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Abstract. We consider the space Pd of smooth complex projective plane curves of degree

d. There is the tautological family of plane curves defined over Pd, which has an associated

monodromy representation ρd : π1(Pd) → Mod(Σg) into the mapping class group of the fiber.

For d ≤ 4, classical algebraic geometry implies the surjectivity of ρd. For d ≥ 5, the existence of

a (d− 3)rd root of the canonical bundle implies that ρd cannot be surjective. The main result of

this paper is that for d = 5, the image of ρ5 is as large as possible, subject to this constraint.

This requires combining the algebro-geometric work of Lönne [Lön09] with Johnson’s theory

[Joh83] of the Torelli subgroup of Mod(Σg).

1. Introduction

Let1 Pd denote the moduli space of smooth degree d plane curves. The tautological family of

plane curves over Pd determines a monodromy representation

ρd : π1(Pd)→ Mod(Σg),

where g =
(
d−1
2

)
and Mod(Σg) is the mapping class group of the surface Σg of genus g. This note

concerns the problem of computing the image of ρd.

The first step towards determining the image of ρd was carried out by A. Beauville in [Bea86],

building off of earlier work of W. Janssen [Jan83] and S. Chmutov [Chm82]. Let Ψ : Mod(Σg)→
Sp2g(Z) denote the symplectic representation of Mod(Σg) on H1(Σg;Z). Beauville determined

Ψ ◦ ρd. He shows that for d even it is a surjection, while for d odd it is the (finite-index) stabilizer

of a certain spin structure. Naively, it is therefore possible that ρd could surject onto Mod(Σg) or

onto a spin mapping class group, depending on the parity of d.

It is a folklore result that in general, this does not happen. There is an invariant called an r-spin

structure that provides an obstruction for f ∈ Mod(Σg) to be contained in Im(ρd). This r-spin

structure is constructed in a natural way from a (d− 3)rd root of the canonical bundle of a plane

curve; see Section 2.2 for further discussion. It follows from work of Sipe [Sip82] that for d ≥ 6,

this obstruction is not detectable on the level of homology, i.e. that Beauville’s upper bound is not

Date: October 1, 2024.
1This paper originally appeared in 2016 and languished as a preprint for several years. Accordingly, the literature

on this topic has advanced considerably. In the interest of not being ahistorical, we leave the discussion of the

introduction in its original form. See the “Update” section in the introduction for the current state of the questions

discussed here.
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sharp. We formulate this as a theorem, in the interest of giving a self-contained proof of a result

which does not seem to be easily accessible in the literature.

Theorem 1.1 (Folklore, Sipe [Sip82]). For all d ≥ 4, there is a finite-index subgroup Mod(Σg)[φd] ≤
Mod(Σg) for which

Im(ρd) ⊆ Mod(Σg)[φd].

For d ≥ 6, the containment

Mod(Σg)[φd] $ Ψ−1(Ψ(Mod(Σg)[φd]))

is strict. Consequently, for d ≥ 6, the same is true for Im(ρd):

Im(ρd) $ Ψ−1(Ψ(Im(ρd))).

In the statement of Theorem 1.1, φd ∈ H1(T ∗,1Σg;Z/(d− 3)Z), where T ∗,1Σg denotes the unit

cotangent bundle of Σg, and Mod(Σg)[φd] denotes the stabilizer of φd in the natural action of

Mod(Σg) on H1(Σg;Z/(d− 3)Z). The class φd is an instance of an r-spin structure for r = d− 3.

Our proof of Theorem 1.1 will be obtained by giving a construction of φd that makes the

invariance of φd under Im(ρd) transparent. Using a topological interpretation of r-spin structures

based on the work of S. Humphries - D. Johnson [HJ89], it will then be possible to see how the

invariance of φd provides a strictly stronger constraint on Im(ρd) than that of Beauville.

The main original result of this paper concerns the problem of determining sufficient conditions

for an element f ∈ Mod(Σg) to be contained in Im(ρd). For degrees d = 3, 4 (where g = 1, 3), it

is known that ρd is a surjection. This is ultimately a consequence of the fact that generic curves

of genus g = 1, 3 admit planar embeddings, unique up to an automorphism of CP 2 (the only

exceptions being hyperelliptic curves in genus 3). The case d = 3 also follows immediately from

Beauville’s computation, in light of the fact that Ψ is an isomorphism Ψ : Mod(Σ1)→ SL2(Z) for

g = 1. This case is also closely related to the work of I. Dolgachev - A. Libgober [DL81]. The case

d = 4 was treated by Y. Kuno [Kun08]. Theorem A thus treats the first case where planarity is an

exceptional property for a curve to possess, and shows that despite this, the monodromy of the

family of plane curves of degree 5 is still as large as possible.

Theorem A. Let d = 5. There is a (classical) spin structure of odd parity φ5 ∈ H1(T ∗,1Σ6;Z/2Z)

with associated stabilizer Mod(Σ6)[φ5] ≤ Mod(Σ6) for which there is an equality

Im(ρ5) = Mod(Σ6)[φ5].

The methods of the paper are special to the case of d = 5 only in that a finite generating set for

Mod(Σg)[φd] ∩ ker(Ψ) is known only for d ≤ 5; we are able to produce large collections of Dehn

twists in Im(ρd) for all d. On the basis of this, we offer the following conjecture.

Conjecture 1.2 (Monodromy of the universal plane curve). For all d ≥ 4, there is an equality

Im(ρd) = Mod(Σg)[φd].
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A version of Conjecture 1.2 was also formulated by R. Crétois - L. Lang [CL18]. The paper

[CL18] is closely related to this one, treating the problem of monodromies of linear systems on toric

surfaces.

Theorem A is obtained by a combination of techniques both from algebraic geometry and from

the theory of the mapping class group. The starting point is Beauville’s work, which allows one to

restrict attention to Im(ρ5) ∩ I6, where I6 is the Torelli group (see Section 4.3 for the definition of

the Torelli group).

The bridge between algebraic geometry and mapping class groups arises from the work of M.

Lönne [Lön09]. The main theorem of [Lön09] gives an explicit presentation for the fundamental

group of the space Pn,d of smooth hypersurfaces in CPn of degree d. Picard-Lefschetz theory allows

one to recognize Lönne’s generators as Dehn twists. Theorem A is then proved by carrying out a

careful examination of the configuration of vanishing cycles as simple closed curves on a surface of

genus 6. This analysis is used to exhibit the elements of Johnson’s generating set for the Torelli

group inside Im(ρ5).

In genus 6, Johnson’s generating set has 4470 elements. In order to make this computation

tractable, we find a new relation in Mod(Σg) known as the “genus-g star relation”. Using this, we

reduce the problem to eight easily-verified cases. An implicit corollary of the proof is a determination

of a simple finite set of Dehn twist generators for the spin mapping class group Mod(Σ6)[φ5]. An

alternative set of generators was obtained by S. Hirose [Hir05, Theorem 6.1].

Update. As discussed in Footnote 1, this paper first appeared in 2016, and much has advanced in

the intervening years. We provide here an up-to-date account of the state of affairs. Conjecture

1.2 has now been completely resolved, indeed in the broader setting of linear systems on smooth

toric surfaces. The case when the r-spin structure has r = 2 was treated by Crétois–Lang in

[CL19]. The general case was resolved by the author in [Sal19] (only up to finite index, in the

case of r even), and subsequently the full conjecture was obtained by the author and Calderon in

[CS21]. As first observed by Calderon [Cal20], r-spin mapping class groups (and the refinements to

“framed mapping class groups”) appear in a diverse array of other monodromy problems, including

strata of Abelian differentials [Cal20, CS21, CS23] and versal deformations of isolated plane curve

singularities [PCS21].

In [Har21], R. Harris investigates the kernel of the monodromy map, finding that for plane

quartics, the kernel is isomorphic to the product of a free group of infinite rank with Z/3Z. And in

[Ban24], Banerjee finds that the fundamental group of the ambient algebraic surface provides a

further constraint on the monodromy of a linear system. This constraint is quite strong, forcing

the monodromy to be of infinite index. It would be interesting to investigate Conjecture 1.2 for any

linear system on a simply-connected smooth algebraic surface.

Outline. Section 2 is devoted to the construction of φd. In Section 3, we recall some work of S.

Humphries and D. Johnson that relates H1(T ∗,1Σg;V ) for an abelian group V to the notion of a
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“generalized winding number function”. We will use this perspective to prove that the invariance of

φd under Im(ρd) provides an obstruction to the surjectivity of ρd.

The proof of Theorem A is carried out in sections 4 through 7. Section 4 collects a number

of results from the theory of mapping class groups. Section 5 recalls Lönne’s presentation and

establishes some first properties of Im(ρd). Section 6 continues the analysis of Im(ρd). Finally

Section 7 collects these results together to prove Theorem A.

Acknowledgements. The author would like to thank Dan Margalit for a series of valuable

discussions concerning this work. He would also like to thank Benson Farb for alerting him to

Lönne’s work and for extensive comments on drafts of this paper, as well as ongoing support in his
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the paper.
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2. rth roots of the canonical bundle and generalized spin structures

2.1. Plane curves and Pd. A general reference for this paragraph is [DL81, Section 2].

By definition, a (projective) plane curve of degree d is the vanishing locus V (f) in CP 2 of a

nonzero homogeneous polynomial f(x, y, z) of degree d. The space of all plane curves is identified

with CPN , where N =
(
d+2
2

)
− 1. A plane curve X of degree d is smooth if X ∼= Σg with g =

(
d−1
2

)
,

and otherwise X is said to be singular.

We define the discriminant as the set

Dd = {f ∈ CPN | V (f) is singular.}.

The discriminant Dd is the vanishing locus of a polynomial pd known as the discriminant polynomial,

and is therefore a hypersurface in CPN . The space of smooth plane curves is then defined as

Pd = CPN \ Dd.

The universal family of plane curves is the space Xd ⊂ Pd × CP2 defined via

Xd = {(f, [x : y : z]) ∈ Pd × CP2 | f(x, y, z) = 0}.

The projection π : Xd → Pd is the projection map for a C∞ fiber bundle structure on Xd with

fibers diffeomorphic to Σg.

2.2. r-spin structures. Let X be a smooth projective algebraic curve over C and let K ∈ Pic(X)

denote the canonical bundle.2 Recall that a spin structure on X is an element L ∈ Pic(X) satisfying

L⊗2 = K. This admits an obvious generalization.

Definition 2.1. An r-spin structure is a line bundle L ∈ Pic(X) satisfying L⊗r = K.

2Recall that the canonical bundle is the line bundle whose underlying R2 bundle is T ∗X, the cotangent bundle.
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Let T ∗,1X denote the unit cotangent bundle of X, relative to an arbitrary Riemannian metric on

X. Just as ordinary spin structures are closely related to H1(T ∗,1X;Z/2Z), there is an analogous

picture of r-spin structures.

Proposition 2.2. Let L be an r-spin structure on X. Associated to L are

(1) a regular r-sheeted covering space T̃ ∗,1X → T ∗,1X with deck group Z/nZ, and

(2) a cohomology class φL ∈ H1(T ∗,1X;Z/rZ) restricting to a generator of the cohomology

H1(S1;Z/rZ) of the fiber of T ∗,1X → X.

Proof. In view of the equality L⊗r = K in Pic(X), taking rth powers in the fiber induces a map

µ : L→ K. Let L◦ denote the complement of the zero section in L, and define K◦ similarly. Then

µ : L◦ → K◦ is an r-sheeted covering space with deck group Z/rZ induced from the multiplicative

action of the rth roots of unity. The covering space T̃ ∗,1X → T ∗,1X is obtained from L◦ → K◦ by

restriction.

As T̃ ∗,1X → T ∗,1X is a regular cover with deck group Z/rZ, the Galois correspondence for

covering spaces asserts that T̃ ∗,1X is associated to some homomorphism φL : π1(T ∗,1X)→ Z/rZ.

This gives rise to a class, also denoted φL, in H1(T 1,∗X;Z/rZ). On a given fiber of T ∗,1X → X,

the covering T̃ ∗,1X → T ∗,1X restricts to an r-sheeted cover S1 → S1; this proves the assertion

concerning the restriction of φL to H1(S1;Z/rZ). �

Our interest in r-spin structures arises from the fact that degree-d plane curves are equipped

with a canonical (d− 3)-spin structure.

Fact 2.3. Let X be a smooth degree-d plane curve, d ≥ 3. The canonical bundle K ∈ Pic(X) is

induced from the restriction of O(d− 3) ∈ Pic(CP2). Consequently, O(1) determines a (d− 3)-spin

structure on X for d ≥ 4.

Let $ : Xd → CP2 denote the projection onto the second factor. Then $∗(O(d− 3)) ∈ Pic(Xd)

restricts to the canonical bundle on each fiber, and $∗(O(1)) determines a (d−3)-spin structure. Let

T ∗,1Xd denote the S1-bundle over Xd for which the fiber over (X,x) consists of the unit cotangent

vectors T ∗,1x X.

Definition 2.4. The cohomology class

φd ∈ H1(T ∗,1Xd;Z/(d− 3)Z)

is obtained by applying the construction of Proposition 2.2 to the pair of line bundles $∗(O(1)),

$∗(O(d− 3)) ∈ Pic(Xd).

3. Generalized winding numbers and obstructions to surjectivity

In this section, we prove that the existence of φd gives rise to an obstruction for a mapping class

f ∈ Mod(Σg) to be contained in Im(ρd). For any system of coefficients V , there is a natural action

of Mod(Σg) on H1(T ∗,1Σg;V ) which extends the action of Mod(Σg) on H1(Σg;V ) via Ψ. To prove
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Theorem 1.1, it therefore suffices to prove that the stabilizer Mod(Σg)[φd] of each nonzero element

of H1(T ∗,1Σg;Z/(d− 3)Z) is not the full group Ψ−1(Ψ(Im(ρd))).

The natural setting for what follows is in the unit tangent bundle of a surface, which we write

T 1Σ. Of course, a choice of Riemannian metric on Σ identifies T 1Σ with T ∗,1Σ, and a choice of

metric in each fiber identifies T ∗,1Xd with the “vertical unit tangent bundle” T 1Xd; we will make

no further comment on these matters.

The basis for our approach is the work of Humphries-Johnson [HJ89], which gives an interpretation

of H1(T 1Σg;V ) as the space of “V -valued generalized winding number functions”. A basic notion

here is that of a Johnson lift. For our purposes, a simple closed curve is a C1-embedded S1-

submanifold.

Definition 3.1. Let a be a simple closed curve on the surface Σ given by a unit-speed C1 embedding

a : S1 → Σ. A choice of orientation on S1 induces an orientation on a, as well as providing a

coherent identification T 1
xS

1 = {−1, 1} for each x ∈ S1. The Johnson lift of a, written ~a, is the

map ~a : S1 → T 1Σ given by

~a(t) = (a(t), Dta(1)).

That is, the Johnson lift of a is simply the curve in T 1Σ induced from a by tracking the tangent

vector.

The Johnson lift allows for the evaluation of elements of H1(T 1Σ;V ) on simple closed curves.

Let Σ be a surface, V an abelian group, and α ∈ H1(T 1Σ;V ) a cohomology class. Let a be

a simple closed curve. By an abuse of notation, we write α(a) for the evaluation of α on the

1-cycle determined by the Johnson lift ~a. In this context we call α a “generalized winding number

function”.3 In [HJ89], it is shown that this pairing satisfies the following properties:

Theorem 3.2 (Humphries-Johnson).

(i) The evaluation α(a) ∈ V is well-defined on the isotopy class of a.

(ii) (Twist-linearity) If b is another simple closed curve and Tb denotes the Dehn twist about b,

then α is “twist-linear” in the following sense:

α(Tb(a)) = α(a) + 〈a, b〉α(b), (1)

where 〈a, b〉 denotes the algebraic intersection pairing.

(iii) Let ζ be a curve enclosing a small null-homotopic disk on Σ, and let S ⊂ Σ be a subsurface

with boundary components b1, . . . , bk. If each bi is oriented so that S is on the left and ζ is

oriented similarly, then

α(b1) + · · ·+ α(bk) = χ(S)α(ζ), (2)

where χ(S) is the Euler characteristic of S.

3The terminology “generalized winding number” is inspired by the fact that the twist-linearity property was first

encountered in the context of computing winding numbers of curves on surfaces relative to a vector field.
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Remark 3.3. Humprhies-Johnson in fact establish much more: they prove that every V -valued

twist-linear function arises as a class α ∈ H1(T 1Σ;V ). For what follows we only need the results of

Theorem 3.2.

Proof of Theorem 1.1. Consider the class φd ∈ H1(T ∗,1Xd;Z/(d − 3)Z). The above discussion

implies that on a given fiber X of Xd → Pd, the restriction of φd determines a generalized winding

number function; we write αd ∈ H1(T 1X;Z/(d− 3)Z) for this class. Since αd is induced from the

globally-defined form φd, it follows that αd is monodromy-invariant: if f ∈ Im(ρd), then for any

simple closed curve a on X, the equation

αd(f(a)) = αd(a) (3)

must hold. Consequently,

Im(ρd) ⊆ Mod(Σg)[φd]

as claimed.

We wish to exhibit a nonseparating simple closed curve b for which αd(b) 6= 0. Given such a b,

there is another simple closed curve a satisfying 〈a, b〉 = 1. Then the twist-linearity condition (1)

will show that

αd(Tb(a)) = αd(a) + αd(b) 6= αd(a);

this contradicts (3). It follows that the Dehn twist Tb for such a curve cannot be contained in

Mod(Σg)[φd].

In the case when d is even, when Ψ−1(Ψ(Im(ρd))) = Mod(Σg), this will prove Theorem 1.1. For d

odd, there is an additional complication. Here, the class d−3
2 φd ∈ H1(T ∗,1Xd;Z/2Z) determines an

ordinary spin structure, and according to Beauville, the group Ψ(Mod(Σg)[φd]) is the stabilizer of
d−3
2 φd in Sp(2g,Z). We must therefore exhibit a curve b for which αd(b) is nonzero and d−3

2 -torsion.

Equation (1) shows that such a curve does stabilize the spin structure d−3
2 φd, but not the refinement

to a (d− 3)-spin structure φd.

It remains to exhibit a suitable curve b. It follows easily from the twist-linearity condition

(1) that given any subsurface S ⊂ X of genus 1 with one boundary component, there is some

(necessarily nonseparating) curve c contained in S with αd(c) = 0. Let S1, S2, S3 be a collection

of mutually-disjoint subsurfaces of genus 1 with one boundary component, and let c1, c2, c3 be

curves satisfying αd(ci) = 0, and for which ci is contained in Si (recall that d ≥ 6 and so the

genus of X is g ≥ 10). Choose b disjoint from all ci so that the collection of curves b, c1, c2, c3

encloses a subsurface Σ homeomorphic to a sphere with 4 boundary components. From (2) and the

construction of the ci, it follows that when b is suitably oriented, it satisfies

αd(b) = χ(Σ)αd(ζ) = −2αd(ζ).

Recall that by Proposition 2.2.2, the element αd(ζ) ∈ Z/(d− 3)Z is primitive. Thus αd(b) 6= 0 for

any d, but is d−3
2 -torsion when d is odd, as required. �
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4. Results from the theory of the mapping class group

We turn now to the proof of Theorem A. From this section onwards, we adopt the conventions

and notations of the reference [FM12]. In particular, the left-handed Dehn twist about a curve

c is written Tc, and the geometric intersection number between curves a, b is written i(a, b). We

pause briefly to establish some further conventions. We will often refer to a simple closed curve

as simply a “curve”, and will often confuse the distinction between a curve and its isotopy class.

Unless otherwise specified, we will assume that all intersections between curves are essential.

4.1. The change-of-coordinates principle. The change-of-coordinates principle roughly asserts

that if two configurations of simple closed curves and arcs on a surface have the same intersection

pattern, then there is a homeomorphism taking one configuration to the other. There are many

variants of the change-of-coordinates principle, all based on the classification of surfaces. See the

discussion in [FM12, Section 1.3.2].

Basic principle. Suppose c1, . . . , cn and d1, . . . , dn are configurations of curves on a surface S all

meeting transversely. The surface S \ {ci} has a labeling on segments of its boundary, corresponding

to the segments of the curves ci from which the boundary component arises. Suppose there is a

homeomorphism

f : S \ {ci} → S \ {di}

taking every boundary segment labeled by ci to the corresponding di segment. Then f can be

extended to a homeomorphsim f : S → S taking the configuration ci to di.

We illustrate this in the case of chains.

Definition 4.1. Let S be a surface. A chain on S of length k is a collection of curves (c1, . . . , ck)

for which the geometric intersection number i(ci, cj) is 1 if |i− j| = 1 and 0 otherwise. If

C = (c1, . . . , ck) is a chain, the boundary of C, written ∂C, is defined to be the boundary of a small

regular neighborhood of c1 ∪ · · · ∪ ck. When k is even, ∂C is a single (necessarily separating) curve,

and when k is odd, ∂C = d1 ∪ d2 consists of two curves d1, d2 whose union separates S.

Lemma 4.2 (Change-of-coordinates for chains). Let (c1, . . . , ck) and (d1, . . . , dk) be chains of even

length k on a surface S. Then there is a homeomorphism f : S → S for which f(ci) = di, 1 ≤ i ≤ k.

Proof. See [FM12, Section 1.3.2]. �

4.2. Some relations in the mapping class group.

Proposition 4.3 (Braid relation). Let S be a surface, and a, b curves on S satisfying i(a, b) = 1.

Then

TaTbTa = TbTaTb. (4)

On the level of curves,

TaTb(a) = b.
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d1
d2

d3

a1

a2

c1 c2

c2g−1

c2g

p1

p2g+1
p2

α

σ2

δ1

δ2

Figure 1. The genus-g star relation.

Any such a, b are necessarily non-separating.

Conversely, if a, b are curves on S in distinct isotopy classes that satisfy the braid relation (4),

then i(a, b) = 1.

Proof. See [FM12, Proposition 3.11] for the proof of the first assertion, and [FM12, Proposition

3.13] for the second. �

The chain relation. The chain relation relates Dehn twists about curves in a chain to Dehn

twists around the boundary. We will require a slightly less well-known form of the chain relation

for chains of odd length; see [FM12, Section 4.4.1] for details.

Proposition 4.4 (Chain relation). Let C = (c1, . . . , ck) be a chain with k odd. Let d1, d2 denote

the components of ∂C. Then the following relation holds:

(T 2
c1Tc2 . . . Tck)k = Td1Td2 .

The genus-g star relation. We will also need to make use of a novel4 relation generalizing the

star relation (setting g = 1 below recovers the classical star relation).

Proposition 4.5 (Genus-g star relation). With reference to the curves a1, a2, c1, . . . , c2g, d1, d2, d3

on the surface Σg,3 of Figure 1, the following relation holds in Mod(Σg,3):

(Ta1Ta2Tc1 . . . Tc2g )2g+1 = T gd1Td2Td3 . (5)

Proof. We will derive the genus-g star relation from a more transparent relation in a braid group,

making use of the theory of the liftable mapping class group as developed by Birman–Hilden

[BH73]. Figure 1 depicts a 2 : 1 covering Σg,3 → Σ0,2 ramified at 2g + 1 points. Number the

ramification points clockwise p1, . . . , p2g+1, and consider the mapping class group Mod(Σ0,2,2g+1)

4Added in 2024 revisions: In later work I realized this is actually a relation induced from a homomorphism of an

Artin group of type D into the mapping class group, and that this was known to prior authors, e.g. [Mat00].
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relative to these points. The theory of Birman–Hilden implies that there is a finite-index subgroup

of Mod(Σ0,2,2g+1) (the “liftable subgroup”) whose elements lift to mapping classes in Mod(Σg,3).

Such lifts are unique up to the action of the deck group, and so there is a homomorphsim from the

liftable subgroup into Mod(Σg,3). Consequently, any relation in the liftable subgroup induces a

relation upstairs in Mod(Σg,3); this is the underlying principle of our argument.

Under the covering, the double-twist T 2
δ1

lifts to Td1 ∈ Mod(Σg,3), and the twist Tδ2 lifts to

Td2Td3 . The twist Tα lifts to Ta1Ta2 , and the half-twist σi lifts to Tci . Let f ∈ Mod(Σ0,2,2g+1)

be the push map moving each pi clockwise to pi+1, with subscripts interpreted mod 2g + 1. One

verifies the equality

f = Tασ1 . . . σ2gT
−1
δ1
.

It follows that

f2g+1 = (Tασ1 . . . σ2g)
2g+1T

−(2g+1)
δ1

,

since Tδ1 is central. As f2g+1 is the push map around the core of the annulus, there is an equality

f2g+1 = T−1δ1
Tδ2 .

Combining these results,

Tδ2T
2g
δ1

= (Tασ1 . . . σ2g)
2g+1. (6)

Under the lifting described above, the relation (6) in Mod(Σ0,2,2g+1) lifts to the relation (5) in

Mod(Σg,3). �

4.3. The Johnson generating set for Ig. There is a natural map

Ψ : Mod(Σg)→ Sp2g(Z)

taking a mapping class f to the induced automorphism f∗ of H1(Σg;Z). The Torelli group Ig is

defined to be the kernel of this map:

Ig = ker(Ψ).

In [Joh83], Johnson produced a finite set of generators for Ig, for all g ≥ 3. Elements of this

generating set are known as chain maps. Let C = (c1, . . . , ck) be a chain of odd length with

boundary ∂C = d1 ∪ d2. There are exactly two ways to orient the collection of curves c1, . . . , ck

in such a way that the algebraic intersection number ci · ci+1 = +1. Relative to such a choice,

the chain map associated to C is then the mapping class Td1T
−1
d2

, where d1 is distinguished as the

boundary component to the left of the curves c1, c3, . . . , ck. The mapping class Td1T
−1
d−2 is also

called the bounding pair map for d1, d2.

While a complete description of Johnson’s generating set is quite tidy and elegant, it has the

disadvantage of requiring several preliminary notions before it can be stated. We therefore content

ourselves with a distillation of his work that is more immediately applicable to our situation.

Theorem 4.6 (Johnson). For g ≥ 3, let Γ ≤ Mod(Σg) be a subgroup that contains the Dehn twists

about the curves c1, . . . , c2g shown in Figure 2. Suppose that Γ contains all chain maps for the

odd-length chains of the form (c1, . . . , ck) and (β, c5, . . . , ck). Then Ig ≤ Γ.
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c1

c2
c3

c4
c5

c6 c2g−2

c2g−1

c2g
β

Figure 2. Curves involved in the Johnson generating set.

Proof. The interested reader should have no trouble deducing Theorem 4.6 from the Main Theorem

and Lemma 1(f) of [Joh83]. �

5. The Lönne presentation

In this section, we recall Lönne’s work [Lön09] computing π1(Pd), and apply this to derive some

first properties of the monodromy map ρd : π1(Pd)→ Mod(Σg).

5.1. Picard-Lefschetz theory. Picard-Lefschetz theory concerns the problem of computing

monodromies attached to singular points of holomorphic functions f : Cn → C. This then serves as

the local theory underpinning more global monodromy computations. Our reference is [AGZV12].

Let U ⊂ C2 and V ⊂ C be open sets for which 0 ∈ V . Let f(u, v) : U → V be a holomorphic

function. Suppose f has an isolated critical value at z = 0, and that there is a single corresponding

critical point p ∈ C2. Suppose that p is of Morse type in the sense that the Hessian(
∂2f
∂2x

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂2y

)
is non-singular at p. Equivalently, f is analytically equivalent to f(u, v) = uv, the union of two

lines crossing transversely.

In such a situation, the fiber f−1(z) for z 6= 0 is diffeomorphic to an open annulus. The core

curve of such an annulus is called a vanishing cycle. Let γ be a small circle in C enclosing only the

critical value at z = 0. Let z1 ∈ γ be a basepoint with corresponding core curve c ⊂ f−1(z1). The

Picard-Lefschetz theorem describes the monodromy obtained by traversing γ.

More generally, an algebraic curve C is said to have a nodal singularity at p ∈ C if there is an

analytic local equation for C near p of the form f(u, v) = uv. Perturbing C slightly to a smooth

C ′, the intersection of C ′ with a small ball near p is again an annulus, and the core curve is again

called a vanishing cycle.

Theorem 5.1 (Picard-Lefschetz for n = 2). With reference to the preceding discussion, the

monodromy µ ∈ Mod(f−1(z1)) attached to traversing γ counter-clockwise is given by a right-handed
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Dehn twist about the vanishing cycle:

µ = T−1c .

More generally, let D∗ denote the punctured unit disk

D∗ = {w ∈ C | 0 < |w| ≤ 1},

and write D = {w ∈ C | |w| ≤ 1} for the closed unit disk.

Let f(x, y, z) be a homogeneous polynomial of degree d with the following properties:

(1) For c ∈ D, the plane curve czd − f(x, y, z) is singular only for c = 0.

(2) The only critical point for f of the form (x, y, 0) is the point (0, 0, 0).

(3) The function f(x, y, 1) has a single critical point of Morse type at (x, y) = (0, 0).

In this setting, the local theory of Theorem 5.1 can be used to analyze the monodromy of the family

E = {(c, [x : y : z]) | czd = f(x, y, z)} ⊂ D∗ × CP 2

around the boundary ∂D∗.

Theorem 5.2 (Picard-Lefschetz for plane curve families). Let f ∈ CPN satisfy the properties

(1), (2), (3) listed above. Let X = V (zd − f(x, y, z)) denote the fiber above 1 ∈ D∗. Then there

is a vanishing cycle c ⊂ X so that the monodromy µ ∈ Mod(X) obtained by traversing ∂D∗

counter-clockwise is given by a right-handed Dehn twist about the vanishing cycle:

µ = T−1c .

Proof. Condition (2) asserts that the monodromy can be computed by restricting attention to the

affine subfamily obtained by setting z = 1. Define

E◦ = {(c, x, y) | c = f(x, y, 1)} ⊂ D∗ × C2.

Define U = {(x, y) ∈ C2 | |f(x, y, 1)| ≤ 1}, and consider f(x, y, 1) as a holomorphic function

f : U → D. The monodromy of this family then corresponds to the monodromy of the original

family E → D∗. The result now follows from Condition (3) in combination with Theorem 5.1 as

applied to f(x, y, 1). �

5.2. Lönne’s theorem. There are some preliminary notions to establish before Lönne’s theorem

can be stated. We begin by introducing the Lönne graphs Γd. Lönne obtains his presentation of

π1(Pd) as a quotient a certain group constructed from Γd.

Definition 5.3. [Lönne graph] Let d ≥ 3 be given. The Lönne graph Γd has vertex set

Id = {(a, b) | 1 ≤ a, b ≤ d− 1}.

Vertices (a1, b1) and (a2, b2) are connected by an edge if and only if both of the following conditions

are met:

(1) |a1 − a2| ≤ 1 and |b1 − b2| ≤ 1.

(2) (a1 − a2)(b1 − b2) ≤ 0.
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The set of edges of Γd is denoted Ed.

Figure 3. The Lönne graph Γ5.

Vertices i, j, k ∈ Γd are said to form a triangle when i, j, k are mutually adjacent. The triangles in

the Lönne graph are crucial to what follows. It will be necessary to endow them with orientations.

Definition 5.4 (Orientation of triangles). Let i, j, k determine a triangle in Γd.

(1) If

i = (a, b), j = (a, b+ 1), k = (a+ 1, b),

then the triangle i, j, k is positively-oriented by traversing the boundary clockwise.

(2) If

i = (a, b), j = (a, b+ 1), k = (a− 1, b+ 1),

then the triangle i, j, k is positively-oriented by traversing the boundary counterclockwise.

We say that the ordered triple (i, j, k) of vertices determining a triangle is positively-oriented if

traversing the boundary from i to j to k agrees with the orientation specified above.

Definition 5.5 (Artin group). Let Γ be a graph with vertex set V and edge set E. The Artin

group A(Γ) is defined to be the group with generators

σi, i ∈ V,

subject to the following relations:

(1) σiσj = σjσi for all (i, j) 6∈ E.

(2) σiσjσi = σjσiσj for all (i, j) ∈ E.

Theorem 5.6 (Lönne). For d ≥ 3, the group π1(Pd) is isomorphic to a quotient of the Artin group

A(Γd), subject to the following additional relations:

(3) σiσjσkσi = σjσkσiσj if (i, j, k) forms a positively-oriented triangle in Γd.

(4) An additional family of relations Ri, i ∈ Id.

(5) An additional relation R̃.

Remark 5.7. Define the group B(Γd) as the quotient of the Artin group A(Γd) by the family of

relations (3) in Theorem 5.6. As our statement of Lönne’s theorem indicates, the additional relations

will be of no use to us, and our theorem really concerns the lift of the monodromy representation

ρ̃d : B(Γd)→ Mod(Σg).
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For the analysis to follow, it is essential to understand the mapping classes ρd(σi), i ∈ Id.

Proposition 5.8. For each generator σi of Theorem 5.6, the image

ρd(σi) = T−1ci

is a right-handed Dehn twist about some vanishing cycle ci on a fiber X ∈ Pd.

Proof. The result will follow from Theorem 5.2, once certain aspects of Lönne’s proof are recalled.

The generators σi of Theorem 5.6 correspond to specific loops in Pd known as geometric elements.

Definition 5.9 (Geometric element). Let D = V (p) be a hypersurface in Cn defined by some

polynomial p. An element x ∈ π1(Cn \ D) that can be represented by a path isotopic to the

boundary of a small disk transversal to D is called a geometric element. If D̃ is a projective

hypersurface, an element x ∈ π1(CPn \ D̃) is said to be a geometric element if it can be represented

by a geometric element in some affine chart.

In Lönne’s terminology, the generators σi, i ∈ Id arise as a “Hefez-Lazzeri basis” - this will

require some explanation. Consider the linearly-perturbed Fermat polynomial

f(x, y, z) = xd + yd + νxxz
d−1 + νyyz

d−1

for well-chosen constants νx, νy. Such an f satisfies the conditions (1)-(3) of Theorem 5.2 near each

critical point. Moreover, there is a bijection between the critical points of f(x, y, 1) and the set Id

of Definition 5.3. If νx, νy are chosen carefully, each critical point lies above a distinct critical value

- in this way we embed Id ⊂ C.

Each c ∈ C determines a plane curve V (czd − f). The values of c for which V (czd − f) is not

smooth are exactly the critical values of f(x, y, 1). The family

H = {V (czd − f) | V (czd − f) is smooth}

is a subfamily of Pd defined over C \ Id. The Hefez-Lazzeri basis {σi | i ∈ Id} is a carefully-chosen

set of paths in C\ Id with each σi encircling an individual i ∈ Id. Lönne shows that the inclusions of

these paths into Pd via the family H generate π1(Pd). The result now follows from an application

of Theorem 5.2. �

5.3. First properties of ρd. Proposition 5.8 establishes the existence of a collection ci, i ∈ Id
of vanishing cycles on X. In this section, we derive some basic topological properties of this

configuration arising from the fact that the Dehn twists T−1ci must satisfy the relations (1)-(3) of

Lönne’s presentation.

Lemma 5.10.

(1) If the vertices vi, vj are adjacent, then the curves ci, cj satisfy i(ci, cj) = 1.

(2) For d ≥ 4, the curves ci, i ∈ Id are pairwise distinct, and all ci are non-separating.

(3) If the vertices vi, vj in Γd are non-adjacent, then the curves ci and cj are disjoint.
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(4) For d ≥ 4, if the vertices vi, vj , vk form a triangle in Γd, then the curves ci, cj , ck are

supported on an essential subsurface5 Sijk ⊂ X homeomorphic to Σ1,2. Moreover, if the

triangle determined by vi, vj , vk is positively oriented, then i(ci, T
−1
cj (ck)) = 0.

Proof. (1): If vi and vj are adjacent, then the Dehn twists T−1ci and T−1cj satisfy the braid relation.

It follows from Proposition 4.3 that i(ci, cj) = 1.

(2): Suppose vi and vj are distinct vertices. For d ≥ 4, no two vertices have the same set of adjacent

vertices, so that there is some vk adjacent to vi and not vj . By (1) above, it follows that T−1ci and

T−1ck
satisfy the braid relation, while T−1cj and T−1ck

do not, showing that the isotopy classes of ci

and cj are distinct. Since each ci satisfies a braid relation with some other cj , Proposition 4.3

shows that ci is non-separating.

(3): If vi and vj are non-adjacent, then the Dehn twists T−1ci and T−1cj commute. According to

[FM12, Section 3.5.2], this implies that either ci = cj or else ci and cj are disjoint. By (2), the

former possibility cannot hold.

(4): Via the change-of-coordinates principle, it can be checked that if ci, cj , ck are curves that

pairwise intersect once, then ci ∪ cj ∪ ck is supported on an essential subsurface of the form Σ1,b for

1 ≤ b ≤ 3. In the case b = 1, the curve ck must be of the form ck = T±1ci (cj). It follows that if d is a

curve such that i(d, ck) 6= 0, then at least one of i(d, ci) and i(d, cj) must also be nonzero. However,

as d ≥ 4, there is always some vertex vl adjacent to exactly one of ci, cj , ck. The corresponding

curve cl would violate the condition required of d above (possibly after permuting the indices i, j, k).

It remains to eliminate the possibility b = 3. In this case, the change-of-coordinates principle

implies that up to homeomorphism, the curves ci, cj , ck must be arranged as in Figure 4. It can be

checked directly (e.g. by examining the action on H1(Σ1,3)) that for this configuration, the relation

T−1ci T
−1
cj T

−1
ck
T−1ci = T−1cj T

−1
ck
T−1ci T

−1
cj

does not hold. This violates relation (3) in Lönne’s presentation of π1(Pd). We conclude that

necessarily b = 2.

Having shown that b = 2, it remains to show the condition i(ci, T
−1
cj (ck)) = 0 for a positively-

oriented triangle. Let (x, y, z) denote a 3-chain on Σ1,2. The change-of-coordinates principle implies

that without loss of generality, ci = x, cj = y, and ck = T±1y (z). We wish to show that necessarily

ck = Ty(z). It can be checked directly (e.g. by considering the action on H1(Σ1,2)) that only in the

case ck = Ty(z) does relation (3) in the Lönne presentation hold. �

6. Configurations of vanishing cycles

The goal of this section is to derive an explicit picture of the configuration of vanishing cycles on

a plane curve of degree 5. The main result of the section is Lemma 6.1.

5A subsurface S′ ⊂ S is essential if every component of ∂S′ is not null-homotopic.
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Figure 4. Lemma 5.10.4: the configuration of ci, cj , ck in the b = 3 case.

c1

c2 c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

x

y

z

b

Figure 5. The curves of Lemma 6.1. The bottom halves of curves b, x, y, z, and

ci for i odd have been omitted for clarity; on the bottom half, each curve follows

its mirror image on the top.

Lemma 6.1. There is a homeomorphism f : X → Σ6 such that with reference to Figure 5,

(1) The curves c1, . . . , c12 are vanishing cycles; that is, Tci ∈ Im(ρ5) for 1 ≤ i ≤ 12. The

curves x, y, z are also vanishing cycles.

(2) The curve b satisfies T 2
b ∈ Im(ρ5).

Proof. Lemma 6.1 will be proved in three steps.
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Step 1: Uniqueness of Lönne configurations.

Lemma 6.2. Suppose d ≥ 5 is odd. Up to homeomorphism, there is a unique configuration of

curves ci, i ∈ Id on Σg whose intersection pattern is prescribed by Γd and such that the twists T−1ci

satisfy the relations (1),(2),(3) given by Lönne’s presentation.

A configuration of curves ci, i ∈ Id as in Lemma 6.2 will be referred to as a Lönne configuration.

Proof. Let a1,1, . . . , ad−1,d−1 determine a Lönne configuration on Σg. We will exhibit a homeo-

morphism of Σg taking each ai,j to a corresponding bi,j in a “reference” configuration {bi,j} to be

constructed in the course of the proof. This will require three steps.

Step 1: A collection of disjoint chains. Each row in the Lönne graph determines a chain of

length d− 1. The change of coordinates principle for chains of even length (Lemma 4.2) asserts that

any two chains of length d−1 are equivalent up to homeomorphism. Considering the odd-numbered

rows of Γd, it follows that there is a homeomorphism f1 of Σg that takes each a2i−1,j for 1 ≤ i ≤ d−1

to a curve b2i−1,j in a standard picture of a chain. We denote the subsurface of Σg determined by

the chain a2i−1,1, . . . , a2i−1,d−1 as Ai, and similarly we define the subsurfaces Bi of the reference

configuration. Each Ai, Bi is homeomorphic to Σ(d−1)/2,1.

Step 2: Arcs on Ai. The next step is to show that up to homeomorphism, there is a unique

picture of what the intersection of the remaining curves a2i,j with
⋃
Ai looks like. Consider a curve

a2i,j . Up to isotopy, a2i,j intersects only the subsurfaces Ai and Ai+1. We claim that a2i,j can

be isotoped so that its intersection with Ai is a single arc, and similarly for Ai+1. If j = d − 1,

then a2i,d−1 intersects only the curve a2i−1,d−1, and i(a2i,d−1, a2i−1,d−1) = 1. It follows that if

a2i,d−1 ∩Ai has multiple components, exactly one is essential, and the remaining components can

be isotoped off of Ai.

In the general case where a2i,j intersects both a2i−1,j and a2i−1,j+1, an analogous argument

shows that a2i,j ∩ Ai consists of one or two essential arcs. Consider the triangle in the Lönne

graph determined by a2i,j , a2i−1,j , a2i−1,j+1. According to Lemma 5.10.4, the union a2i,j ∪a2i−1,j ∪
a2i−1,j+1 is supported on an essential subsurface of the form Σ1,2. Figure 6 shows that if a2i,j ∩Ai
consists of two essential arcs, then a2i,j ∪ a2i−1,j ∪ a2i−1,j+1 is supported on an essential subsurface

of the form Σ1,3, in contradiction with Lemma 5.10.4. Similar arguments establish that a2i−2,j ∩Ai
is a single essential arc as well.

We next show that all points of intersection a2i,j ∩ a2i,j+1 can be isotoped to occur on both Ai

and Ai+1. This also follows from Lemma 5.10.4. If some point of intersection a2i,j ∩ a2i,j+1 could

not be isotoped onto Ai, then the union a2i,j ∪ a2i,j+1 ∪ a2i−1,j+1 could not be supported on a

subsurface homeomorphic to Σ1,2. An analogous argument applies with Ai+1 in place of Ai. This

is explained in Figure 7.

It follows from this analysis that all crossings between curves in row 2i can be isotoped to occur

in a collar neighborhood of ∂Ai. We define A+
i to be a slight enlargement of Ai along such a

neighborhood, so that all crossings between curves in row 2i occur in A+
i \Ai.
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Figure 6. If a2i,j cannot be isotoped onto a single arc inside Ai, then the curve

enclosed by the inner strip (shaded) is essential in Σg, causing a2i,j ∪ a2i−1,j ∪
a2i−1,j+1 to be supported on a surface Σ1,3.

Figure 7. If the intersection a2i,j ∩ a2i,j+1 cannot be isotoped to occur on Ai,

then both curves indicated by the shaded regions are essential in Σg, causing

a2i,j ∪ a2i,j+1 ∪ a2i−1,j+1 to be supported on a surface Σ1,3.

We can now understand what the collection of arcs a2i,1 ∩A+
i , . . . , a2i,d−1 ∩A

+
i looks like. To

begin with, the change-of-coordinates principle asserts that up to a homeomorphism of Ai fixing

the curves {a2i−1,j}, the arc a2i,1 ∩ Ai can be drawn in one of two ways. The first possibility

is shown in Figure 8(a), and the second is its mirror-image obtained by reflection through the

plane of the page (i.e. the curve with the dotted and solid portions exchanged). In fact, a2i,1 ∩Ai
must look as shown. This follows from Lemma 5.10.4. The vertices (a2i−1,1, a2i−1,2, a2i,1) form a

positively-oriented triangle, and so i(a2i−1,1, T
−1
a2i−1,2

(a2i,1)) = 0. This condition precludes the other

possibility.

The pictures for a2i,2, . . . , a2i,d−1 are obtained by proceeding inductively. In each case, there are

exactly two ways to draw an arc satisfying the requisite intersection properties, and Lemma 5.10.4

precludes one of these possibilities. The result is shown in Figure 8(b).

It remains to understand how the crossings between curves in row 2i are organized on A+
i . As

shown, the arcs a2i,j ∩ Ai and a2i,j+1 ∩ Ai intersect ∂Ai twice each, and in both instances the

intersections are adjacent relative to the other arcs. There are thus apparently two possibilities for

where the crossing can occur. However, one can see from Figure 8(c) that once a choice is made

for one crossing, this enforces choices for the remaining crossings. Moreover, the two apparently

distinct configurations are in fact equivalent: the cyclic ordering of the arcs along ∂A+
i is the same
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in either case, and the combinatorial type of the cut-up surface

A◦i := A+
i \

⋃
{ak,j | 2i− 1 ≤ k ≤ 2i, 1 ≤ j ≤ d− 1}

is the same in either situation. The change-of-coordinates principle then asserts the existence of a

homeomorphism of A+
i sending each a2i−1,j to itself, and taking one configuration of arcs to the

other.

Having seen that the arcs a2i,j ∩A+
i can be put into standard form, it remains to examine the

other collection of arcs on A+
i , namely those of the form a2i−2,j . It is easy to see by induction on d

that the cut-up surface A◦i is a union of polyhedral disks for which the edges correspond to portions

of the curves a2i−1,j , the arcs a2i,j ∩ A+
i , or else the boundary ∂A+

i . It follows that the isotopy

class of an arc a2i−2,j ∩A+
I is uniquely determined by its intersection data with the curves a2i−1,j

and a2i,j .

For j ≥ 2, the curve a2i−2,j intersects a2i−1,j−1 and a2i−1,j , and is disjoint from all curves a2i,k.

As a2i,j−1 has the same set of intersections as a2i−2,j , it follows that a2i−2,j ∩A+
i must run parallel

to a2i,j−1. The curve a2i−2,1 intersects only a2i,1; consequently a2i−2,1 ∩A+
i is uniquely determined.

As can be seen from Figure 8(c), this forces each subsequent a2i−2,j onto a particular side of a2i,j−1.

(a) (b)

(c)

Figure 8. The surface A+
i . (a): The correct choice for a2i,1 ∩ Ai. (b): The

configuration a2i,j ∩Ai. (c) The configuration a2i,j ∩A+
i .

Step 3: Arcs on the remainder of Σg. Consider now the subsurface

Σ◦g := Σg \
⋃
Ai.

This has (d− 1)/2 boundary components ∂k, indexed by the corresponding Ak. The intersection

a2i,j∩(Σg \
⋃
Ai) consists of two arcs, each connecting ∂i with ∂i+1. The strategy for the remainder
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of the proof is to argue that when all these arcs are deleted from Σ◦g, the result is a union of disks.

The change-of-coordinates principle will then assert the uniqueness of such a configuration of arcs,

completing the proof.

For what follows, it will be convenient to refer to a product neighborhood [0, 1]× [0, 1] ⊂ Σ◦g of

some arc a2i,j ∩ Σ◦g as a strip. Our first objective is to compute the Euler characteristic χ of the

surface Σ◦◦g obtained by deleting strips for all arcs from Σ◦g. Then an analysis of the pattern by

which strips are attached will determine the number of components of this surface.

To begin, we return to the setting of Figure 7. Above, it was argued that for 2i < (d− 1)/2, the

intersection a2i,j ∩ a2i,j+1 can be isotoped onto either Ai or Ai+1. This means that there is a strip

that contains both a2i,j ∩ Σ◦g and a2i,j+1 ∩ Σ◦g. Grouping such strips together, it can be seen that

for 1 ≤ i ≤ (d− 3)/2, the 2ith row of the Lönne graph gives rise to d strips. In the last row, there

are d− 1 strips. So in total there are 1/2(d+ 1)(d− 2) strips, and each strip contributes −1 to the

Euler characteristic.

Recall the relation g = (d− 1)(d− 2)/2: this means that

χ(Σg) = 2− (d− 1)(d− 2).

Each Ai has Euler characteristic χ(Ai) = 2− d. It follows that

χ(Σ◦g) = χ(Σg)−
(d−1)/2∑
i=1

χ(Ai) = 2− (d− 1)(d− 2) + (d− 1)(d− 2)/2

= 2− (d− 1)(d− 2)/2.

Therefore,

χ(Σ◦◦g ) = χ(Σ◦g) + 1/2(d+ 1)(d− 2)

= d.

We claim that Σ◦◦g has d boundary components. This will finish the proof, as a surface of Euler

characteristic d and b = d boundary components must be a union of d disks. The claim can easily

be checked directly in the case d = 5 of immediate relevance. For general d, this follows from a

straightforward, if notationally tedious, verification, proceeding by an analysis of the cyclic ordering

of the arcs ai,j around the boundary components ∂A+
k . �

Step 2: A convenient configuration.

Figure 9 presents a picture of a Lönne configuration in the case of interest d = 5. This was

obtained by “building the surface” curve by curve, attaching one-handles in the sequence indicated

by the numbering of the curves a1, . . . , a16. There are other, more uniform depictions of Lönne

configurations which arise from Akbulut-Kirby’s picture of a plane curve of degree d derived from

a Seifert surface of the (d, d) torus link (see [AK80] or [GS99, Section 6.2.7]), but the analysis to

follow is easier to carry out using the model of Figure 9.
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a1

a2

a3

a5

a7

a9

a10

a11

a13

a15

ι

a15 a5 a3 a1

a13 a7 a2 a4

a11 a9 a8 a6

a10 a12 a14 a16

Figure 9. A Lönne configuration on Σ6. Only a portion of the figure has been

drawn: the omitted curves are obtained by applying the involution ι to the depicted

curves.

Step 3: Producing vanishing cycles. The bulk of this step will establish claim (1); claim (2)

follows as an immediate porism. The set of vanishing cycles is invariant under the action of the

monodromy group, since acting by a monodromy element on a nodal degeneration amounts to

changing the path along which the nodal degeneration is performed. In particular, if a and b are

vanishing cycles, then so is Ta(b). To begin with, curves c1, c2, c4, c8, and c12 are elements of the

Lönne configuration and so are already vanishing cycles. The curve c3 is obtained as

c3 = T−1a2 (a3);

similarly,

c13 = T−1a2 (a4).
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Curve c10 is obtained as

c10 = Ta15(a13);

c6 is obtained from a14 and a16 analogously.

The curve c9 is obtained as

c9 = Tc10T
−1
a10(a11);

c7 is obtained from a10, a12, and c6 analogously.

To obtain c5, twist a13 along the chain c6, . . . , c10:

c5 = T−1c6 T
−1
c7 T

−1
c8 T

−1
c9 T

−1
c10 (a13).

c11 is obtained by an analogous procedure on a14.

The sequence of twists used to exhibit x as a vanishing cycle is illustrated in Figure 10.

Symbolically,

x = T−1c6 T
−1
c7 T

−1
c8 T

−1
c9 Tc5Tc4T

−1
c6 T

−1
c7 T

−1
c8 T

−1
a9 (a7).

y is produced in an analogous fashion, starting with a8 in place of a6.

To produce z, we appeal to the genus-2 star relation. Applied to the surface bounded by b, y, z,

it shows that T 2
b TyTz ∈ Im(ρ5), and hence T 2

b Tz ∈ Im(ρ5) since Ty ∈ Im(ρ5) by above. Observe

that i(c10, z) = 1, and that Tc10 ∈ Im(ρ5). Making use of the fact that b is disjoint from both z

and c10, the braid relation gives

Tc10T
2
b Tz(c10) = Tc10Tz(c10) = z.

This exhibits z as a vanishing cycle, establishing claim (1) of Lemma 6.1. As T 2
b Tz and Tz are now

both known to be elements of Im(ρ5), it follows that T 2
b ∈ Im(ρ5) as well, completing claim (2).

�

7. Proof of Theorem A

In this final section we assemble the work we have done so far in order to prove Theorem A.

Step 1: Reduction to the Torelli group. The first step is to reduce the problem of determining

Im(ρ5) to the determination of Im(ρ5) ∩ I6. This will follow from [Bea86]. Recall that Beauville

establishes that Im(Ψ ◦ ρ5) is the entire stabilizer of an odd-parity spin structure on H1(Σ6;Z).

This spin structure was identified as φ5 in Section 2. Therefore Im(Ψ ◦ ρ5) = Im(Ψ ◦Mod(Σ6)[φ5]).

It therefore suffices to show that

Im(ρ5) ∩ ker Ψ = Mod(Σ6)[φ5] ∩ ker Ψ = I6. (7)

Step 2: Enumeration of cases. Equation (7) will be derived as a consequence of Theorem

4.6. Lemma 6.1.1 asserts that the curves c1, . . . , c12 in the Johnson generating set are contained in

Im(ρ5), so that the first hypothesis of Theorem 4.6 is satisfied. There are then eight cases to check:

the four straight chain maps of the form (c1, . . . , ck) for k = 3, 5, 7, 9, and the four β-chain maps of

the form (β, c5, . . . , ck) for k = 6, 8, 10, 12. See Figure 11.
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T−1
a9

T−1
c6 T

−1
c7 T

−1
c8

Tc5Tc4

T−1
c6 T

−1
c7 T

−1
c8 T

−1
c9

Figure 10. The sequence of twists used to obtain x.

The verification of the β-chain cases will be easier to accomplish after conjugating by the class

g = TxT
−1
c5 T

−1
c4 ∈ Im(ρ5). This has the following effect on the curves in the β-chains (the curve γ is

indicated in Figure 11 in the picture for k = 6):

g(β) = b, g(c5) = c4, g(c6) = γ, g(ck) = ck for k ≥ 7.

Step 3: Producing bounding-pair maps. In this step, we explain the method by which we will

obtain the necessary bounding-pair maps. This is an easy consequence of the chain relation.

Lemma 7.1. Let C = (c1, . . . , ck) be a chain of odd length k and boundary ∂C = d1 ∪ d2. Suppose

that the mapping classes

T 2
c1 , Tc2 , . . . , Tck , T

2
d1

are all contained in some subgroup Γ ≤ Mod(Σg). Then the chain map associated to C (i.e. the

bounding pair map Td1T
−1
d2

) is also contained in Γ.

Proof. The chain relation (Proposition 4.4) implies that Td1Td2 ∈ Γ. By hypothesis, T 2
d1
∈ Γ, so

the bounding pair map Td1T
−1
d2
∈ Γ as well. �

Step 4: Verification of cases. Lemma 6.1 asserts that the classes Tci , 1 ≤ i ≤ 12, as well as T 2
b

are all contained in Im(ρ5). The class γ is obtained from c6 by the element g ∈ Im(ρ5), so γ is a

vanishing cycle as well. Via Lemma 7.1, it remains only to show that in each of the cases in Step 2,

one of the boundary components d1 satisfies T 2
d1
∈ Im(ρ5).
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k = 3

k = 5

k = 7

k = 9

k = 6

k = 8

k = 10

k = 12

γ

Figure 11. The cases of Step 2

The straight chain maps are depicted in the left-hand column of Figure 11. For k = 3, one

boundary component is b; we have already remarked how T 2
b ∈ Im(ρ5). For k = 5, one of the

boundary components is x. For k = 7, one uses the methods of Lemma 6.1 to show that the
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right-hand boundary component c satisfies T 2
c ∈ Im(ρ5) (the proof is identical to that for b). Finally,

for k = 9, one of the boundary components is y.

We turn to the β-chains. The images of the β-chains under the map g are depicted in the

right-hand column of Figure 11. For k = 6, 8, 10, 12, let dk denote the boundary component depicted

there for the chain (b, c4, γ, c7, . . . , ck). Observe that dk is also a boundary component of the chain

map for (c6, . . . , ck) (in the case k = 6, the boundary component d6 is just c6). Moreover, the chain

map for (c6, . . . , ck) is conjugate to the chain map for (c1, . . . , ck−5) by an element of Im(ρ5) (this is

easy to see using the isomorphism between the group generated by c1, . . . , c12 and the braid group

B13 on 13 strands). Via the verification of the straight-chain cases, it follows that T 2
dk
∈ Im(ρ5),

and so by Lemma 7.1 the β-chain maps are also contained in Im(ρ5). �
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