Johnson invariants). There is an equality for all g ≥ 2 and

k ≥ 2

m0,k = (−1)kk! τk−2

as elements of Hk−2(Ig,∗;∧kH1) ∼= Hom(Hk−2(Ig,∗;Q),∧kH1).

The cases k = 2, 3 were established by Kawazumi and Morita in [KM]. In [CF12], T. Church

and B. Farb developed a method for studying the map τk. A central component of their

computation is the principle that, when viewed as a homomorphism Hk(Ig,∗)→ ∧k+2H1, the

Johnson invariant τk is a map of representations of Sp(2g,Q). Johnson showed in [Joh80] that

τ = τ1 is a rational isomorphism and in [Joh83, Question C], asked if the same was true for all τk.

In [Hai97], R. Hain showed that τ2 was not injective. Church and Farb later used their methods

to show that τk is not injective for any 2 ≤ k < g. This leaves the question of surjectivity of τk

as an unresolved aspect of the theory of the cohomology of Ig,∗. Church and Farb showed that

τ2 : H2(Ig,∗)→ ∧4H1 is a surjection, but did not address higher k, or the behavior of τ2 on I1
g .

In the following theorem, we show that the question of surjectivity of τk (when pulled back

to I1
g ) is intimately related to another well-known open question about the homology of the

Torelli group. It is well-known (see, e.g. the introduction to [Mor96]) that the MMM classes

e2i+1 of odd index vanish when restricted to Ig. However, the behavior of the even-index classes

e2i on Ig is completely unknown.

Theorem C (Higher Johnson invariants detect MMM classes). For all i, the restriction of ei to

H2i(I1
g ;Q) is nonzero if and only if the Sp(2g,Q)-representation Im(τ2i : H2i(I1

g )→ ∧2i+2H1)

contains a copy of the trivial representation V (λ0).

The primary case of interest is of course i even, but as a corollary of Theorem C and the

vanishing of e2i+1 on I1
g , it follows that for all i ≥ 1, the map τ4i−2 : H4i−2(I1

g )→ ∧4iH1 fails

to contain a copy of V (λ0), even though ∧4iH1 always does. This gives a partial resolution of

Johnson’s question.

Theorem D (Non-surjectivity of τ4i+2). For all i ≥ 0, the map

τ4i+2 : H4i+2(I1
g )→ ∧4iH1

is not surjective.

As an application of Theorems A and B, we obtain some results concerning the topology of

surface bundles. If π : E → B is a Σg-bundle with monodromy contained in Ig, it is well-known

that H∗(E) ∼= H∗(B) ⊗H∗(Σg), an isomorphism of graded vector spaces (see Section 2.1 for

the relevant terminology). Briefly put, surface bundles with Torelli monodromy are “homology

products”. In general, the additive isomorphism H∗(E) ∼= H∗(B) ⊗H∗(Σg) is very far from
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being an isomorphism of rings, as the rich theory of the Johnson homomorphism attests to.

For individual elements φ ∈ Modg, it is well-understood when a mapping torus π : M3
φ → S1

satisfies a multiplicative isomorphism H∗(Mφ) ∼= H∗(S1)⊗H∗(Σg): such an isomorphism holds

if and only if φ ∈ Kg, the so-called Johnson kernel (see the beginning of Section 7 and in

particular (16)). However, if π : E → B is a Σg-bundle over a higher-dimensional B with

monodromy contained in Kg, it is not a priori clear whether a multiplicative isomorphism

H∗(E) ∼= H∗(B)⊗H∗(Σg) must hold. We show that this is the case.

Theorem E (A Künneth formula). Let π : E → B be a Σg-bundle over a paracompact Hausdorff

space B with monodromy ρ : π1B → Kg,∗ contained in the Johnson kernel. Then there is an

isomorphism of rings

H∗(E) ∼= H∗(B)⊗H∗(Σg).

The case B = S1 is essentially a definition of Kg,∗. The case B = Σh a surface was shown by

the author in [Sal15] by giving an explicit construction of a basis of cycles suitable for computing

the intersection product in homology; this was applied to the problem of counting the number

of distinct surface bundle structures on 4-manifolds.

A final corollary of this theorem is the vanishing of all higher Johnson invariants on Kg,∗. As

remarked above, the vanishing of τ = τ1 on Kg,∗ is a definition, but it is not a priori clear that

this implies the vanishing of higher invariants. Nonetheless, the results of the paper combine to

show that this is the case.

Theorem F (Vanishing of τk on Kg,∗). For each k ≥ 1, the restriction of τk ∈ Hk(Ig,∗,∧k+2H1)

to Kg,∗ is zero.

The methods of the paper are primarily homological and make heavy use of the theory of

the Gysin homomorphism. As the central objects of study are the twisted MMM classes mij

introduced by Kawazumi in [Kaw98], we will frequently make reference to their theory, especially

some later developments by Kawazumi-Morita in [KM].

In Section 2, we review some preliminary material, including the relationship between surface

bundles and the mapping class group, some constructions from multilinear algebra and symplectic

representation theory, and a primer on the Gysin homomorphism. Section 3 is a primer on

Kawazumi and Morita’s work on the twisted MMM classes. The latter four sections are devoted

to the proofs of theorems A, B, C, E respectively.

Acknowledgements. Many thanks are due to Madhav Nori, for the inspiring conversations

that sparked my interest in and approach to this problem. I would also like to thank Ilya

Grigoriev and Aaron Silberstein for helpful discussions along the way. As always, this paper

would not have been possible without continued interest, support, and guidance from Benson

Farb, as well as many comments on preliminary drafts.
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2. Preliminaries

2.1. Surface bundles and the mapping class group. A surface bundle is a fiber bundle

π : E → B with fibers π−1(b) ∼= Σg for some g; in this paper, g ≥ 2. A section of a surface

bundle π : E → B is a map σ : B → E satisfying π ◦ σ = id. The monodromy representation

associated to π : E → B is the homomorphism ρ : π1B → Modg that records the isotopy class

of the diffeomorphisms of the fiber obtained by parallel transport around loops in B. When

π : E → B is equipped with a section, ρ lifts to a homomorphism ρ : π1B → Modg,∗.

There is a classifying space BDiff(Σg) (resp. BDiff(Σg, ∗)) for surface bundles (resp. for

surface bundles equipped with a section). A fundamental theorem of Earle-Eells [EE69], in

combination with some basic algebraic topology, implies that there are homotopy equivalences

BDiff(Σg) ' K(Modg, 1)

BDiff(Σg, ∗) ' K(Modg,∗, 1).

This implies that, given a group extension

1→ π1(Σg)→ Π∗ → Π→ 1, (5)

there is an associated Σg-bundle π : K(Π∗, 1)→ K(Π, 1) for which the monodromy representation

ρ : Π→ Mod(Σg) coincides with the map Π→ Out(π1(Σg)) ∼= Mod(Σg) attached to the group

extension (5). The extension (5) splits if and only if ρ lifts to ρ : Π → Aut(π1Σg) ∼= Modg,∗.

Because of this equivalence, we will be somewhat lax in passing between the setting of surface

bundles and the setting of group extensions with surface group kernel.

In light of the homotopy equivalences above, one can interpret elements of H∗(Modg;M) (for

an arbitrary QModg-module M) as “M -valued characteristic classes of Σg-bundles”.

2.2. Symplectic multilinear algebra. In this subsection, we lay out some basic facts con-

cerning multilinear algebra over the Q-vector space H1(Σg;Q), as well as the representation

theory of the symplectic group.

We recall the definitions H1 := H1(Σg;Q) and H1 := H1(Σg;Q). The intersection pairing

furnishes a nondegenerate alternating Sp(2g,Q)-invariant form µ : H⊗1 2→ Q. This form extends

to a nondegenerate pairing Ck : (H⊗k1 )⊗2 → Q given by

(a1 ⊗ · · · ⊗ ak)⊗ (b1 ⊗ · · · ⊗ bk) 7→
k∏
i=1

µ(ai ⊗ bi). (6)

For u, v ∈ H⊗k1 , the pairing satisfies Ck(u⊗ v) = (−1)kCk(v ⊗ u).

By convention, given a vector space V , the kth exterior power ∧kV will always be defined as a

quotient of V ⊗k by imposing the skew-symmetry relations. Define the projection q : V ⊗k → ∧kV .

There is a lift L : ∧kV → V ⊗k given by

L(a1 ∧ · · · ∧ ak) =
∑
τ∈Sk

(−1)τaτ(1) ⊗ · · · ⊗ aτ(k) (7)
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(to lighten the notational load, we will omit reference to k, which should be clear from context).

By construction, q ◦ L = k! id.

There is a natural pairing C ′k : (∧kH1)⊗2 → Q given by

(a1 ∧ · · · ∧ ak)⊗ (b1 ∧ · · · ∧ bk) 7→ det(µ(ai ⊗ bj)). (8)

The pairings Ck and C ′k are related via

C ′k(q(a1 ⊗ · · · ⊗ ak)⊗ q(b1 ⊗ · · · ⊗ bk)) = Ck(L(a1 ∧ · · · ∧ ak)⊗ (b1 ⊗ · · · ⊗ bk))

= Ck((a1 ⊗ · · · ⊗ ak)⊗ L(b1 ∧ · · · ∧ bk))

=
1

k!
Ck(L(a1 ∧ · · · ∧ ak)⊗ L(b1 ∧ · · · ∧ bk)).

The map C ′k : ∧2kH1 → Q is Sp(2g,Q)-equivariant (with respect to the trivial action on Q),

and it is a standard fact from representation theory that the invariant space (∧2kH1)Sp(2g,Q) ∼= Q,

so that up to scalars, C ′k is the only such map.

2.3. The Gysin homomorphism. In this subsection, we collect some basic information on

the Gysin homomorphism. The following proposition, while not treating the absolutely most

general case, will suffice for our purposes.

Proposition 2.1 (Gysin basics). Suppose that π : E → B is a fibration with Fn a closed

oriented n-manifold; let ι : F → E denote the inclusion of a fiber. Let M be a local system on

B, determining by pullback a local system (also denoted M) on E, and restricting to a constant

system of coefficients on F .

(i) There are homomorphisms

π! : H∗(E;M)→ H∗−n(B;M)

and

π! : H∗(B;M)→ H∗+n(E;M),

called Gysin homomorphisms. For u ∈ Hn(E;M), the Gysin homomorphism simplifies to

π!(u) = 〈ι∗(u), [F ]〉,

where [F ] ∈ Hn(F ) denotes the fundamental class.

(ii) If N is another local system on B and f : M → N is a map of local systems, then f∗ and

π! commute.

(iii) Let u ∈ Hi(E;M) and v ∈ Hj(B;N) be given. Then there is an equality of elements in

Hi+j−n(B;M ⊗N)

π!(uπ
∗(v)) = π!(u)v.

(iv) If u ∈ Hi(E;M) and x ∈ Hi(B;N) are given, there is an adjunction formula

〈π!(u), x〉 = 〈u, π!(x)〉

of elements in M ⊗π1B N .
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3. Twisted MMM classes

In this section, we review the theory of twisted MMM classes, drawing on the work of

Kawazumi and Morita in [KM]. As above, let Modg denote the mapping class group of a closed

surface, and let Modg,∗ denote the mapping class group of a closed surface with a marked point.

There is the projection π : Modg,∗ → Modg giving rise to the Birman exact sequence

1 // π1(Σg)
ι // Modg,∗

π // Modg // 1.

Form the fiber product Modg,∗ via the diagram

Modg,∗
π̄ //

π

��

Modg,∗

��
Modg,∗ //

σ

TT

Modg

The section σ : Modg,∗ → Modg,∗ is given by σ(φ) = (φ, φ). There is an isomorphism

Modg,∗ ∼= π1(Σg) o Modg,∗

via

(φ, ψ) 7→ (ψφ−1, φ).

Under this isomorphism, σ is given by σ(φ) = (1, φ). This semi-direct product decomposition

gives rise to a cocycle k0 ∈ Z1(Modg,∗, H1) via

k0((x, φ)) = [x].

By an abuse of notation we will also use k0 to denote the associated element of H1(Modg,∗;H1).

By construction, ι∗k0 = id ∈ H1(π1Σg;H1), and it is also clear that σ∗(k0) = 0.

Let e ∈ H2(Modg,∗) denote the Euler class of the vertical tangent bundle. For convenience,

let ē ∈ H2(Modg,∗) denote π̄∗(e). The twisted MMM classes defined below were introduced by

Kawazumi in [Kaw98].

Definition 3.1 (Twisted MMM classes). Let i, j ≥ 0. The twisted MMM class mij ∈
H2i+j−2(Modg,∗;H

⊗k
1 ) is defined as

mij = π!(ē
ikj0).

For j = 0, this definition specializes to mi,0 = π!(ē
i) = ei−1, the (i− 1)st (classical) MMM class.

Remark 3.2. Via the graded-commutativity of the cup product, the class kj0 ∈ Hj(Modg,∗;H
⊗j
1 )

in fact is valued in the subspace L(∧jH1), and the same is therefore true of mij . In accor-

dance with our convention that ∧jH1 is a quotient of H⊗j1 , we will avoid writing mij ∈
H2i+j−2(Modg,∗;∧jH1).

The formulas at the heart of the present paper are best expressed using a sort of “interior

product”. It will be convenient to first introduce the following piece of notation.
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Definition 3.3. Let i ≥ 2j be given. Let Ti,j ∈ EndH⊗i1 be the automorphism induced by

permuting the factors via the permutation fij ∈ Si given by

fij(k) =


2k − 1 k ≤ j

2(k − j) j + 1 ≤ k ≤ 2j

k k > 2j

The effect of fij is to “interlace” the first 2j factors, making the kth factor adjacent to the

(k + j)th factor. fij factors as a composition of
(
j−1

2

)
transpositions of adjacent factors. When

i = 2j, the notation will be abbreviated to Tj := T2j,j .

Definition 3.4. Let α ∈ Hm(Modg,∗;H
⊗n
1 ) and xi ∈ Hdi(Modg,∗;H1) be given for 1 ≤ i ≤

k ≤ n. Define the class

αy(x1, . . . , xk) ∈ Hm+
∑
di(Modg,∗;H

⊗n−k
1 )

by the formula

αy(x1, . . . , xk) = ((µ⊗k ⊗ id⊗n−k) ◦ Tn+k,k)∗(x1 . . . xk α).

This formula can be equivalently expressed using Ck:

αy(x1, . . . , xk) = (Ck ⊗ id⊗n−k)∗(x1 . . . xk α).

Let f : Π → Modg be a homomorphism from a group Π to the mapping class group. The

fiber product Π∗ = Π×Modg Modg,∗ admits an extension of groups

1 // π1(Σg)
ι // Π∗

π // Π // 1. (9)

The following proposition gives a canonical splitting on H∗(Π∗). It appears as [KM, Proposi-

tion 5.2].

Proposition 3.5 (Kawazumi-Morita). Suppose that there exists a cohomology class θ ∈ H2(Π∗)

such that

π!(θ) = 〈ι∗θ, [Σg]〉 = 1 ∈ H0(Π).

Let

θ′ = θ − π∗π!(θ
2)

which also satisfies π!(θ
′) = 1. The following statements hold:

(i) For any QΠ-module M , the Lyndon-Hochschild-Serre spectral sequence of the extension

(9) collapses at the E2-term, and the cohomology group H∗(Π∗;M) naturally decomposes

as

H∗(Π∗;M) ∼= H∗−2(Π;M)⊕H∗−1(Π;H1 ⊗M)⊕H∗(Π;M).

(ii) There exists a unique element χ ∈ H1(Π∗;H1) satisfying

ι∗χ = id ∈ H1(π1(Σg);H1), and π!(θχ) = π!(θ
′χ) = 0.
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(iii) The homomorphism ε : H∗−1(Π;H1 ⊗M)→ H∗(Π∗;M) given by

ε(v) = (µ⊗ idM )∗(π
∗v χ) (v ∈ H∗−1(Π;H1 ⊗M)) (10)

is a left inverse of the edge homomorphism π] : kerπ! → E∗−1,1
∞ = H∗−1(Π;H1 ⊗M).

(iv) Explicitly, for any u ∈ H∗(Π∗;M):

u = θ′π∗π!(u)− µ∗(π∗π!(uχ) χ) + π∗π!(θu). (11)

Remark 3.6. The primary case of interest will be the “universal” one, taking Π = Modg,∗ and

Π∗ = Modg,∗. Kawazumi-Morita construct a class ν ∈ H2(Modg,∗) satisfying the properties of

θ listed in Proposition 3.5. Letting χν denote the element χ associated to ν given by (ii) of

Proposition 3.5, they also show that χν = k0.

As was established by Kawazumi-Morita, the class ν ∈ H2(Modg,∗) satisfies certain additional

useful formulae; in essence, it behaves like a “Thom class” for surface bundles with section.

These results are taken from [KM, Theorem 5.1].

Theorem 3.7 (Kawazumi-Morita). There is a class ν ∈ H2(Modg,∗) satisfying the following

properties.

(i) π!ν = 1.

(ii) For any u ∈ H∗(Modg,∗;M), there is an equality

νu = νπ∗σ∗u.

Consequently,

π!(νu) = σ∗u. (12)

(iii) π!(ν
2) = σ∗ν = e.

The following lemma gives a useful alternative characterization of Im ε.

Lemma 3.8. For all ∗ ≥ 1, there is an equality

Im ε = kerπ! ∩ kerσ∗

of subspaces of H∗(Modg,∗).

Proof. The containment Im ε ⊂ kerπ! follows from the calculation

π!(µ∗(π
∗u k0)) = µ∗(π!(π

∗u k0))

= µ∗(uπ!(k0))

= 0,

with the equality π!(k0) = 0 holding for degree reasons.
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To establish the containment Im ε ⊂ kerσ∗, recall the formula (12). Applied to u =

µ∗(k0 π
∗u) ∈ Im ε, the formula gives

σ∗v = π!(ν µ∗(π
∗u k0))

= π!(µ∗(ν π
∗u k0))

= µ∗(u π!(νk0))

= 0,

with the equality µ∗(u π!(νk0)) = 0 coming from Proposition 3.5.ii.

The reverse containment is a consequence of the explicit form of the splitting on H∗(Modg,∗)

given by Proposition 3.5.iv. If u ∈ kerπ! ∩ kerσ∗, then the first and third components in this

splitting vanish (recalling that π!(νu) = σ∗u), and so u ∈ Im ε as desired. �

4. Proof of Theorem A

The first part of Theorem A asserts the existence of a splitting on H∗(E). This is precisely

the content of Proposition 3.5.i. It remains to establish the formulas for the components given

in (2, 3, 4).

Per Proposition 3.5.iv, theHD−2(B)-component of ε(x1) . . . ε(xk) is given by π!(ε(x1) . . . ε(xk)).

Consider the element

π∗(x1 . . . xk)kk0 ∈ HD(E;H⊗2k
1 ).

Recall the interlacing operator Tk of Definition 3.3. As an automorphism of H⊗2k
1 , it is the

composition of
(
k−1

2

)
transpositions of adjacent factors. Via the graded-commutativity of the

cup product,

Tk,∗(π
∗(x1 . . . xk)kk0 ) = (−1)γ(π∗x1 k0) . . . (π∗xk k0),

where

γ =

k−1∑
i=1

(k − i)(di − 1). (13)

From the definition of ε given in Proposition 3.5.iii,

ε(xi) = µ∗(π
∗xi k0).

It follows that

(µ⊗k ◦ Tk)∗(π
∗(x1 . . . xk)kk0 ) = (−1)γε(x1) . . . ε(xk).

Via the commutativity of (µ⊗k ◦ Tk)∗ with π! (Proposition 2.1.ii),

π!(ε(x1) . . . ε(xk)) = (−1)γ(µ⊗k ◦ Tk)∗(π!(π
∗(x1 . . . xk)kk0 ))

= (−1)γ(µ⊗k ◦ Tk)∗(x1 . . . xk m0,k)

= (−1)γm0,ky(x1, . . . , xk)

with the penultimate equality holding as a consequence of the property (2.1.iii) of the Gysin

homomorphism and the definition of m0,k. This establishes (2).
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Per Proposition 3.5.iv, the HD−1(B;H1)-component of ε(x1) . . . ε(xk) is given by

−µ∗(π∗π!(ε(x1) . . . ε(xk)k0)k0) = −ε(π!(ε(x1) . . . ε(xk)k0))

Arguing as in the previous paragraph,

π!(ε(x1) . . . ε(xk)k0) = (−1)γm0,k+1y(x1, . . . , xk).

(3) follows.

It remains to show that the HD(B)-component of ε(x1) . . . ε(xk) is 0. From Proposition

3.5.iv, this amounts to showing that

π!(νε(x1) . . . ε(xk)) = 0.

From (12) and Lemma 3.8,

π!(νε(x1) . . . ε(xk)) = σ∗(ε(x1) . . . ε(xk)) = 0.

This establishes (4). �

5. The restriction of m0,k to Ig,∗

We begin this section with a review of the construction of the higher Johnson invariants. Let

B be a paracompact Hausdorff space equipped with a distinguished class [B] ∈ Hk(B). As the

notation suggests, a primary case of interest will be when B is a closed oriented k-manifold.

Let f : B → K(Ig,∗, 1) be a map classifying a surface bundle π : E → B. Then f∗([B])

determines an element of Hk(K(Ig,∗, 1)). The space K(Ig,∗, 1) is the base space for a “universal

surface bundle with Torelli monodromy”; i.e. there is a space denoted K(Ig,∗, 1) and a map

π : K(Ig,∗, 1)→ K(Ig,∗, 1) giving K(Ig,∗, 1) the structure of a Σg-bundle over K(Ig,∗, 1). The

total space E therefore determines a k + 2-cycle

[E] = π!f∗[B] ∈ Hk+2(Ig,∗).

By hypothesis, the monodromy representation ρ : π1(B) → Ig,∗ is valued in Ig,∗, so

that H0(B;H1(Σg,Z)) ∼= H1(Σg;Z), and there is a section σ : B → E. Let Jac(E) → B

be the T 2g-bundle obtained by replacing each fiber π−1(b) of E → B with its Jacobian

Jac(π−1(b)) = H1(Σg;R)/H1(Σg;Z). The section σ endows each fiber π−1(b) with a basepoint

σ(b); consequently there is a fiberwise embedding

J : E → Jac(E).

It follows from the equality

H0(B;H1(Σg;Z)) ∼= H1(Σg;Z)

that Jac(E) ∼= B × T 2g is a trivial bundle, so that there is a projection map p : Jac(E)→ T 2g.
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Definition 5.1 (Higher Johnson invariants). With notation as above, the kth higher Johnson

invariant τk(B) ∈ ∧k+2H1 is the element

p∗J∗[E] ∈ Hk+2(T 2g) ∼= ∧k+2H1.

It is clear from the constructions that if B,B′ are homologous k-cycles in K(Ig,∗, 1), then

τk(B) = τk(B′) and that τk is additive. Consequently, τk descends to a homomorphism

τk : Hk(Ig,∗)→ ∧k+2H1;

in view of the Universal Coefficient Theorem, this is equivalent to the description

τk ∈ Hk(Ig,∗;∧k+2H1).

Proof of Theorem B. The proof will proceed in two steps. The first step is to understand the

relationship between τk−2 and the structure of the cup product form ∧kH1(E)→ Hk(E)→ Q
(this last map is obtained by the pairing α 7→ 〈α, [E]〉). Once this is established, the second step

is to compare this to the relationship between m0,k and the cup product form established by

Theorem A.

Step 1: The higher Johnson invariants record the cup product form.

Proposition 5.2. Let f : B → K(Ig,∗, 1) determine a k − 2-cycle [B] in K(Ig,∗, 1) and let [E]

be the associated k-cycle in K(Ig,∗, 1). Let ε : H∗−1(B;H1) → H∗(E) be the map defined in

Proposition 3.5.iii, and let a1, . . . , ak ∈ H1 be given. Then

〈ε(a1) . . . ε(ak), [E]〉 = (−1)kC ′k((a1 ∧ · · · ∧ ak)⊗ τk−2[B]).

Proof. The symplectic pairing µ : H⊗2
1 → Q induces an isomorphism ·∨ : H1 → H1 given by

w∨(u) = µ(u⊗w). By pullback, any w ∈ H1
∼= H1(T 2g) determines the class J∗p∗w∨ ∈ H1(E).

We claim that there is an equality for any w ∈ H1,

ε(w) = J∗p∗w∨.

The first step is to show that Im(J∗p∗) ⊆ Im ε. This will follow from Lemma 3.8. For

degree reasons, π!(J
∗p∗w∨) = 0. It remains to show that σ∗(J∗p∗w∨) = 0. By construction,

p ◦ J ◦ σ : B → T 2g is the constant map sending B to 0 ∈ T 2g; the result follows.

Given w ∈ H1, we have shown that there is some v ∈ H1 = H0(B;H1) such that J∗p∗w∨ =

ε(v). It remains to show that v = w. Let ι : Σg → E be the inclusion of a fiber. The composition

p ◦ J ◦ ι : Σg → T 2g coincides with the Jacobian mapping. Consequently, ι∗(J∗p∗w∨) = w∨.

On the other hand,

ι∗(ε(v)) = ι∗(µ∗(π
∗v k0)) = µ∗(ι

∗(π∗v k0)).

Let u ∈ H1 be arbitrary. Then

〈µ∗(ι∗(π∗v k0)), u〉 = µ(〈ι∗(π∗v k0), u〉).
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As ι∗k0 = id, the above formula simplifies to

µ(〈ι∗(π∗v k0), u〉) = −µ(v ⊗ u) = v∨(u).

Consequently, w∨ = v∨, from which the equality w = v follows.

From the above, there is an expression

〈ε(a1) . . . ε(ak), [E]〉 = 〈J∗p∗(a∨1 . . . a∨k ), [E]〉

= 〈a∨1 . . . a∨k , p∗J∗[E]〉

= 〈a∨1 . . . a∨k , τk−2[B]〉.

Under the isomorphisms Hk(T 2g) ∼= ∧kH1 and Hk(T 2g) ∼= ∧kH1, the evaluation pairing

Hk(T 2g)⊗Hk(T 2g)→ Q is mapped to the pairing

(α1 ∧ · · · ∧ αk)⊗ (a1 ∧ · · · ∧ ak) 7→ det(αi(aj)). (14)

Under the embedding

∧k(·∨)−1 ⊗ id : ∧kH1 ⊗ ∧kH1 → (∧kH1)⊗2,

the pairing (14) corresponds to (−1)kC ′k. Consequently,

〈a∨1 . . . a∨k , τk−2[B]〉 = (−1)kC ′k((a1 ∧ · · · ∧ ak)⊗ τk−2[B])

as was to be shown. �

Step 2: Comparison with m0,k. Suppose that B determines a (k − 2)-cycle in K(Ig,∗, 1).

We must show that

q(〈m0,k, [B]〉) = (−1)kk! τk−2[B],

where, as in Section 2.2, the map q : H⊗k1 → ∧kH1 is the projection. As the pairing C ′k :

(∧kH1)⊗2 → Q of (8) is nondegenerate, it suffices to show the equality of the forms:

a1 ∧ · · · ∧ ak 7→ (−1)kC ′k((a1 ∧ · · · ∧ ak)⊗ τk−2[B])

and

a1 ∧ · · · ∧ ak 7→
(1

k!
C ′k((a1 ∧ · · · ∧ ak)⊗ q(〈m0,k, [B]〉)).

Proposition 5.2 asserts that for a1, . . . , ak ∈ H1, there is an equality

〈ε(a1) . . . ε(ak), [E]〉 = (−1)kC ′k((a1 ∧ · · · ∧ ak)⊗ τk−2[B])

Proposition 2.1.iv implies:

〈ε(a1) . . . ε(ak), [E]〉 = 〈ε(a1) . . . ε(ak), π![B]〉

= 〈π!(ε(a1) . . . ε(ak)), [B]〉.
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Theorem A implies:

〈π!(ε(a1) . . . ε(ak)), [B]〉 = 〈m0,ky(a1, . . . , ak), [B]〉

= 〈Ck,∗(a1 . . . ak m0,k), [B]〉

= Ck(〈a1 . . . ak m0,k, [B]〉)

= Ck((a1 ⊗ · · · ⊗ ak)⊗ 〈m0,k, [B]〉)

= Ck((a1 ⊗ · · · ⊗ ak)⊗ 〈m0,k, [B]〉)

(here γ = 0 as each di = 1). As m0,k ∈ Hk−2(Modg,∗;L(∧kH1)), there is an expression of the

form

〈m0,k, [B]〉 = L(ζ)

for some ζ ∈ ∧kH1. It follows that q(〈m0,k, [B]〉) = k!ζ. The results of Section 2.2 imply:

Ck((a1 ⊗ · · · ⊗ ak)⊗ 〈m0,k, [B]〉) =
1

k!
C ′k((a1 ∧ · · · ∧ ak)⊗ q(〈m0,k, [B]〉)).

The result follows. �

6. Relation to MMM classes: Theorem C

This section is devoted to the proof of Theorem C. This will be divided into two steps. The

first step is to establish a contraction formula for µ0,2n. The second step will be to relate this

to the representation theory of Sp(2g,Q).

Step 1: Contraction formula. The first step is to calculate µ⊗n∗ (m0,2n) ∈ H2n−2(Modg,∗).

We claim that the following formula holds:

µ⊗n∗ (m0,2n) = (−1)n−12nen−1 + (−1)n
n∑
i=1

(
n

i

)
en−iei−1. (15)

By convention, e0 = 2− 2g ∈ H0(Modg,∗).

According to [KM, Theorem 6.1] there is an expression for µ∗(k
2
0) ∈ H2(Modg,∗) of the form

µ∗(k
2
0) = 2ν − e− ē.

Therefore,

µ⊗n∗ (k2n
0 ) = (2ν − e− ē)n.

It follows from Proposition 2.1.ii that

µ⊗n∗ (m0,2n) = π!((2ν − e− ē)n).

Recall that e ∈ H2(Modg,∗) is defined as π∗(e) for e ∈ H2(Modg,∗), and ē is defined as

π̄∗(e), e ∈ H2(Modg,∗). Equation (12) of Theorem 3.7 asserts that π!(νx) = σ∗(x). The

composition π̄ ◦ σ = id, and so σ∗(e) = σ∗(ē) = e. Theorem 3.7.iii implies that σ∗(ν) = e.

Expand (2ν − e− ē)n as

(2ν − e− ē)n = 2ν(2ν − e− ē)n−1 − (e+ ē)(2ν − e− ē)n−1.
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For n ≥ 2, the above discussion shows that π!(2ν(2ν − e− ē)n−1) = 2σ∗(2ν − e− ē)n = 0. It

follows that

π!((2ν − e− ē)n) = −π!((e+ ē)(2ν − e− ē)n−1),

and that in general, for j ≤ n− 2,

π!((e+ ē)j(2ν − e− ē)n−j) = −π!((e+ ē)j+1(2ν − e− ē)n−j−1).

Applying this formula repeatedly,

π!((2ν − e− ē)n) = (−1)n−1π!((e+ ē)n−1(2ν − e− ē))

= (−1)n−1π!(2ν(e+ ē)n−1) + (−1)nπ!((e+ ē)n)

= (−1)n−12nen−1 + (−1)n
n∑
i=1

(
n

i

)
en−iei−1.

In the last equality, we have applied Proposition 2.1.iii, recalling that e is the pullback π∗(e), e ∈
H2(Modg,∗).

Step 2: Contractions in symplectic representation theory. As the restriction of e

to H2(I1
g ) is zero, Step 1 implies that the pullback of ei to H2i(I1

g ) is zero if and only if

µ⊗i+1
∗ (m2i+2) vanishes in H2i(I1

g ). Theorem B implies that this is in turn equivalent to the

vanishing of µ⊗i+1
∗ (τ2i).

In the notation of Section 2.2, there is a decomposition

∧2i+2H1 = V (λ2i+2)⊕ V (λ2i)⊕ · · · ⊕ V (λ0).

Treating ∧2i+2H1 as a subspace of (H⊗2
1 )⊗i+1, the contraction µ⊗i+1 is a map of Sp(2g,Q)-

representations projecting onto V (λ0) ∼= Q. Viewed as an element of Hom(H2i(I1
g ),Q), the

class µ⊗i+1
∗ (τ2i) is therefore nonzero if and only if

V (λ0) ≤ Im(τ2i).

This completes the proof of Theorem C. �

7. Applications to surface bundles

In this last section, we turn from a study of global cohomology classes on Modg and Ig in

favor of a study of H∗(E) for π : E → B a particular Σg-bundle over a paracompact Hausdorff

space B. The particular bundles under consideration will have an additional constraint on

their monodromy representations, namely that ρ : π1B → Kg,∗ is valued in the Johnson kernel

Kg,∗ = ker(τ : Ig,∗ → ∧3H1). It is a deep fact due to Johnson [Joh85] that equivalently,

Kg,∗ = 〈Tγ | γ separating〉, (16)

i.e. that the Johnson kernel is the group generated by all Dehn twists about separating simple

closed curves. There is an analogous definition of Kg ≤ Modg and a statement analogous to
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(16).

Proof of Theorem E: The method will be to exploit Theorem A. We will show that under the

splitting of graded vector spaces

H∗(E) ∼= H∗(B)⊗H∗(Σg),

the multiplication on H∗(E) induced by the cup product agrees with the ring structure on

H∗(B)⊗H∗(Σg) induced by the cup products on B and Σg. This will be accomplished by a

separate verification on the six different pairs of subspaces (H∗(B)⊗Hi(Σg))⊗(H∗(B)⊗Hj(Σg))

of H∗(E)⊗2 for 0 ≤ i ≤ j ≤ 2.

For the readers convenience we list below the inclusions F : Hm(B)⊗Hi(Σg)→ Hm+i(E)

of Theorem A that will yield the ring isomorphism. We have identified H1(Σg) ∼= H1(Σg) by

means of µ. A generator of H2(Σg) will be denoted ω.

F (u⊗ 1) = π∗u (Hm(B)⊗H0(Σg)→ Hm(E))

F (u⊗ x) = µ∗(π
∗(u⊗ x)k0) (Hm(B)⊗H1(Σg)→ Hm+1(E))

F (u⊗ ω) = π∗u ν′ (Hm(B)⊗H2(Σg)→ Hm+2(E))

The table below records the multiplicative structure on H∗(B)⊗H∗(Σg) induced by the cup

products on B and Σg. Under the identification H1(Σg) ∼= H1(Σg), the cup product is given by

xy = µ(x, y)ω.

v ⊗ 1 v ⊗ y v ⊗ ω
u⊗ 1 uv ⊗ 1 uv ⊗ y uv ⊗ ω
u⊗ x (−1)|v|µ(x, y)uv ⊗ ω 0

u⊗ ω 0

Passing the entries in this table through F yields a table of values for F (ab) (for a, b ∈
H∗(B)⊗H∗(Σg)):

v ⊗ 1 v ⊗ y v ⊗ ω
u⊗ 1 π∗(uv) µ∗(π

∗(uv ⊗ y)k0) π∗(uv) ν′

u⊗ x (−1)|v|µ(x, y)π∗(uv) ν′ 0

u⊗ ω 0

Showing that F is a ring isomorphism reduces to showing that this table matches the table

of values for F (a)F (b), given below.

π∗v µ∗(π
∗(v ⊗ y)k0) π∗v ν′

π∗u π∗(uv) π∗u µ∗(π
∗(v ⊗ y)k0) π∗(uv) ν′

µ∗(π
∗(u⊗ x)k0) µ∗(π

∗(u⊗ x)k0) µ∗(π
∗(v ⊗ y)k0) µ∗(π

∗(u⊗ x)k0) π∗v ν′

π∗u ν′ π∗(uv)(ν′)2
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The first pair of entries to reconcile is µ∗(π
∗(uv ⊗ y)k0) and π∗u µ∗(π

∗(v ⊗ y)k0). This is

essentially immediate. We must next show the equality

(−1)|v|µ(x, y)π∗(uv) ν′ = µ∗(π
∗(u⊗ x)k0) µ∗(π

∗(v ⊗ y)k0).

Calculating,

µ∗(π
∗(u⊗ x)k0) µ∗(π

∗(v ⊗ y)k0) = (−1)|v|C2,∗(π
∗(u⊗ x)π∗(v ⊗ y)k2

0)

= (−1)|v|π∗(uv)C2,∗(π
∗(x⊗ y) k2

0).

Here, (x ⊗ y) is to be interpreted as an element of H0(B;H⊗2
1 ). Clearly the equality will be

established if the statement

C2,∗(π
∗(x⊗ y) k2

0) = µ(x, y)ν′

is shown to hold. To do this, the components of C2,∗(π
∗(x⊗ y) k2

0) will be computed for the

splitting on H∗(E) given by F . To compute π!(C2,∗(π
∗(x⊗ y) k2

0)), observe that

π!(C2,∗(π
∗(x⊗ y) k2

0)) = C2,∗((x⊗ y)π!(k
2
0))

= C2,∗((x⊗ y)ι∗(k2
0))

= C2,∗((x⊗ y) id2).

The last equality holds in light of the fact that ι∗k0 = id ∈ H1(Σg;H1). From here, an

examination of the definition of C2,∗ shows that C2,∗((x⊗ y) id2) = µ(x, y).

The next step is to compute the H∗(B;H1)-component of C2,∗(π
∗(x⊗ y) k2

0); the goal is to

show this is zero. This is computed as follows:

µ∗(π
∗π!(C2,∗(π

∗(x⊗ y) k3
0))k0) = µ∗(π

∗(m0,3y(x, y))k0).

Theorem B asserts that m0,3 = −6τ1. Therefore m0,3 = 0 when restricted to Kg,∗, showing that

the H∗(B;H1)-component of C2,∗(π
∗(x⊗ y) k2

0) is zero as desired.

The final step is to show that

π!(νC2,∗(π
∗(x⊗ y) k2

0)) = 0,

or equivalently that σ∗(C2,∗(π
∗(x⊗y) k2

0)) = 0. This latter expression is divisible by σ∗(k0) = 0,

and the result follows.

To complete the proof of Theorem E, it remains to show the vanishing of µ∗(π
∗(u⊗x)k0) π∗v ν′

and of π∗(uv)(ν′)2. To show the former, it suffices to show that k0ν
′ = 0 when restricted to

Kg,∗. This will be shown by computing the components of k0ν
′ in the splitting given by F .

π!(k0ν
′) = 0 is seen to hold immediately by properties of ν′ and k0. It must next be shown that

µ∗(π
∗π!(ν

′k2
0)k0) = 0. (17)

Recall that

ν′ = ν − π∗π!(ν
2) = ν − π∗σ∗(ν) = ν − e.
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According to [Mor96, Theorem 5.1], the Euler class e ∈ H2(Modg,∗) is in the image of the

pullback ρ∗1, where ρ1 is the map

ρ1 : Modg,∗ →
1

2
∧3 H1 o Sp(2g,Z)

given by ρ1(φ) = (k̃(φ),Ψ(φ)). Restricted to Ig,∗, the map ρ1 simplifies to the Johnson

homomorphism τ1, and so ρ∗1 has zero image when pulled back to H2(Kg,∗). It follows that

e = 0, and so, when restricted to Kg,∗, there is an equality ν′ = ν. Therefore, the term π!(ν
′k2

0)

in (17) simplifies to π!(νk
2
0) = σ∗(k2

0) = 0. Likewise,

π!(νν
′k0) = π!(ν

2k0) = σ∗(νk0) = 0,

and the final component of ν′k0 is seen to vanish.

It remains only to show π∗(uv)(ν′)2 = 0, which is obviously implied by showing (ν′)2 = 0. As

was remarked in the previous step, ν′ = ν on Kg,∗. As before, we will show ν2 = 0 by computing

the components of ν2. The first of these is divisible by the factor

π!(ν
2) = σ∗(ν) = e = 0,

while the third is

π!(ν
3) = σ∗(ν2) = e2 = 0.

The remaining step is to show

µ∗(π
∗π!(ν

2k0)k0) = 0.

This follows from the vanishing π!(ν
2k0) = 0 established above. �

Finally, Theorem F follows as a corollary.

Proof of Theorem F: Let f : B → K(Kg,∗, 1) determine a Σg-bundle π : E → B with monodromy

contained in Kg,∗; let B be equipped with the distinguished homology class [B] ∈ Hk(B).

Proposition 5.2 asserts that for any a1, . . . , ak+2 ∈ H1, there is an equality

〈ε(a1) . . . ε(ak+2), [E]〉 = (−1)kC ′k((a1 ∧ · · · ∧ ak+2)⊗ τk[B]).

As C ′k is nondenegerate, it suffices to show that 〈ε(a1) . . . ε(ak+2), [E]〉 = 0 for all k + 2-tuples

a1, . . . , ak+2 ∈ H1. From Theorem E, there is an expression

ε(a1)ε(a2) = µ(a1, a2)ν.

Theorem E also asserts that ν ε(a3) = 0, so that the triple product ε(a1)ε(a2)ε(a3) = 0. The

result follows. �



CUP PRODUCTS, JOHNSON INVARIANTS, AND MMM CLASSES 19

References

[CF12] T. Church and B. Farb. Parameterized Abel-Jacobi maps and abelian cycles in the Torelli group. J.

Topol., 5(1):15–38, 2012.

[EE69] C. J. Earle and J. Eells. A fibre bundle description of Teichmüller theory. J. Differential Geometry,

3:19–43, 1969.

[Hai97] R. Hain. Infinitesimal presentations of the Torelli groups. J. Amer. Math. Soc., 10(3):597–651, 1997.

[Joh80] D. Johnson. An abelian quotient of the mapping class group Ig . Math. Ann., 249(3):225–242, 1980.

[Joh83] D. Johnson. A survey of the Torelli group. In Low-dimensional topology (San Francisco, Calif., 1981),

volume 20 of Contemp. Math., pages 165–179. Amer. Math. Soc., Providence, RI, 1983.

[Joh85] D. Johnson. The structure of the Torelli group. II. A characterization of the group generated by twists

on bounding curves. Topology, 24(2):113–126, 1985.

[Kaw98] N. Kawazumi. A generalization of the Morita-Mumford classes to extended mapping class groups for

surfaces. Invent. Math., 131(1):137–149, 1998.

[KM] N. Kawazumi and S. Morita. The primary approximation to the cohomology of the moduli

space of curves and cocycles for the Mumford-Morita-Miller classes. Preprint; http://kyokan.ms.u-

tokyo.ac.jp/users/preprint/pdf/2001-13.pdf.

[Mor93] S. Morita. The extension of Johnson’s homomorphism from the Torelli group to the mapping class

group. Invent. Math., 111(1):197–224, 1993.

[Mor96] S. Morita. A linear representation of the mapping class group of orientable surfaces and characteristic

classes of surface bundles. In Topology and Teichmüller spaces (Katinkulta, 1995), pages 159–186.

World Sci. Publ., River Edge, NJ, 1996.

[Mor01] S. Morita. Geometry of characteristic classes, volume 199 of Translations of Mathematical Monographs.

American Mathematical Society, Providence, RI, 2001. Translated from the 1999 Japanese original,

Iwanami Series in Modern Mathematics.

[MW07] I. Madsen and M. Weiss. The stable moduli space of Riemann surfaces: Mumford’s conjecture. Ann. of

Math. (2), 165(3):843–941, 2007.

[Sal15] N. Salter. Cup products, the Johnson homomorphism, and surface bundles over surfaces with multiple

fiberings. Algebr. Geom. Topol., 15:3613 – 3652, 2015.

[Sul75] D. Sullivan. On the intersection ring of compact three manifolds. Topology, 14(3):275–277, 1975.

E-mail address: nks@math.uchicago.edu

Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL 60637


	1. Introduction
	2. Preliminaries
	2.1. Surface bundles and the mapping class group
	2.2. Symplectic multilinear algebra
	2.3. The Gysin homomorphism

	3. Twisted MMM classes
	4. Proof of Theorem A
	5. The restriction of m0,k to Ig,*
	6. Relation to MMM classes: Theorem C
	7. Applications to surface bundles
	References

