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Abstract. This paper contains a suite of results concerning the problem of adding m distinct new

points to a configuration of n distinct points on the Riemann sphere, such that the new points

depend continuously on the old. Altogether, the results of the paper provide a complete answer to the

following question: given n 6= 5, for which m can one continuously add m points to a configuration of n

points? For n ≥ 6, we find that m must be divisible by n(n−1)(n−2), and we provide a construction

based on the idea of cabling of braids. For n = 3, 4, we give some exceptional constructions based on

the theory of elliptic curves.

1. Introduction

This paper studies the space Confn(S2) of configurations of n distinct unordered points in S2. This

is the base space for a fiber bundle P : Confn,m(S2)→ Confn(S2), where the total space Confn,m(S2)

is the space of configurations of n+m distinct points divided into two groups of cardinalities n and

m. For any fiber bundle π : E → B, it is a basic question to understand the space of sections, i.e.

continuous maps σ : B → E satisfying π ◦ σ = id. In the case of P : Confn,m(S2) → Confn(S2), a

section S : Confn(S2) → Confn,m(S2) has a very natural interpretation: S is an assignment of m

additional distinct points to a given configuration of n distinct points that depends continuously on

the position of the n points.

The approach we pursue in this paper is to study sections of P by means of the fundamental group.

The spherical braid group Bn(S2) is the fundamental group of Confn(S2), and we also define

Bn,m(S2) := π1(Confn,m(S2)).

Setting p := P∗ and s := S∗, a section S induces a group-theoretic section s : Bn(S2) → Bn,m(S2)

of the surjective homomorphism p : Bn,m(S2)→ Bn(S2). Thus an obstruction to the existence of a

group-theoretic section s furnishes an obstruction to the existence of a bundle-theoretic section S. A

standard argument in obstruction theory shows that the converse is true as well.

The theory of sections of bundles of configuration and moduli spaces plays an important role in

topology, geometric group theory, and algebraic geometry. See, for instance, the classic papers of

Earle–Kra [EK74], [EK76] and Hubbard [Hub76], the work of Lin [Lin11], or the recent work of
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W. Chen [Che18], each of which treats various instances of the problem of obstructing and classifying

sections of such bundles.

The section problem for P : Confn,m(S2)→ Confn(S2) is particularly subtle and rich for several

reasons. If the ambient space S2 is replaced with C, sections of Confn,m(C)→ Confn(C) are easy to

construct: one can simply add m new points “near infinity”. By contrast, even the mere existence

of sections in the spherical case is far from obvious. Our interest in this question was sparked by a

2005 paper of Gonçalves–Guaschi [GG05]. They established the following pioneering and intriguing

theorem.

Theorem 1.1 (Gonçalves–Guaschi). A group-theoretic section s : B3(S2)→ B3,m(S2) exists if and

only if m ≡ 0 or m ≡ 2 (mod 3).

For n ≥ 4, there are no sections s : Bn(S2)→ Bn,m(S2) except possibly if m is congruent to one of

the four residues 0, (n− 1)(n− 2),−n(n− 2),−(n− 2) mod n(n− 1)(n− 2).

See below for a more complete discussion of the work of Gonçalves–Guaschi and the role that their

work plays in informing the present approach.

Main results: statement. Gonçalves–Guaschi did not give any explicit construction of sections,

even in the n = 3 case. The results of this paper complete the analysis begun in Theorem 1.1 by

finding further obstructions to sections unseen by the methods of Gonçalves–Guaschi (Theorem A) and

by providing explicit constructions of sections in all but one of the cases not obstructed by Theorem A;

these results appear as Theorems B and C. Taken together, the results of the paper give a complete

determination of those m for which there exist sections S : Confn(S2) → Confn,m(S2), excepting

n = 5.

Theorem A (Obstruction of sections). For n ≥ 6, no section S : Confn(S2)→ Confn,m(S2) exists

unless n(n− 1)(n− 2) divides m.

We find that for arbitrary n, one can build a family of sections using the idea of “cabling” of braids.

Theorem B (Cabling spherical braids). For any n ≥ 3 and any m divisible by n(n− 1)(n− 2), there

is a section S : Confn(S2)→ Confn,m(S2).

The exceptional sections for n ≤ 4 are algebro–geometric in nature, and we switch from viewing S2

as the 2–sphere to the projective space CP1. Note that for n = 4, the residues appearing in Theorem

1.1 are 0, 6, 16, 22 mod 24.

Theorem C (Exceptional algebro–geometric sections). For any m ≥ 0 satisfying m ≡ 0, 2 (mod 3),

there exists an algebraic map S that gives a section of the bundle Conf3,m(CP1)→ Conf3(CP1).

For any m ≥ 0 congruent to one of 0, 6, 16, 22 mod 24, there is a section S : Conf4(CP1) →
Conf4,m(CP1).

Remark 1.2. The section problem in the cases n = 1, 2 reduces to some pleasant exercises in basic

algebraic topology. For n = 1, a section s : Conf1(S2) → Conf1,1(S2) is provided by the antipodal
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map, and indeed the Lefschetz fixed point theorem and the Hopf degree theorem combine to show

that this is the only such section up to homotopy. We claim that no section exists for n = 1 and

m ≥ 2. Indeed, as Conf1(S2) = S2 is simply-connected, the monodromy of any such section is trivial,

and hence the points s(z)1, . . . , s(z)m associated to z ∈ S2 by any putative m-point section would be

globally ordered. If m ≥ 2, one can use the unique Möbius transformation taking the ordered tuple

(z, s(z)1, s(z)2) to (0, 1,∞) to give a framing of S2, but no such framing exists. A similar analysis

shows that no sections exist for n = 2 and arbitrary m ≥ 1.

In the remainder of the paper we install the standing assumption that n ≥ 3; further restrictions on

n will be specified where necessary.

Main results: discussion. Below we offer some further discussion of the three main results. We

begin with the constructive theorems B and C.

Theorem B: cabling and rational maps. Theorem B, discussed in Section 3, constructs sections

in the case m ≡ 0 (mod n(n− 1)(n− 2)). Geometrically, the idea is to construct a section by adding

a “halo” of new points nearby each original point. In light of the nontriviality of the tangent bundle of

S2, the challenge is to give a suitable framing of the tangent space at the original points.

We provide two points of view on the solution to this problem, one more topological/group–theoretical

and one more algebraic. On the topological side, we appeal to the theory of “cabling” of braids.

These are a family of homomorphisms Bn → Bkn arising from the simple idea of viewing each strand

of a braid as being built from a “cable” of k smaller strands. The idea of cabling is not novel (see

the references listed in Section 3), but to the authors’ knowledge, the specific challenges involved in

analyzing cabling in the setting of the spherical braid group do not appear elsewhere in the literature.

These details are presented in Section 3.

Our second point of view on Theorem B is via the theory of rational maps on CP1. Given three

ordered distinct points A,B,C, there is a unique Möbius transformation φ ∈ PSL(2,C) such that

φ(0) = A, φ(1) = B,φ(∞) = C. To such a triple, we (continuously) associate the point D := φ(2).

However, in the unordered case, different orderings of 3 points give different Möbius transformations.

We solve this problem by multiplying suitable collections of Möbius transformations together, allowing

us to continuously assign multiple points to an unordered configurations of n points. The appearance

of the peculiar number n(n− 1)(n− 2) is very natural from this point of view, as n(n− 1)(n− 2) is

the number of ordered triples of n points. See more about the construction in Remark 3.6.

Theorem C: exceptional sections via algebraic geometry. Theorem C, discussed in Section

4, studies the exceptional cases n = 3 and n = 4, using ideas borrowed from algebraic geometry to

construct some special sections. For n = 3, the key idea is again the theory of Möbius transformations,

appearing this time in the guise of the cross–ratio. For n = 4, we appeal to the theory of elliptic

curves. A configuration of 4 unordered points on CP1 gives rise, via a 2–sheeted branched covering, to

an elliptic curve. The branch points correspond to the 2–torsion points, and the basic insight is to

construct sections by assigning to a given 4–tuple the images of the k–torsion points of the associated

elliptic curve for k > 2.
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The work of Gonçalves–Guaschi. The present work is directly inspired by the work [GG05] of

Gonçalves–Guaschi mentioned above. In order to discuss our final main result (Theorem A), we must

first recall the work of Gonçalves–Guaschi. Their fundamental insight is to exploit the structure

of torsion subgroups of Bn(S2). They observe that any section s : Bn(S2) → Bn,m(S2), being an

injective group homomorphism, must send torsion elements to torsion elements of the same order.

Work of Murasugi (c.f. [Mur82] or Section 2.4) classifies torsion in Bn(S2) and finds that all torsion

elements must have order dividing one of the numbers 2n, 2n− 2, 2n− 4; this is one point of origin

for the somewhat mysterious number n(n− 1)(n− 2) that appears in Theorem 1.1 and Theorem A.

Some elementary number theory, based on Murasugi’s classification and the principle that s preserves

torsion order, establishes a first constraint on m given n. Gonçalves–Guaschi finish their argument

via group-cohomological techniques, computing an obstruction class that is nonvanishing in the cases

where their theorem applies. To accomplish this, they make use of a generating set for Bn(S2) that is

particularly convenient for analyzing torsion.

Theorem A: obstructions via the mapping class group. Our method of proof for Theorem

A follows Gonçalves–Guaschi in studying Bn(S2) from the point of view of its torsion subgroups.

Whereas the technical core of the argument of Gonçalves–Guaschi is built around group cohomology,

we take a different approach, exploiting the close relationship between Bn(S2) and the mapping class

group Modn(S2) of the n-punctured sphere. The analogous section problem for mapping class groups

is amenable to the powerful theory of canonical reduction systems. We prove Theorem A by analyzing

the canonical reduction systems for a generating set of Modn(S2) induced from the generating set for

Bn(S2) studied by Gonçalves–Guaschi.

As to the missing case n = 5, we conjecture that Theorem A should apply here as well, and we

do not expect to find any exceptional algebro–geometric sections. Some of the arguments internal to

Theorem A require at least 6 points (c.f. Remark 6.1), but we hope that some more clever refinements

applicable to n ≥ 5 can be found.

It is natural to ask the extent to which these results are “predicted” by algebraic geometry. One

way of making this precise is to ask whether every section s : Confn(S2)→ Confn,m(S2) is homotopic

to a map of varieties s′ : Confn(CP1) → Confn,m(CP1). Perhaps surprisingly, it turns out that for

n ≥ 5 the projection map p : Confn,m(CP1)→ Confn(CP1) has no section given by an algebraic map.

This is an instance of a theorem of Lin [Lin11, Theorem 3], which builds off of the work of Earle–Kra

(see [EK74, Section 4.6]). Thus the problem of constructing and classifying continuous sections of

Confn,m(S2)→ Confn(S2) is genuinely different from the analogous problem in the algebraic category.

The results of this paper only concern the (non)existence of sections of Confn,m(S2)→ Confn(S2).

We have not addressed the question of uniqueness, but we believe that this is worthy of further study.
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Question 1.3. What is the homotopy type of the space of sections of Confn,m(S2)→ Confn(S2)? Is

every section S : Confn(S2)→ Confn,m(S2) homotopic to one of the sections constructed in Theorems

B or Theorem C?

Contents of the paper. Section 2 recalls some basic facts about the groups Bn(S2) and Modn(S2).

Section 3 discusses “cabling” of braids and exploits this to give the construction from which Theorem

B follows. In Section 4, we give some algebro-geometric constructions of sections in the cases n = 3, 4,

establishing Theorem C.

The proof of Theorem A is carried out in Sections 5 - 10. In Section 5, we review the theory of

canonical reduction systems. In Section 6 we establish some preliminary notions, leading to an overview

of the proof given in Section 7. The proof itself is carried out in Sections 8-10.

Acknowledgements. The authors would like to thank Ian Frankel for some helpful suggestions

concerning Theorem C, and Dmitri Gekhtman for some insights in Teichmüller theory. The second

author would like to thank Khanh Le for the observation that 22 = 6 + 16, leading to a simplification

and strengthening of Theorem C. The authors are grateful to Joan Birman and to an anonymous

referee for comments on preliminary drafts that improved the exposition.

2. The spherical braid group

In this section, we remind the reader of the relevant aspects of the theory of the spherical braid

groups and their relationship with the mapping class groups of the punctured sphere. Most of the

results in this section can be found in e.g. [GJP15, Section 4].

2.1. The (spherical) braid group. Let S be a surface of finite type and let PConfk(S) denote the

space of ordered k-tuples of distinct points on S. The symmetric group Sk acts on PConfk(S) by

permuting the ordering of the points; this action is by deck transformations. For any subgroup G ≤ Sk,

there is an associated covering space PConfk(S)→ PConfk(S)/G.

In the case S = D2 the open disk and G = Sk, the space Confk(D2) := PConfk(D2)/Sk has

fundamental group given by the classical braid group

Bk := π1(Confk(D2)).

The primary surface of interest in this paper is the Riemann sphere S = S2. There are two subgroups

G as above that will be of interest. First is G = Sk. We write

Confk(S2) := PConfk(S2)/Sk;

this is the space of unordered k-tuples of distinct points on S2. The spherical braid group is defined to

be the fundamental group of this space:

Bk(S2) := π1(Confk(S2)).

Secondly, suppose k = n+m, and consider the subgroup G = Sn × Sm of Sk. We write

Confn,m(S2) := PConfk(S2)/(Sn × Sm).
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This can be viewed as the space of n “red” points and m “blue” points which are otherwise indistin-

guishable. This leads to a useful piece of terminology.

Definition 2.1 (Old points, new points). Relative to the preceding discussion, we refer to the set of

cardinality n as the set of old points, and the set of cardinality m as the set of new points. The set of

old points is written {x1, . . . , xn}, and the set of new points is written {y1, . . . , ym}.

We define

Bn,m(S2) := π1(Confn,m(S2)).

There is an evident forgetful map P : Confn,m(S2)→ Confn(S2) giving rise to a surjective homomor-

phism

p : Bn,m(S2)→ Bn(S2).

It is this p that we seek to find (obstructions to) sections of. Recall that a section of a surjective group

homomorphism p : A→ B is a (necessarily injective) homomorphism s : B → A satisfying p ◦ s = id.

2.2. Spherical braid groups and the configuration spaces. Before proving Theorem B, we first

discuss an assertion mentioned in the Introduction, where we claimed that a section s : Bn(S2) →
Bn,m(S2) can be promoted to a section S : Confn(S2)→ Confn,m(S2). This is a standard argument

in obstruction theory; see [GG05, Proposition 4] for a written account.

Proposition 2.2 (Gonçalves-Guaschi). For n ≥ 3, the fiber bundle Confn,m(S2)→ Confn(S2) admits

a section if and only if there is a group-theoretic section s : Bn(S2)→ Bn,m(S2).

2.3. A presentation of the spherical braid group. It is classically known that Bn(S2) has a

presentation obtained by adding a single relation to Artin’s presentation of the classical braid group

Bn (see [GJP15, Theorem 32]). Let Rn be the word in σ1, . . . , σn−1 given by

Rn = σ1 . . . σn−1σn−1 . . . σ1. (1)

Then Bn(S2) has the following presentation:

Bn(S2) = 〈σ1, . . . , σn−1 |[σi, σj ] = 1 for |i− j| > 1,

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2,

Rn = 1〉.

The element Rn is depicted in Figure 1.

2.4. Torsion in the spherical braid group. In [Mur82], Murasugi determined the finite-order

elements in Bn(S2). He showed that every finite-order element is conjugate to a power of one of the

following three elements. Their properties are summarized in the table below.

Element Expression Order Permutation

α0 σ1 . . . σn−1 2n (1 . . . n)

α1 σ1 . . . σn−2σ
2
n−1 2n− 2 (1 . . . n− 1)

α2 σ1 . . . σn−3σ
2
n−2 2n− 4 (1 . . . n− 2)

(2)
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Figure 1. The braid Rn = σ1 . . . σ
2
n−1 . . . σ1 ⊂ D2 × [0, 1].

Remark 2.3. From the table, one can easily determine the permutation associated to any power of

(a conjugate of) αi. Explicitly, αki has permutation given by (1 . . . n − i)k, which decomposes into

gcd(k, n− i) disjoint j-cycles, where j = (n− i)/ gcd(k, n− i).

2.5. An alternative generating set. Although the set {σ1, . . . , σn−1} of “standard” generators for

Bn is the most widely-known, it is not the most useful for our purposes. The starting point for this

discussion is the following elementary lemma (c.f. [GJP15, Equation 24] or [For96, Lemma 1 (d)]).

Lemma 2.4. For 1 ≤ i ≤ n− 2, there is an equality

αi0σ1α
−i
0 = σ1+i.

of elements of Bn. Similarly, for 1 ≤ i ≤ n− 3, there is an equality

αi1σ1α
−i
1 = σ1+i.

As an immediate corollary, we obtain our desired generating set, previously observed in [For96,

Lemma 1 (d)].

Lemma 2.5. Bn, and hence its quotient Bn(S2), is generated by the set {σ1, α0}.

We will also have occasion to study the subgroup generated by the elements α1 and σ1. This group

admits the following convenient description.

Lemma 2.6. Let Bn−1,1(S2) 6 Bn(S2) be the subgroup consisting of braids that fix the point xn.

Then Bn−1,1(S2) is generated by the set {σ1, α1}.

Proof. In light of Lemma 2.4, it suffices to show that σ1, ..., σn−2 generates Bn−1,1(S2). Let Pn(S2)

be the kernel of the map p : Bn(S2)→ Sn recording the permutation of points. There is a short exact

sequence

1→ Pn(S2)→ Bn−1,1(S2)
π−→ Sn−1 → 1.

As {π(σ1), ..., π(σn−2)} generates Sn−1, it suffices to show that the kernel Pn(S2) is contained in the

subgroup H = 〈σ1, ..., σn−2〉 of Bn−1,1(S2). Since Rn = 1 ∈ Bn(S2), it follows that σ2
n−1 ∈ H. Let
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Pn be the kernel of the map Bn → Sn recording the permutation of points. We define the subgroup

G 6 Bn by

G := 〈σ1, ..., σn−2, σ2
n−1〉.

Let q : Bn → Bn(S2) be the natural projection from the classical braid group to the spherical braid

group. By definition q(G) = H. For 1 ≤ i < j ≤ n− 1, we define

Ai,j = σ−1i σ−1i+1...σ
−1
j−2σ

2
j−1σj−2...σi.

According to Artin [Art47, Theorem 17], the set {Ai,j} generates Pn, and evidently {Ai,j} ⊂ G, so

that Pn 6 G. Therefore we have that q(Pn) 6 H. Since we know that q(Pn) = Pn(S2), we get that

Pn(S2) 6 H. �

2.6. From braid groups to mapping class groups. Let S be a surface and let Modn(S) denote

the mapping class group of S relative to n unordered marked points (equivalently the marked points

can be viewed as punctures). We also define Modn,m(S) as the subgroup of Modn+m(S) consisting of

mapping classes that preserve a partitioning of the marked points into two sets of cardinalities n,m

respectively. We emphasize that mapping classes in Modn,m(S) are free to internally permute the

points of the n-element and m-element sets, but are prohibited from exchanging points from one set

for another. Also recall the standard convention, to be used throughout, that all isotopies are required

to fix all marked points, and that isotopies of curves, subsurfaces, etc. on S must be induced from

ambient isotopies of S that preserve marked points.

The “point-pushing construction” (see, e.g. [FM12, Chapter 9.1.4]) yields a homomorphism

P : Bn(S)→ Modn(S).

For most surfaces, P is an isomorphism onto its image, but this is not the case for S = S2. Rather,

there is the following short exact sequence (again, see [FM12, Chapter 9.1.4]):

1 // Z/2Z // Bn(S2)
P // Modn(S2) // 1.

The nontrivial element of the kernel is the central element ω. It is characterized by the property that

it is the unique element of order 2 in Bn(S2).

Lemma 2.7 (Proposition 33 of [GJP15]). There is a unique element ω ∈ Bn(S2) of order 2.

The classification of torsion in Bn(S2) given in (2) ports directly over to Modn(S). The only

difference between torsion in the mapping class group is that the element αi has order n− i as opposed

to 2n− 2i. As mapping classes, the torsion elements αi have simple geometric representatives. Arrange

the points x1, . . . , xn−1−i at equal intervals on the equator, and place any remaining points at the

north and south poles. As a mapping class, αi is then represented by a rotation of the sphere by an

angle of 2π/(n− i) through the plane of the equator.
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It is a priori possible that a section s : Bn(S2) → Bn,m(S2) could fail to descend to a section

s : Modn(S2) → Modn,m(S2). If this were the case, we would not be able to prove Theorem A by

moving to the setting of the mapping class group. However, we show here that this is not the case.

Lemma 2.8. Suppose that s : Bn(S2) → Bn,m(S2) is a section. Then there is a section s :

Modn(S2)→ Modn,m(S2).

Proof. The relationship between the four groups under study is summarized by the following diagram,

where the rows are short exact sequences (here 〈ωn〉 denotes the subgroup generated by ωn):

1 // 〈ωn+m〉 //

��

Bn,m(S2) //

p

��

Modn,m(S2) //

p

��

1

1 // 〈ωn〉 // Bn(S2) //

s

TT

Modn(S2) // 1.

Given f ∈ Modn(S2), let f̃ ∈ Bn(S2) be an arbitrary lift. We claim that

s(f) := s(f̃) (mod 〈ωn+m〉)

gives a well-defined section homomorphism. To see this, recall from Lemma 2.7 that ωn ∈ Bn(S2) is

the unique element of order 2 in Bn(S2), and that ωn+m is similarly characterized as an element of

Bn+m(S2). Since s is a section, it follows that s(ωn) = ωn+m. Thus s(f) is well-defined as an element

of Bn,m(S2)/〈ωn+m〉 ∼= Modn,m(S2). It is straightforward to verify that s determines a homomorphism

and that p ◦ s = id. �

3. Cabling braids on the sphere

This section is dedicated to the proof of Theorem B. We begin with a discussion of the cabling

construction. We then analyze the obstruction to cabling in the setting of the spherical braid group,

leading to the proof of Theorem B.

Cabling crops up in many aspects of the theory of braids. See, e.g. [Wen90,CW08]. To the authors’

knowledge, the theory of cabling in the spherical braid group has not been treated in the literature, so

we give here a self–contained account.

3.1. Cabling. Cabling has a simple intuitive description. Given a braid β, one imagines each strand

as actually being composed of a cable of smaller strands. This should furnish a homomorphism

ck : Bn → Bnk, where k is the number of strands in each cable. Making this precise requires additional

data: one must specify the internal braid structure that each cable possesses.

Definition 3.1 (Cabling vector). Let φ ∈ Bk be fixed, and let a1, . . . , an−1, c, t be arbitrary integers.

The cabling vector is the tuple v ∈ Bk × Zn+1 given by

v := (φ; a1, . . . , an−1, c, t).
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Figure 2. The cabling procedure. Left to right: the braid φ ∈ B3, the generator σ2,

and the cabled braid cv(σ2). Here a2 = 1, c = 1, t = 1.

Remark 3.2. As we are ultimately interested in constructing sections of Bn,m(S2) → Bn(S2), we

will need to understand when it is possible to “de-cable”, that is, when there exists a homomorphism

p : Bnk → Bn such that p ◦ cv = id. It is geometrically clear that such a p exists whenever the element

φ is contained in the subgroup Bk−1,1 consisting of braids where one strand is required to return to its

starting point. In this case, cv is valued in the subgroup Bn,n(k−1).

Lemma 3.3 (Cabling construction). Let v = (φ; a1, . . . , an−1, c, t) be a cabling vector. Then there is

a homomorphism

cv : Bn → Bnk.

Under cv, each generator σi is replaced by a cable: the ith strand is replaced with the braid φai , the

(i+ 1)st is replaced with φt−ai , and all remaining strands are replaced with the braid φc.

Proof. To prove the lemma, it suffices to show that the cabled generators {cv(σi)} satisfy all braid and

commutation relations. These are both straightforward to check. For instance, consider the two braids

cv(σiσi+1σi) and cv(σi+1σiσi+1). In both braids, the ith strand is replaced by the braid φai+ai+1+c,

the (i+ 1)st is replaced by φt+c, the (i+ 2)nd is replaced by φ2t+c−ai−ai+1 , and all other strands are

replaced by φ3c. The commutation relation cv(σiσj) = cv(σjσi) for |i− j| > 1 is similarly easy to

verify. �

3.2. Cabling spherical braids. The cabling construction described above makes implicit use of a

consistent framing of a neighborhood of each strand. Such framings are trivial to construct when the

ambient space is the disk, but the usual topological constraints obstruct such framings for spherical

braids. On the group-theoretic level, this obstruction can be formulated in terms of the following

diagram, whose rows are the short exact sequences describing the spherical braid groups as quotients



SECTION PROBLEMS FOR CONFIGURATIONS OF POINTS ON THE RIEMANN SPHERE 11

Figure 3. The braid Rn(k) ⊂ S2× [0, 1], depicted for k = 2. The remaining (n− 1)k

strands are contained inside the grey cylinder and have constant S2-coordinate. For

general k, one can imagine the two depicted strands as determining the left and right

edges of a flat strip on which the k strands are arranged.

of the braid groups of the disk:

1 // 〈〈Rn〉〉 //

��

Bn //

cv

��

Bn(S2) //

cv

��

1

1 // 〈〈Rnk〉〉 // Bnk // Bnk(S2) // 1.

(3)

The diagram shows that the homomorphism cv : Bn → Bnk will descend to a homomorphism

cv : Bn(S2)→ Bnk(S2) if and only if the braid Rn = σ1 . . . σ
2
n−1 . . . σ1 is sent to an element of 〈〈Rnk〉〉

(the normal closure of the element Rnk). In geometric terms, this is equivalent to the requirement that

cv(Rn) be isotopic to the identity as a spherical braid.

In order to understand the constraints this imposes on the cabling vector, we must understand the

isotopy between the spherical braids Rn and 1 once framings are taken into account. The content of

Lemma 3.4 below is that the isotopy Rn ∼ 1 introduces a double twist to the framing. To study this,

we introduce the braid Rn(k) shown and defined in Figure 3.
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Figure 4. The isotopy of Lemma 3.4. The sequence should be read lexicographically.

Between steps 2 and 3, a portion of the braid is pulled from the back to the front

using the edge identification; the same move occurs between steps 6 and 7.

Lemma 3.4. For any n ≥ 3 and k ≥ 2, the braid Rn(k) of Figure 3 is trivial as an element of

Bnk(S2).

Proof. This can be directly verified by applying the isotopy shown in Figure 4. �
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The braid Rn(k) is a k-stranded cabling of Rn. In order for a given cabling homomorphism

cv : Bn → Bnk to descend to cv : Bn(S2)→ Bnk(S2), it therefore suffices to produce a cabling vector

v = (φ, a1, . . . , an−1, c, t) for which cv(Rn) = Rn(k). Lemma 3.5 produces a class of suitable such v.

Lemma 3.5. Let k = k′(n− 1)(n− 2) + 1, and let φ ∈ Bk−1,1 be the element φ = (σ1 . . . σk−2σ
2
k−1)k

′
.

For a1, . . . , an−1 arbitrary, c = −1, and t = 2n−4, the cabling vector v = (φ, a1, . . . , an−1, c, t) satisfies

cv(Rn) = Rn(k).

Proof. We must analyze the internal braiding on each strand of the cabled braid

cv(Rn) = cv(σ1 . . . σ
2
n−1 . . . σ1).

In order to determine cv(Rn), we track one strand at a time, applying the cabling construction (Lemma

3.3) one letter at a time.

We begin with the first strand. Before applying the ith letter of the subword σ1 . . . σn−1, the first

strand is in position i, and so is cabled with φai . Before applying the ith letter of the other subword

σn−1 . . . σ1, the first strand is in position n+ 1− i, and so is cabled with φt−ai .

Altogether then, the first strand is cabled with φ(n−1)t = φ2(n−1)(n−2). Geometrically, φ is repre-

sented as a rotation by an angle 2π/(n− 1)(n− 2), with one strand fixed at the center of the disk and

the remaining strands arranged at equally-spaced points along a circle. Thus, φ2(n−1)(n−2) is the braid

given by two full twists of the strands about the central axis, which is exactly the cabling of the first

strand in the braid Rn(k).

The cabling on the remaining strands can be determined in a similar fashion. Fix j ≥ 2. The subword

σ1 . . . σj−2 leaves the jth strand in position j, and so gives a total cabling of φ2−j . Then σj−1 moves

the jth strand to position j − 1 and appends φt−aj−1 to the cabling. The subword σj . . . σ
2
n−1 . . . σj

leaves the jth strand in position j−1, appending φ2j−2n. Then σj−1 moves the jth strand to position j,

appending φaj−1 to the cabling. Finally the remaining subword σj−2 . . . σ1 appends an additional φ2−j .

The total cabling induced by this procedure is φt+4−2n = id, since t = 2n− 4. Thus, cv(Rn) = Rn(k)

as claimed. �

Theorem B now follows from the preceding analysis.

Proof. (of Theorem B) Suppose m is divisible by n(n− 1)(n− 2), and set k = m/n+ 1. Let v be a

cabling vector satisfying the hypotheses of Lemma 3.5. Applying Lemma 3.5 and appealing to (the

analysis following) diagram (3), it follows that cv descends to a homomorphism

cv : Bn(S2)→ Bnk(S2).

Note that φ = (σ1 . . . σk−2σ
2
k−1)k

′
is an element of Bk−1,1. By Remark 3.2, cv is valued in the

subgroup Bn,n(k−1)(S
2) = Bn,m(S2) and so provides a section of p : Bn,m(S2)→ Bn(S2) as desired.

By Proposition 2.2, cv can be promoted to a section Cv : Confn(S2)→ Confn,m(S2). �

Remark 3.6 (Cabling via rational maps). There is also an explicit construction of a section S :

Confn(S2)→ Confn,m(S2) that induces the cabling map s : Bn(S2)→ Bn,m(S2). To construct this,
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given an ordered triple (z1, z2, z3) of distinct points in CP1, we let Mz1,z2,z3 be the unique Möbius

transformation taking (z1, z2, z3)→ (0, 1,∞). This determines a map

M : Confn−3,13(CP1)× CP1 → CP1,

where Confn−3,13(CP1) is the cover of Confn(CP1) consisting of configurations with three ordered

distinguished points. At ({z4, . . . , zn}, z1, z2, z3)× CP1, the map M is given by Mz1,z2,z3 .

For a fixed ({z4, . . . , zn}, z1, z2, z3) ∈ Confn−3,13(CP1), the product

Rz1 :=
∏

i6=j∈{2,...,n}

Mz1,zi,zj

determines a rational map of degree (n− 1)(n− 2) with a zero at z1 of order (n− 1)(n− 2). We define

Rzi for 1 ≤ i ≤ n similarly. By construction, each Rzi is defined at the level of the configuration space

Confn−1,1(S2).

To construct the cable near the point zi, we take the inverse image R−1zi (ε) for some small ε a

regular value of Rzi . Taking the union of these collections of points for Rz1 , . . . , Rzn gives the cabling

section. There is a certain amount of care needed to define ε suitably; the details are below.

There is a continuous function ri : Confn−1,1(S2)→ R+ such that points in {0 < |z| < ri} under

Rzi have (n− 1)(n− 2) distinct pre-images. Relative to the spherical metric d on S2, we define another

function ρ′ : Confn(S2)→ R+ such that

ρ′({z1, ..., zn}) :=
1

3
min
i 6=j

d(zi, zj).

Using ρ′, we define another continuous function ρ′i : Confn−1,1 → R+ such that R−1zi (B(0, ρi)) ⊂
B(zi, ρ

′). By taking the common minimum, we obtain

ρi({z1, ..., ẑi, ..., zn}, zi) := min
i
{ri({z1, ..., ẑi, ..., zn}, zi), ρ′i({z1, ..., ẑi, ..., zn}, zi)}.

Now, we define the section function

S({z1, ..., zn}) =
n⋃
i=1

R−1zi (ρi({z1, ..., ẑi, ..., zn}, zi)).

By definition, Si := R−1zi (ρi({z1, ..., ẑi, ..., zn}, zi)) contains (n− 1)(n− 2) points and is contained in

B(zi, ρ
′), which shows that S1∪· · ·∪Sn consists of exactly n(n−1)(n−2) points. By taking k different ρi

functions (e.g., ρi,
1
2ρi, ...,

1
kρi), one can construct continuous sections s : Confn(CP1)→ Confn,m(CP1)

for any m of the form m = k(n(n− 1)(n− 2)).

4. Three and four points

In this section, we give some algebro-geometric constructions of sections of the bundles Conf3,m(CP1)→
Conf3(CP1) and Conf4,m(CP1)→ Conf4(CP1). These results are summarized in Theorem C.
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4.1. Three points. The space Conf3(S2) is of course very special. Under the identification S2 = CP1,

the group Aut(CP1) = PGL2(C) acts triply-transitively on CP1, i.e. transitively on Conf3(CP1). Thus

one method for constructing sections is to first apply an automorphism to normalize the configuration

to the set {0, 1,∞}, and then find all possible configurations of points distinct from {0, 1,∞} and

invariant under the stabilizer of {0, 1,∞} in Aut(CP1). We will flesh out this approach by means of

the cross-ratio. Recall from Remark 3.6 the Möbius transformation Mz1,z2,z3 characterized by sending

the triple (z1, z2, z3) to (0, 1,∞).

The cross-ratio. Let z1, z2, z3, z4 ∈ CP1 be four ordered points. The cross-ratio is the expression

[z1, z2; z3, z4] := Mz1,z2,z3(z4) =
(z2 − z3)(z4 − z1)

(z2 − z1)(z4 − z3)
.

To see how the cross-ratio can be exploited to construct sections of Conf3,n(CP1)→ Conf3(CP1), it is

necessary to understand how the value of [z1, z2; z3, z4] changes under a permutation σ ∈ S4.

Lemma 4.1. Let z1, z2, z3, z4 ∈ CP1 be given, and suppose that [z1, z2; z3, z4] = λ. Let σ ∈ S4 be an

arbitrary permutation. Then

[zσ(1), zσ(2); zσ(3), zσ(4)] ∈
{
λ,

1

λ
, 1− λ, 1

1− λ
,
λ− 1

λ
,

λ

λ− 1

}
.

Thus the cross-ratio determines a generically 6-valued function [{z1, z2, z3, z4}] of unordered 4-tuples.

Remark 4.2. It is easy to see that the stabilizer of {0, 1,∞} in PGL2(C) is the dihedral group D3.

The six values
{
λ, 1

λ , 1− λ,
1

1−λ ,
λ−1
λ , λ

λ−1

}
in fact comprise the orbit of λ under D3.

Lemma 4.1 also allows us to view the cross-ratio as a multi-valued function on Conf3(CP1). Given

{z1, z2, z3} ∈ Conf3(CP1) and λ ∈ CP1, define

×(z1, z2, z3, λ) = {z4 ∈ CP1 | λ ∈ [{z1, z2, z3, z4}]}.

For generic values of λ, the function × is 6-valued. However, × is 3-valued for λ ∈ {−1, 12 , 2}, and is

2-valued for λ = ζ±1 either of the primitive sixth roots of unity. Moreover,

×(z1, z2, z3, λ) ∩ ×(z1, z2, z3, λ
′) = ∅

whenever λ and λ′ lie in different orbits of D3, and

×(z1, z2, z3, λ) ∩ {z1, z2, z3} = ∅

as long as λ 6= 0, 1,∞.

Proposition 4.3. For any m ≥ 0 satisfying m ≡ 0, 2 (mod 3), there exists an algebraic section σ of

the bundle Conf3,m(CP1)→ Conf3(CP1). Moreover, σ is conformally invariant, i.e. equivariant with

respect to the action of PGL2(C).
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Proof. There is a unique expression for m of the form

m = 2a+ 3b+ 6c

with a, b ∈ {0, 1}. Set k = a+ b+ c. Choose a set {λ1, . . . , λk} ⊂ CP1 \ {0, 1,∞}; these points should

lie in distinct orbits under the action of the stabilizer of {0, 1,∞}. If a = 1 then set λ1 = ζ; likewise, if

b = 1 then set λ2 = −1. Then the assignment

σ({z1, z2, z3}) =

k⋃
i=1

×(z1, z2, z3, λi)

has the required properties. �

4.2. Four points. We now turn to the problem of constructing sections of the bundle Conf4,m(CP1)→
Conf4(CP1). We are grateful to Ian Frankel for the suggestion to look at torsion points on elliptic

curves. The basic fact underlying the constructions in this section is the following well-known result

(c.f. [Har77, Example 4.8.2]).

Lemma 4.4. Let S = {z1, z2, z3, z4} ⊂ CP1 be an arbitrary 4-tuple of distinct points. Then there exists

a unique smooth algebraic curve ES of genus 1 such that under the elliptic involution ι : ES → CP1,

the branch locus in CP1 is the set S. If an arbitrary basepoint ∗ ∈ ι−1(S) is chosen, then the preimage

ι−1(S) is the set of 2-torsion points of the elliptic curve (ES , ∗). This association is continuous (even

holomorphic) on the corresponding moduli spaces.

Lemma 4.4 leads to the construction of sections of Conf4,m(CP1)→ Conf4(CP1) for many values of

m. To formulate the result, let P (k) denote the number of primitive elements of the group (Z/kZ)2.

An explicit formula for P (k) can be obtained from the observation that P (pk) = p2k − p2k−2 for any

prime p, in combination with the fact that P is evidently a multiplicative function.

Proposition 4.5. Let m be a positive integer of the form m = 2k2 − 2 or m = P (4k)
2 or m =

2(p2 + q2) − 4 for coprime integers p, q. Then there exists an algebraic section σ of the bundle

Conf4,m(CP1)→ Conf4(CP1). Moreover, σ is conformally invariant.

Proof. First consider the case m = 2k2 − 2. Let S = {z1, z2, z3, z4} ∈ Conf4(CP1) be given, and let

(ES , ∗) be the elliptic curve of Lemma 4.4, with ∗ ∈ ι−1(S) chosen arbitrarily. The 2k-torsion subgroup

of (ES , ∗) has cardinality 4k2. Since 2k is even, it follows that this set does not depend on which of the

four points ι−1(zi) is chosen as the identity element. Among these points, exactly four are the 2-torsion

points ι−1(S). The elliptic involution x 7→ −x restricts to a free involution on the remaining 4k2 − 4

points. Under ι, these points descend to a set of 2k2 − 2 distinct points on S2 that are necessarily

disjoint from S. The continuity and conformality of this construction follow from Lemma 4.4.

The construction for m = P (4k)
2 proceeds along similar lines. The set of primitive 4k-torsion points

is well-defined independently of the choice of origin among the points ι−1(S), and has cardinality P (4k)

by definition. As before, this descends under the elliptic involution to a set of cardinality P (4k)
2 in S2.

The construction for m = 2(p2 + q2) − 4 is yet another variant. If p, q are coprime, then the

2p–torsion subgroup intersects the 2q–torsion subgroup in the 2–torsion subgroup. On the elliptic
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curve, this determines a set of 4(p2 + q2)− 8 points distinct from the 2–torsion points, leading to the

section of size 2(p2 + q2)− 4 on CP1. �

The first few such values of m are given by m = 6, 16, 22, 24, corresponding respectively to the

4–torsion, 6–torsion, 4– and 6– torsion, and primitive 8-torsion. It appears to be a fairly intricate

problem in elementary number theory to determine if every m ≡ 0, 6, 16, 22 (mod 24) can be obtained

from Proposition 4.5 or some further elaboration thereof. However, the stated results are sufficient to

prove Theorem C.

Proof. (of Theorem C) The assertions concerning the case n = 3 are subsumed by Proposition 4.3.

The assertions concerning n = 4 follow readily from Proposition 4.5 and Theorem B. If m ≥ 0 is

congruent to one of the four allowable values 0, 6, 16, 22 mod 24, then one can produce a section

Conf4(S2)→ Conf4,m(S2) by combining the construction of Proposition 4.5 (for 1-torsion, 4–torsion,

6–torsion, 4 + 6–torsion respectively for 0, 6, 16, 22 mod 24) with the cabling construction of Theorem

B. �

5. Canonical reduction systems

The goal of this section is to outline the portion of the theory of canonical reduction systems needed

for the proof of Theorem A. For general references on the Nielsen–Thurston classification and on

canonical reduction systems, see [FM12, Chapter 13] and/or [BLM83].

We first recall the Nielsen-Thurston classification of elements of Mod(S), where S is an arbitrary

surface of finite type. For this discussion, and for the remainder of the paper, we invoke the usual

conventions concerning isotopy: by “curve”, we really mean “isotopy class of curves”, by “disjoint”,

we really mean “existence of disjoint isotopy class representatives”, by “subsurface” we really mean

“isotopy class of subsurfaces”, etc. Recall that isotopies are required to pointwise-fix all marked points

on S, so that e.g. it is sensible to talk about a marked point being contained in an isotopy class of

subsurface.

With these stipulations in place, the Nielsen-Thurston classification asserts that each f ∈ Mod(S) is

exactly one of the following types: periodic, reducible, or pseudo-Anosov. A mapping class f is periodic

if fn = id for some n ≥ 1, and is reducible if there is some essential multicurve γ ⊂ S fixed (as a set,

not necessarily component-wise) by f . Otherwise, f is said to be pseudo-Anosov.

Definition 5.1 (Canonical reduction system). Let f ∈ Mod(S) be given. A reduction system for f is

any essential multicurve γ = {c1, . . . , cn} fixed setwise by f . A reduction system is maximal if it is

maximal with respect to inclusion of reduction systems for f . The canonical reduction system for f ,

written CRS(f), is defined to be the intersection of all maximal reduction systems for f .

Canonical reduction systems provide a sort of Jordan form for mapping classes. The role of Jordan

blocks is played by the components of the cut-open surface

SCRS(f) := S \ CRS(f).

The lemma below follows from [BLM83, Theorem C]; see also [FM12, Corollary 13.3].
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Lemma 5.2. Let f ∈ Mod(S) be given, and suppose that f preserves some component Si of SCRS(f)

and so induces an element fi ∈ Mod(Si). Then fi is either periodic or else pseudo-Anosov.

Remark 5.3. In this paper, we are exclusively interested in the case where S is a punctured sphere.

Then each component Si is also a punctured sphere, and so the classification of torsion elements of

Mod(Si) given in the table (2) is applicable. In particular, we see that if fi ∈ Mod(Si) is periodic and

fixes at least three punctures, then fi is trivial, and any remaining punctures in Si must also be fixed.

We note that by our definitions, a boundary component of Si (when viewed as a subsurface of S) is

treated as a puncture when Si is viewed as an abstract punctured sphere.

Canonical reduction systems behave as expected under conjugation. We record the following lemma

for later use; its proof is trivial.

Lemma 5.4. Let f, g ∈ Mod(S) be given. Then

CRS(fgf−1) = f(CRS(g)).

In particular, if f and g commute, then f(CRS(g)) = CRS(g).

If mapping classes f, g commute, then CRS(f) and CRS(g) satisfy an especially nice relationship;

see [Che17, Proposition 2.6].

Lemma 5.5. Suppose that f, g ∈ Mod(S) commute. Then each component of CRS(g) is either also a

component of CRS(f), or else is disjoint from each component of CRS(f).

We conclude this section with a useful lemma giving a criterion for the equality of two subsurfaces

of a punctured sphere.

Lemma 5.6. Let S and S′ be two connected subsurfaces of a punctured sphere Σ. Suppose that the

boundaries ∂S and ∂S′ have the same number of components, and that each component of ∂S is either

disjoint from each component of ∂S′, or else is also a component of ∂S′. Suppose further that no

component of ∂S′ is contained in the interior of S. If S and S′ contain the same number of punctures

and there is a puncture x contained in both S and S′, then in fact S and S′ determine the same isotopy

class of subsurface.

Proof. The Euler characteristic of either surface is determined by the number of boundary components

and the number of punctures contained in the interior. As each surface is a punctured sphere, it follows

that moreover, the homeomorphism type is determined by this data, and hence the assumptions imply

that S and S′ are abstractly homeomorphic. Since no component of ∂S′ is contained in the interior

of S, and since S and S′ contain some common puncture, it follows that there is a containment of

subsurfaces S ⊂ S′. Since S and S′ are assumed to contain the same number of punctures, these must

each be contained in S. Therefore S′ − S is a union of annuli, each of which contains no punctures.

This means that S and S′ are isotopic subsurfaces. �



SECTION PROBLEMS FOR CONFIGURATIONS OF POINTS ON THE RIEMANN SPHERE 19

6. Proof of Theorem A: Preliminaries

This is the first of five sections dedicated to the proof of Theorem A. The plan is as follows. In

Section 6, we establish some preliminary ideas. This allows us to give a high-level overview of the

proof in Section 7 and to divide the ensuing argument up into two cases A and B. In Section 8 we

prove a pair of crucial lemmas. The arguments for cases A and B are carried out in Sections 9 and 10,

respectively.

Throughout the proof, fix n ≥ 6. We remind the reader of the terminology of “old points”

{x1, . . . , xn} and “new points” {y1, . . . , ym} of Definition 2.1. For the sake of contradiction, we assume

that m is the least integer not divisible by n(n− 1)(n− 2) for which a section s : Bn(S2)→ Bn,m(S2)

exists. By Lemma 2.8, a section s : Bn(S2)→ Bn,m(S2) induces a section s : Modn(S2)→ Modn,m(S2).

We remind the reader that the group Modn,m(S2) is allowed to permute points internally within

the n-element and m-element sets, but cannot exchange a point in the n-element set for one in the

m-element set. That is, Modn,m(S2) preserves the sets of old and new points setwise.

For the remainder of the proof, we will work in the setting of the mapping class group. We define

Γ := s(Modn(S2)) 6 Modn,m(S2).

Before we can give the overview of the proof in the next section, there are three preliminary results

that need to be established. In Section 6.1, we show that Γ acts transitively on the set of new points

(Lemma 6.2). In Section 6.2, we show that some torsion element fixes a new point (Lemma 6.3).

Finally in Section 6.3, we study the canonical reduction system CRS(s(σ1)) and attach to this a tree

in a canonical way (Lemma 6.5).

Remark 6.1 (Where does the argument fail for n = 5?). For the sake of future work, we document

here exactly which portions of the argument are not valid for n = 5. There are three such places: Case

A.2.b in Section 9, and Lemmas 10.1 and 10.4 in Section 10.

6.1. Transitivity on new points. A first observation to be made is that our hypotheses on m imply

that the action of Γ on the set of new points is transitive.

Lemma 6.2. Let m be the minimal integer not divisible by n(n − 1)(n − 2) for which a section

s : Modn(S2)→ Modn,m(S2) exists. Then Γ acts transitively on the set of new points.

Proof. If Γ does not act transitively on the set of new points, then there exists some nontrivial

Γ-invariant partition of {y1, . . . , ym}. Let m′ denote the cardinality of some part; by forgetting all

points not in this part, there is a section s′ : Modn(S2) → Modn,m′(S
2). As m is not divisible by

n(n− 1)(n− 2), any nontrivial partition of an m-element set necessarily has some part of cardinality

m′ < m not divisible by n(n− 1)(n− 2). Such m′ contradicts the minimality of m. �

6.2. Fixed points of torsion elements. The essential distinction between the casem ≡ 0 (mod n(n−
1)(n − 2)), where sections of Confn,m(S2) → Confn(S2) exist, and m 6≡ 0 (mod n(n − 1)(n − 2)),

where they do not, turns out to be the fact, recorded in Lemma 6.3 below, that in the latter cases,

there always exists some torsion element α that fixes at least one new point.
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Lemma 6.3. Suppose that m 6≡ 0 (mod n(n − 1)(n − 2)), and that a section s : Modn(S2) →
Modn,m(S2) exists. Then at least one of α ∈ {α0, α1} ⊂ Modn(S2) has the property that s(α) fixes

some new point A.

Proof. We first claim that if a section exists, necessarily m ≡ 0 (mod n− 2). To see this, we study

powers αk2 ∈ Modn(S2) for 1 ≤ k < n− 2. Such elements fix two old points, and hence s(αk2) also fixes

these points. By Remark 5.3, s(αk2) has no further fixed points. This implies that the set of m new

points decomposes as a union of s(α2)-orbits, each of cardinality exactly n− 2 (if s(α2) did not act

freely on the set of new points, some s(αk2) would fix some new point).

It follows that if m is not divisible by n(n− 1)(n− 2), then m is not divisible by at least one of n

or n − 1. If m ≡ k (mod n) for some integer 1 ≤ k < n, then the action of s(α0) on the set of new

points has k > 0 fixed points. Similar reasoning shows that s(α1) has a new fixed point whenever

m 6≡ 0 (mod n− 1). �

6.3. Canonical reduction systems and trees. We come now to the key object of interest. We will

study the set

C := CRS(s(σ1)).

The structure of C is best encoded as a graph.

Definition 6.4. The graph T has vertices in bijection with the components of S2
C , and edges in

bijection with elements of C . An edge c ∈ C joins the components S1, S2 ⊂ S2
C for which c is a

boundary component of both S1 and S2.

Lemma 6.5. The graph T is a tree.

Proof. It is clear from the construction that T is connected. Let V,E denote the number of vertices

and edges of T , respectively. As T is connected, it follows that T is a tree if and only if the Euler

characteristic satisfies

χ(T ) = V − E = 1.

Enumerate the components of S2
C as S1, . . . , SV . A component Si of S2

C has Euler characteristic 2− bi,
where bi is the number of boundary components of Si, i.e. the number of edges of T incident to

Si. Since each pair Si, Sj of components of S2
C meet in S2 along a union of circles (each of Euler

characteristic zero), the cut-and-paste formula

χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B)

for the Euler characteristic gives the following expression for χ(S2):

2 = χ(S2) =

V∑
i=1

(2− bi) = 2V −
V∑
i=1

bi = 2V − 2E.

The result follows. �
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7. Proof of Theorem A: Overview

As we have already remarked, our standing assumption is that n ≥ 6 and that m is the minimal

integer not divisible by n(n − 1)(n − 2) for which a section s : Modn(S2) → Modn,m(S2) exists;

Lemma 6.2 implies that Γ acts transitively on the set of new points. Our strategy will be to derive a

contradiction to the transitivity assumption, or else to show that Γ is reducible: there exists a nonempty

set R of disjoint essential curves in S2
n+m satisfying Γ(R) = R. By Lemmas 7.1 and 7.2 below, this

will also produce a contradiction. Lemmas 7.1 and 7.2 are established in Section 8. At this juncture

we remind the reader of the standard convention that isotopies are required to pointwise fix all marked

points: thus when S2 is equipped with n old points and m new points, it is sensible to study which

isotopy classes of subsurfaces contain which points.

Lemma 7.1. Fix n ≥ 3, and let s : Modn(S2) → Modn,m(S2) be a section of p : Modn,m(S2) →
Modn(S2). Suppose that Γ acts transitively on the set of new points, and that there is a Γ-invariant

subsurface S ⊂ S2 that contains at least one old point. Then either m is divisible by n(n− 1)(n− 2),

or else there is some m′ < m with m′ not divisible by n(n− 1)(n− 2) and a section s′ : Modn(S2)→
Modn,m′(S

2).

Lemma 7.2. Fix n ≥ 3, and let s : Modn(S2) → Modn,m(S2) be a section of p : Modn,m(S2) →
Modn(S2). Suppose that Γ acts transitively on the set of new points, and that there is a Γ-invariant

set {S1, . . . , Sn} of subsurfaces, each with a single boundary component ci, such that xi ∈ Si for

i = 1, . . . , n. Then m is divisible by n(n− 1)(n− 2).

The argument proceeds by studying some distinguished components of S2
C . For i = 3, ..., n, let Si

be the component of S2
C that contains the old point xi. The Si are not necessarily pairwise distinct.

To get a better understanding of the set {Si}, we make the following observations. By Lemma 5.4, if

g ∈ Modn(S2) commutes with σ1, then s(g) induces a permutation of C and hence an automorphism

g∗ of the tree T . It will be useful to view this automorphism in geometric terms. Let δ be the metric

on T in which all edges have length 1.

Proposition 7.3. The induced automorphism g∗ of the tree T is an isometry of the metric space

(T , δ).

Proof. Graph automorphisms are simplicial and hence distance non-increasing with respect to δ; as

this applies to both g±1∗ it follows that g∗ is an isometry. �

Moreover, the following lemma shows that there is a large supply of such elements g for which the

behavior on the set of old points is prescribed. The proof is elementary and is omitted.

Lemma 7.4. For any pair of distinct old points xi, xj with i, j ≥ 3, there exists an element g ∈
Modn(S2) such that g commutes with σ1 and such that g(xi) = x3 and g(xj) = x4.

For any g as in Lemma 7.4, since s(g) permutes the components of S2
C and g(xi) = x3, it follows

that g∗(Si) = S3. Similarly g∗(Sj) = S4. Thus in the metric graph (T , δ),

δ(Si, Sj) = δ(g∗(Si), g∗(Sj)) = δ(S3, S4).
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Therefore δ(Si, Sj) = d a constant which does not depend on i, j. There are two possibilities: either (A)

d = 0, so that S := S3 = · · · = Sn, or else (B) d > 0, so that each S3, . . . , Sn is a distinct subsurface of

S2
C .

To analyze Case A, we appeal to the theory of canonical reduction systems. Since s(σ1) fixes a

point x3 ∈ S, it follows that s(σ1) fixes the component S. Lemma 5.2 then implies that the restriction

of s(σ1) to S is either pseudo-Anosov or else periodic. We handle each possibility in turn, as Cases

A.1 and A.2, respectively. Case A.1 is resolved by showing that S is necessarily Γ-invariant; this

contradicts Lemma 7.1.

The analysis of Case A.2, where s(σ1) is assumed to be periodic, requires a further division into

subcases. Lemma 6.3 guarantees the existence of torsion elements of Γ that fix at least one new point

A. Case A.2 subdivides into Cases A.2.a and A.2.b, depending on whether A is contained in S or

not. In Case A.2.a, where A ∈ S, we will show that either A is a global fixed point, contradicting

transitivity, or else that there is a nontrivial torsion element with 3 fixed points, contradicting Remark

5.3. In the alternative Case A.2.b, we will produce an essential Γ-invariant curve, contradicting Lemma

7.1.

The ultimate aim in Case B is to show that Γ is reducible. In Lemma 10.1, we produce a collection

c3, . . . , cn of distinguished boundary components of S3, . . . , Sn. After analyzing how s(α0) acts on this

set in Lemma 10.2, we are able to define two further curves c1, c2. We then show in Lemma 10.4 that

the set of curves {c1, . . . , cn} is Γ-invariant, leading to a contradiction with Lemma 7.2.

8. Proof of Theorem A: The reducible case

In this section we treat the situation where Γ := s(Modn(S2)) is reducible. The objective is to

prove Lemmas 7.1 and 7.2, reproduced for the reader’s convenience below.

Lemma 7.1. Fix n ≥ 3, and let s : Modn(S2) → Modn,m(S2) be a section of p : Modn,m(S2) →
Modn(S2). Suppose that Γ acts transitively on the set of new points, and that there is a Γ-invariant

subsurface S ⊂ S2 that contains at least one old point. Then either m is divisible by n(n− 1)(n− 2),

or else there is some m′ < m with m′ not divisible by n(n− 1)(n− 2) and a section s′ : Modn(S2)→
Modn,m′(S

2).

Proof. (of Lemma 7.1) A first observation is that S contains all old points. Indeed, if xi ∈ S, then for

any j = 1, . . . , n, there exists φj ∈ Γ for which φj(xi) = xj . As xi ∈ S and S is Γ-invariant, it follows

that xj ∈ S as well.

By hypothesis, s is valued in the subgroup Modn,m(S2, S) of mapping classes that preserve the

subsurface S. There is a restriction map

r : Modn,m(S2, S)→ Modn(S) ∼= Modn,m′+m′′(S
2)
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where m′ is the number of boundary components of S, and m′′ is the number of new points contained

in S. Setting s′ := r ◦ s, we obtain a new homomorphism

s′ : Modn(S2)→ Modn,m′+m′′(S
2).

We claim that m′′ = 0, that m′ < m, and that if m′ is divisible by n(n− 1)(n− 2), then m is as

well. To see these claims, observe that since S contains all of the old points, each component of S2 \ S
contains only new points. Since each boundary component of S is essential in S2

m+n, there must be at

least two new points contained in each component of S2 \S; this shows m′ < m. By hypothesis, Γ acts

transitively on the set of new points. Since S is Γ-invariant, any new points contained in S cannot

be exchanged with new points off of S, and so m′′ = 0 as claimed. Moreover, Γ must act transitively

on the set of components of S2 \ S. Letting p denote the number of new points contained in each

component, we see that m = m′p. Thus if m′ is divisible by n(n− 1)(n− 2), so is m.

To establish Lemma 7.1, it now suffices to show that s′ is a section of the forgetful map p′ :

Modn,m′(S
2)→ Modn(S2). Recall that s : Modn(S2)→ Modn,m(S2) is a section of the forgetful map

p : Modn,m(S2)→ Modn(S2). The claim now follows from s′ = r ◦ s and the factorizations

Modn,m(S2, S)
r //

p|Modn,m(S2,S) ((

Modn,m′(S
2)

p′

��
Modn(S2).

�

Lemma 7.2. Fix n ≥ 3, and let s : Modn(S2) → Modn,m(S2) be a section of p : Modn,m(S2) →
Modn(S2). Suppose that Γ acts transitively on the set of new points, and that there is a Γ-invariant

set {S1, . . . , Sn} of subsurfaces, each with a single boundary component ci, such that xi ∈ Si for

i = 1, . . . , n. Then m is divisible by n(n− 1)(n− 2).

Proof. (of Lemma 7.2) We claim that all new points are contained inside the set

n⋃
i=1

Si.

Certainly there must exist some new point in each Si, as otherwise ci would be inessential. Since Γ

acts transitively on the set of new points and the set ∪Si is Γ-invariant, the claim follows.

To conclude the argument, we count the number of new points. As Γ permutes the subsurfaces

Si, each contains the same number m′ of new points. For any i = 1, . . . , n, there is a conjugate α2,i

of α2 that fixes the point xi. It follows that Si is s(α2,i)-invariant, and hence the set of new points

contained in Si decomposes as a union of orbits of s(α2,i). By Remark 2.3, each orbit contains n− 2

points, so that (n− 2) | m′.
Likewise, let α1,i be a conjugate of α1 that fixes xi. Then s(α1,i) also fixes Si and so decomposes

the new points in Si into a union of orbits. By Remark 2.3, each orbit contains n− 1 points, so that

also (n− 1) | m′. We conclude that (n− 1)(n− 2) | m′, and as m = nm′, Lemma 7.2 follows. �
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9. Proof of Theorem A: Case A

The assumption in Case A is that S := S3 = S4 = ... = Sn. As discussed in the overview given in

Section 7, Case A divides into two subcases.

(1) s(σ1) is pseudo-Anosov on S. By Lemma 2.4, α2
0σ1α

−2
0 = σ3. Therefore

CRS(s(σ3)) = CRS(s(α2
0σ1α

−2
0 )) = s(α2

0) · CRS(s(σ1)) = s(α2
0) · C .

Since σ1 and σ3 commute, Lemma 5.5 implies that any pair of curves c ∈ CRS(s(σ3)) and d ∈
CRS(s(σ1)) = C are disjoint or else equal. Let ∂S ⊂ C denote the set of boundary components of S.

Then every element of s(α2
0)(∂S) is disjoint from the elements of ∂S, or else is also an element of ∂S.

Each component of s(α2
0)(∂S) is an element of CRS(s(σ3)), and since s(σ1) and s(σ3) commute, some

power of s(σ1) must preserve each such component. Since s(σ1) is pseudo-Anosov on S, no power of

s(σ1) fixes a curve in S. Therefore none of the elements of s(α2
0)(∂S) are contained in the interior of S.

On the other hand, S and s(α2
0)(S) contain the same number of punctures and each contains the

puncture x5. Lemma 5.6 then implies that α2
0(S) = S. By the same reasoning, α3

0(S) = S, and it

follows that α0(S) = S. By Lemma 2.5, the entire group Γ preserves the component S. Thus the

hypotheses of Lemma 7.1 are satisfied, leading to a contradiction with the minimality assumption on

m.

(2) s(σ1) is periodic on S. We first claim that in fact s(σ1) is the identity on S. This follows from

the fact that σ1 fixes at least the three old points x3, x4, x5 ∈ S, in combination with Remark 5.3.

As in Lemma 6.3, let α be whichever of α0, α1 fixes some new point A. There are two possibilities:

(a) A ∈ S:

Since s(σ1) acts by the identity on S, necessarily s(σ1)(A) = A. Since also s(α)(A) = A by

construction, it follows that the subgroup G 6 Modn,m(S2) generated by s(σ1) and s(α) fixes A.

If α = α0, Lemma 2.5 implies that G = Γ. But then Γ does not act transitively on the set of new

points, in contradiction with Lemma 6.2.

If α = α1, Lemma 2.6 implies that G = s(Modn−1,1(S2)). Thus s restricts to give an injective

homomorphism

s : Modn−1,1(S2)→ Modn−1,1,m−1,1(S2),

where Modn−1,1,m−1,1(S2) < Modn,m is the subgroup consisting of elements that fix xn and A.

The element α2 ∈ Modn(S2) is contained in Modn−1,1(S2) and is torsion of order n− 2 with two

fixed points xn−1, xn, both old. Thus s(α2) must also be torsion of order n − 2 with two fixed

old points. By Remark 5.3, s(α2) cannot have any further fixed points, but by definition every

element of Modn−1,1,m−1,1(S2) fixes the new point A, a contradiction.

(b) A /∈ S:

In this case, there exists a curve in c ∈ ∂S separating x3, ..., xn from A. Such a c is necessarily

s(σ1)-invariant, since s(σ1) acts as the identity on S. We claim that c must also be s(α)-invariant,

and must moreover preserve the subsurfaces on either side of c.
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Proof. Since n ≥ 6, Lemma 2.4 implies that α2σ1α
−2 = σ3, and thus s(α2)(c) belongs to

CRS(s(σ3)). It follows that s(α2)(c) is either disjoint from c or else s(α2)(c) = c. We will see that

s(α2)(c) = c must hold. Let SA ⊂ S2 denote the subsurface bounded by c that contains A.

We claim that the pair of surfaces SA and s(α2)(SA) satisfy the hypotheses of Lemma 5.6. Each

surface has a single boundary component c, s(α2)(c) respectively, and we have already established

that c and s(α2)(c) are either disjoint or equal. Each surface contains the point A, and as they are

conjugate within Γ, each contains the same number of punctures.

It remains to show that s(α2)(c) is not contained in the interior of SA. If this is the case,

then s(α2)(c) encloses a strict subset of the punctures contained in SA. The curve c induces a

partition P = P1 ∪P2 of the set of punctures, and likewise s(α2)(c) induces the conjugate partition

s(α2)(P ). Without loss of generality, assume that P1 corresponds to the punctures in SA and

hence contains A, so that P2 contains the points x3, . . . , xn. Since s(α2)(c) encloses a strict subset

of the punctures contained in SA, one of the parts of s(α2)(P ) must be a strict subset of P1. This

part cannot be s(α2)(P1), since s(α2)(P1) has the same cardinality as P1. But this part cannot be

s(α2)(P2) either, since P2 contains x3 and hence s(α2)(P2) contains x5 ∈ P2.

By Lemma 5.6, we have s(α)2(SA) = SA. As n ≥ 6, also α3σ1α
−3 = σ4. The same argument

then shows that s(α3)(SA) = SA, and hence s(α)(SA) = SA. The claim follows. �

We have shown that s(σ1) and s(α) both fix c as well as the subsurfaces on either side of c.

Let S be the side containing the points x3, . . . , xn. In the case α = α0, necessarily S is globally

invariant, in contradiction with Lemma 7.1. If α = α1, then we have shown that the image of

the subgroup Modn−1,1(S2) = 〈σ1, α1〉 under s is contained in the subgroup Modn−1,1,m(S2, S) of

mapping classes fixing S. Composing with the map r : Modn−1,1,m(S2, S)→ Modn−1,1,m′,1(S2)

obtained by restriction to S, we can now conclude the argument exactly as in the preceding Case

A.2.a.

10. Proof of Theorem A: Case B

The assumption in Case B is that the subsurfaces S3, . . . , Sn are all distinct. This case follows by an

analysis of the boundary components of the subsurfaces Si. A first observation is that the (necessarily

disjoint) subsurfaces Si are all conjugate within Γ: for any i ≥ 3, there is some g ∈ Modn(S2)

commuting with σ1 and taking x3 to xi. Then s(g)(S3) = Si.

Lemma 10.1. For each i = 3, . . . , n, there is a unique component ci of ∂Si that separates Si from

p > n+m
2 punctures.

Proof. Since the subsurfaces Si are all conjugate within Γ, it suffices to consider only S3. Certainly if

c3 exists it must be unique. To see that it exists, denote the boundary components of S3 by d1, . . . , dk.

For 1 ≤ i ≤ k, let Di denote the disk bounded by di not containing S3, and let ni denote the number

of punctures in Di. Without loss of generality, assume that S3 is separated from S4 = s(σ3)(S3) by

d1. Reversing the roles of S3 and S4, we find that S4 is separated from S3 by some other element
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s(σ3)(di) ∈ C for some 1 ≤ i ≤ k. We claim that i = 1, since if i > 1, then there is a strict containment

Di ⊂ S2 −D1 ⊂ s(σ3)(Di), an absurdity. It follows that there is a containment

D2 ∪ · · · ∪Dk ∪ S3 ⊂ s(σ3)(D1),

and hence, letting n0 denote the number of punctures contained in S3 itself,

n1 ≥ n2 + · · ·+ nk + n0.

On the other hand,
∑k
i=0 ni = n+m, from which the inequality n1 ≥ n+m

2 follows. Moreover, this

inequality must be strict, since otherwise the disks D1, s(σ3)(D1) would be disjoint because their

boundaries are disjoint, they both contain half of the points and they contain different points. For the

same reason, s(σ3)(D1), s(σ4σ3)(D1) would be mutually disjoint and each would contain n+m
2 points.

This is absurd. Taking c3 := d1, the result follows. �

Lemma 10.2. s(α2
0)(c3) = c5 and s(α3

0)(c3) = c6.

Proof. We define the inside of each ci to be the component Int(ci) of S2
C that contains xi, and define

the outside as the other component. Each Int(ci) contains q punctures, with q < n+m
2 by Lemma 10.1.

Define c′5 := s(α2
0)(c3). We again define the inside of c′5 as the component Int(c′5) containing x5, and

the outside as the other component.

We claim that Int(c5) and Int(c′5) satisfy the hypotheses of Lemma 5.6. As c5 ∈ C and c′5 ∈
s(α0)2C = CRS(s(σ3)), we have that c5 and c′5 are either disjoint or equal. By definition, each contains

x5. The curves c3 and c5 contain the same number of punctures on their interiors, hence the same is

true of c5 and c′5. It remains to be seen that c′5 is not contained in the interior of Int(c5). If this is the

case, then either the inside or the outside of c′5 contains strictly fewer than q punctures. But as the

inside of c′5 contains q punctures and the outside contains n+m− q > q punctures, this cannot be the

case.

Applying Lemma 5.6, it follows that c5 = c′5 = s(α0)2(c3) as claimed. Similar arguments establish

the other claim. �

Define the curves c1 = s(α−20 )(c3) and c2 = s(α−20 )(c4).

Lemma 10.3. The curves c1, . . . , cn are pairwise distinct and disjoint.

Proof. The curves c3, . . . , cn are distinct and disjoint since they are all elements of C and each ci is

distinguished by the property that it contains xi on its inside. The curves c1 and c2 are elements of

s(α−20 )C = CRS(σn−1), and hence either disjoint from or equal to any element of C . But c1 and c2

are uniquely characterized by the property of containing x1 and x2 in their interiors, respectively, and

the claim follows. �

Lemma 10.4. The set {c1, c2, ..., cn} is invariant under Γ.

Proof. By Lemma 2.5, Γ is generated by the set {s(σ1), s(α0)}. Thus it suffices to show that these

two elements both preserve {c1, . . . , cn}. For i = 3, . . . , n, the element s(σ1) preserves each Si, and
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hence also preserves the distinguished boundary component ci. We claim that s(σ1)(c1) = c2 and that

s(σ1)(c2) = c1.

To see this, observe that s(σ3)(c3) = c4. Thus s(α2
0σ1α

−2
0 )(c3) = c4, and so

s(α2
0)s(σ1)(s(α−20 )(c3)) = c4 = s(α2

0)(c2).

It follows that s(σ1)(s(α−20 )(c3)) = s(σ1)(c1) = c2 as claimed. As also s(σ3)(c4) = c3, the same

reasoning shows that s(σ1)(c2) = c1.

It remains to see that the set {c1, . . . , cn} is α0-invariant. We claim that α0(ci) = ci+1, interpreting

subscripts mod n. It follows directly from Lemma 10.2 that s(α0)(c5) = c6. As α0σ4 = σ5α0,

s(α0)(c4) = s(α0σ4)(c5) = s(σ5)s(α0)(c5) = s(σ5)(c6) = c5,

since s(σi)(ci+1) = ci for i = 3, . . . , n − 1. Then similar arguments show that s(α0)(c3) = c4, and

s(α0)(ci) = ci+1 for i = 6, . . . , n− 1.

There are three remaining claims to establish:

s(α0)(c1) = c2, s(α0)(c2) = c3, s(α0)(cn) = c1.

Since c2 := s(α−20 )(c4), the equality s(α0)(c2) = c3 follows from the above. Then the equality

s(α0)(c1) = c2 follows by the same logic. Lastly, as αn0 = id,

s(α0)(cn) = s(α1−n
0 )(cn) = c1

by what we have shown before. �

Lemma 10.4 and Lemma 7.2 combine to show that m must be divisible by n(n− 1)(n− 2), contrary

to assumption. Case B, and hence Theorem A, follows.
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