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Abstract. The space of monic squarefree complex polynomials has a stratification according to the multiplic-

ities of the critical points. We introduce a method to study these strata by way of the infinite-area translation

surface associated to the logarithmic derivative df/f of the polynomial. We determine the monodromy of

these strata in the braid group, thus describing which braidings of the roots are possible if the orders of the

critical points are required to stay fixed. Mirroring the story for holomorphic differentials on higher-genus

surfaces, we find the answer is governed by the framing of the punctured disk induced by the horizontal

foliation on the translation surface.

1. Introduction

Let UConfn(C) denote the space of unordered configurations of n distinct points in C. Equivalently, this
is the space of monic squarefree polynomials of degree n, which will be written as Polyn(C). From this point

of view, Polyn(C) carries a natural equicritical stratification {Polyn(C)[κ]} indexed by partitions κ of n− 1.

A polynomial f ∈ Polyn(C) belongs to Polyn(C)[κ] if and only if the roots of f ′ form the partition κ of n− 1.

Thinking of f as a mapping f : C → C, the partition κ describes the multiplicities of the critical (i.e. branch)

points.

Main Question. Understand the topology of Polyn(C)[κ]. What is the fundamental group Bn[κ] :=

π1(Polyn(C)[κ]) (a “stratified braid group”)? Is Polyn(C)[κ] a K(π, 1) space?

The strata Polyn(C)[κ] admit descriptions as certain discriminant complements, and so the Main Question

is reminiscent of the conjecture of Arnol’d-Pham-Thom on the homotopy type of discriminant complements

associated to isolated hypersurface singularities. As we will see, Polyn(C)[κ] is also closely related to a certain

stratum Ωκ of meromorphic differentials on CP1, and so the Main Question is a version of the conjecture

posed by Kontsevich–Zorich originally for strata of holomorphic differentials on higher-genus curves [KZ97].

In this article, we begin this project by answering a natural question about the groups Bn[κ]. The inclusion

map Polyn(C)[κ] ↪→ Polyn(C) induces a monodromy homomorphism into the braid group Bn := π1(Polyn(C))

ρ : Bn[κ] → Bn,

and we describe the image Bn[κ] := ρ(Bn[κ]). We find (cf. Section 4) that there is a crossed homomorphism

ϕκ : Bn → (Z/rZ)r, where r = gcd(κ) is the gcd of the parts of κ, which characterizes the monodromy image

when n ≥ n0(r) is sufficiently large compared to r. The precise bounds n0(r) are somewhat intricate and are

stated in Section 6, but we note here that if r = 1 then n0(1) = 2 (in which case ϕκ is trivial and Bn[κ] = Bn)

and if r = 2 then n0(2) = 8; in general, n0(r) ⩽ 14r in the worst-case scenario.

Theorem A. For any n ≥ 2 and any partition κ of n− 1 with gcd(κ) = r, there is a containment

Bn[κ] ⩽ ker(ϕκ).

If n ≥ n0(r), then this containment is an equality.
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Remark 1.1. Theorem 6.10 gives a simple characterization of ker(ϕκ) (and hence Bn[κ]) in the range

n ≥ n0(r): it is the subgroup of Bn consisting of braids admitting representatives where at each overcrossing,

there are r strands passing underneath.

Remark 1.2. The containment Bn[κ] ⩽ ker(ϕκ) is not always an equality. For κ = {n− 1}, the fundamental

group π1(Polyn(C)[κ]) is cyclic, since the only polynomials in this stratum are of the form f(z) = (z−z0)n−c,
while the corresponding ker(ϕκ) has finite index in Bn. On the other hand, the braid-theoretic methods

underlying the proof of Theorem A are almost certainly not optimized, and it would be interesting to know

exactly how small n0(r) can be taken.

Remark 1.3 (The braided Gauss-Lucas theorem). The classical Gauss-Lucas theorem asserts that the critical

points lie inside the convex hull of the roots. There is a refinement ρ : Bn[κ] → Bn,|κ| of ρ where one tracks

both roots and critical points, and the study of ρ can be viewed as a Gauss-Lucas theorem for families of

polynomials. The classical theorem implies that every braid in the image of ρ admits a representative where

at each time t, the critical points lie in the convex hull of the roots. Our study of the monodromy shows that

this is not sufficient. Figure 4 in Section 4.2 gives an example of a braid satisfying this convexity condition

which is not realizable as the braid of root and critical points of any family of polynomials. Theorem A

shows that when r ≥ 2, there are even certain braidings of the roots alone (e.g. a half-twist) which cannot be

realized by polynomial families. We plan to return to a study of the refined monodromy ρ in future work.

Remark 1.4 (A finer stratification). The equicritical stratification {Polyn[κ]} is concerned only with the

multiplicities of the critical points; it can (and does) happen that distinct critical points lie over the same

critical value. Therefore, each equicritical stratum admits a further stratification by the profile (multiplicities

plus ramification) of the critical values. Let us call this the “profile stratification”.

From one point of view, the profile stratification is perhaps more natural to investigate, being built from

more fundamental pieces. On the other hand, the Main Question posed above is strictly less interesting.

This is because each stratum in the profile stratification is very closely related to a certain Hurwitz space of

branched covers of C∗ (they are not exactly the same thing, since a point in a Hurwitz space only describes

a polynomial up to automorphisms of the domain). Therefore the fundamental group of a profile stratum

can be computed in terms of the fundamental group of the associated Hurwitz space, which is nothing more

than a finite-index subgroup of a braid group. At the space level, a profile stratum fibers over the associated

Hurwitz space with fiber given by the affine group C⋊C∗; as base and fiber are aspherical, so too is the total

space. Thus only by passing to the coarser equicritical stratum do we reach uncharted territory.

From polynomials to translation surfaces. Our method of study is built around a type of uniformization

map. Namely, we associate to f ∈ Polyn(C)[κ] its logarithmic derivative df/f . This is a meromorphic

differential on CP1, with n simple poles of residue 2πi at the zeroes of f and an additional simple pole of

residue −2πin at infinity. Such an object can be viewed as a translation surface - the poles give the surface

infinite area, but it nevertheless has a very simple global structure (see, e.g. Figure 1). Let Ωκ denote the

moduli space of meromorphic differentials on CP1 with n simple poles of residue 2πi, a simple pole at infinity

(necessarily of residue −2πin), and zeroes of multiplicity specified by κ. Some elementary complex analysis

(Lemma 2.1) shows that every such differential is of the form df/f for f ∈ Polyn(C)[κ]. The assignment

f 7→ df/f therefore gives a classifying map

µ : Polyn(C)[κ] → Ωκ.
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It is clear that if f(z) and g(z) are related by an affine change of variables g(z) = f(az + b), then the

associated differentials df/f and dg/g determine the same point in Ωκ. The converse is not much harder, but

this identification is fundamental to our approach, and we record it here for good measure.

Theorem 1.5. The classifying map µ induces an isomorphism of complex orbifolds

Polyn(C)[κ]/Aff ∼= Ωκ.

The advantage in studying Ωκ is that its global structure is much more apparent. The equations defining

Polyn(C)[κ] as a discriminant complement are highly nonlinear, and it is difficult to construct and analyze

the behavior of explicit loops inside Polyn(C)[κ]. On the other hand, in Ωκ the corresponding analysis

is elementary via deformations of the associated translation surfaces. Moreover, in Proposition 3.10, we

use the combinatorics of the translation surfaces to obtain an explicit finite cell structure on Ωκ, in princi-

ple reducing the study of the topology of Ωκ to the combinatorics of the “labeling systems” that index the cells.

The meromorphic differential df/f , and more precisely its incarnation as an infinite-area translation surface,

plays a fundamental role in our analysis of the monodromy. Theorem A exactly parallels a result in the setting

of strata of holomorphic differentials on higher-genus surfaces. Here, the problem is to determine the image of

the orbifold fundamental group in the mapping class group of the surface. This was answered in [CS23], where

it is shown that the image is essentially characterized by the property that the monodromy must preserve

the framing of the surface (punctured at the locations of the zeros) associated to the horizontal vector field

specified by the translation surface structure. In the case where the locations of the zeroes are not marked,

the monodromy must preserve a certain distillate of the framing known as an r-spin structure, c.f. [CS21].

Here, we find the exact same sort of characterization of the monodromy: the crossed homomorphism ϕκ

measures a “change in winding number” of arcs relative to the framing of the punctured surface induced from

df/f . In both of these settings, the integer r is given as the gcd of the orders of the zeroes of the differential.

Related work. In [CW91], Catanese–Wajnryb study the space of what they call “generic polynomials”, i.e.

those possessing the maximal number of critical values (but with no constraint on simplicity of the roots).

Their main result gives a description of the fundamental group of this space. In the language of the profile

stratification discussed above in Remark 1.4, the space of generic polynomials is very closely related to the

top-dimensional stratum in the profile stratification, the only difference being that here, one does not insist

that 0 be a regular value, so the Hurwitz space in question parametrizes branched covers over C and not C∗.

In [TBY+20], W. Thurston and collaborators associate a “degree-d-invariant lamination” to a complex

polynomial of degree d. The combinatorics of this lamination record the multiplicities of the critical points,

and moreover there is a space (“spine”) of such laminations which they probe by means of deformations of

the translation surface associated to df/f (although stated in different language). See in particular [TBY+20,

Theorem 3.1].

The space Ωκ fits into the theory of the “isoresidual fibration” studied by Gendron–Tahar [GT21,GT22].

They consider the map from the space of meromorphic differentials with prescribed zero and pole orders

to the vector space of residues, showing among other things that in the case of a single zero, the map is a

fibration away from a hyperplane arrangement. Our Ωκ is the fiber of the isoresidual map of differentials on

C over the vector of residues (2πi, . . . , 2πi), where the zeroes have order specified by κ.

In [DM22], Dougherty–McCammond investigate various combinatorial structures induced from polynomial

maps. One of their key tools is a pair of transverse singular foliations on C with singularities at the zeroes

and critical points of f . We obtain an equivalent pair of foliations from the horizontal and vertical foliations

of the translation surface structure on C induced by df/f . See Remark 3.2.
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Outline. In Section 2, we establish Theorem 1.5, showing that one can study polynomials in a stratum

Polyn(C)[κ] by instead studying the translation surfaces associated to their logarithmic derivatives. In

Section 3, we describe the structure of an individual df/f as a translation surface, as well as the global

structure of the stratum Ωκ. Our main results here are the discussion in Section 3.2 of the “strip decomposition”

of df/f , and the global structure theorem Proposition 3.10, which exhibits a cell structure on Ωκ coming

from the combinatorics of this decomposition. The proof of Theorem A is carried out in Sections 4 to 6. In

Section 4, we show how the translation surface structure associated to df/f constrains the monodromy image

Bn[κ], forcing it to preserve winding numbers of arcs on the disk. In Section 5, we exhibit certain loops in Ωκ

and analyze their monodromies in Bn. Finally in Section 6, we show that this finite collection of elements is

enough to generate the kernel of ϕκ (when n is sufficiently large). The key tool here is to relate the winding

number crossed homomorphism ϕκ to an a priori totally different crossed homomorphism Υr formulated

in terms of a count of “virtual undercrossings” on a braid diagram, and then to establish a factorization

algorithm (Lemma 6.9) for expressing the kernel of Υr in terms of elements known to lie in the monodromy

image.

Acknowledgements. The author would like to thank Tara Brendle and Matt Day for interesting discussions,

and Dan Margalit for very helpful feedback and for alerting the author to the work [DM22] of Dougherty–

McCammond. Stepan Orevkov, Michael Lönne, Alex Suciu, and Kathryn Lindsey are due thanks for some

helpful bibliographical suggestions. Thanks also to an anonymous referee. The author is supported by NSF

Award No. DMS-2153879.

2. Moduli spaces of polynomials, differentials, and translation surfaces

We begin with a discussion of the space Ωκ, the stratum of translation surfaces associated to the differentials

df/f . We construct this here as a moduli space, by taking a quotient of the space of differentials by the

relevant automorphism group. The main result of this section is Theorem 1.5, recorded here as Proposition 2.2,

which amounts to little more than an unpacking of the definitions, but lays the foundation for what is to

follow, as it will allow us to explore the space Polyn(C)[κ] by instead exploring the space Ωκ of translation

surfaces.

Let κ = {k1, . . . , kp} be a partition of n− 1. Here and throughout, we write |κ| = p to denote the number

of parts of the partition. Let MD(κ) be the set of meromorphic differential forms ω on CP1 satisfying the

following properties:

• There are exactly p zeroes of ω of orders k1, . . . , kp, and each zero lies in C ⊂ CP1,

• There are n simple poles each of residue 2πi contained in C, and an additional simple pole at ∞ of

residue −2πin.

The following is basic complex analysis; we include the argument for the sake of completeness.

Lemma 2.1. Let ω ∈ MD(κ) be given. Then there is a unique f ∈ Polyn(C)[κ] such that ω = df
f .

Proof. Let f ∈ Polyn(C) be the polynomial with simple roots at the n poles z1, . . . , zn of ω contained in C.
By the theory of partial fractions,

df

f
=

(
1

z − z1
+ · · ·+ 1

z − zn

)
dz,

on C, showing that ω − df
f has no poles on C. By hypothesis, ω and df

f have simple poles at ∞ of equal

residue, so that ω − df
f is moreover holomorphic in a neighborhood of ∞. Thus ω − df

f is a holomorphic

differential form on CP1; the only such form is 0 (see, e.g. [Mir95, Exercise IV.1.A]). □
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Observe that the affine group

Aff = {α ∈ Aut(CP1) | α(∞) = ∞} = {az + b | a ∈ C∗, b ∈ C} ∼= C∗ ⋉C

acts via biholomorphisms on MD(κ) on the left via inverse-pullback:

α · ω = (α−1)∗(ω).

Likewise, there is a left action of Aff on Polyn(C) ⊂ Cn induced from the diagonal action on Cn.

Note that for each of these actions, Aff is a Lie group acting properly by holomorphic automorphisms

with finite stabilizers. The orbit spaces Polyn(C)[κ]/Aff and MD(κ)/Aff therefore carry complex orbifold

structures. We observe that dimC(Polyn(C)[κ]) = |κ|+1, since the roots of f ′ move in a configuration space of

dimension |κ|, and the generic antiderivative of f ′ has n distinct roots. Thus dimC(Polyn(C)[κ]/Aff) = |κ|−1.

We define the κ-stratum of logarithmic derivatives as the second of the orbifolds discussed above:

Ωκ := MD(κ)/Aff .

Observe that there is a natural map

µ : Polyn(C)[κ] → MD(κ)

f 7→ df

f
.

Proposition 2.2 (Theorem 1.5). The map µ is an Aff-equivariant biholomorphism, inducing an isomorphism

of complex orbifolds of dimension |κ| − 1.

Polyn(C)[κ]Aff
∼= Ωκ.

Proof. That µ is a bijection follows immediately from Lemma 2.1, and it is easy to see that this respects the

complex structures on the domain and codomain. Equivariance is also easily verified, as

(α−1)∗
df

f
=
d(f ◦ α−1)

f ◦ α−1
,

and the polynomial f ◦ α−1 has simple roots at the points α(z1), . . . , α(zn), where z1, . . . , zn are the roots of

f . □

An exact sequence. To conclude this section, we study the relationship between the (orbifold) fundamental

groups of Polyn(C)[κ] and its quotient Polyn(C)[κ]/Aff ∼= Ωκ. Following the discussion in [Loo08, Introduc-

tion], we find that there is an exact sequence

π1(Aff) → π1(Polyn(C)[κ]) → πorb
1 (Polyn(C)[κ]/Aff) → π0(Aff) → 1.

Recalling that π1(Aff) = Z and π0(Aff) = 1, and also recalling that π1(Polyn(C)[κ]) := Bn[κ], we obtain the

exact sequence

Z → Bn[κ] → πorb
1 (Ωκ) → 1. (1)

In particular, we emphasize that the projection Bn[κ] → πorb
1 (Ωκ) is surjective. It is not hard to show that

(1) is in fact short exact, but we do not need this fact here so we will not elaborate.



6 NICK SALTER

3. Ωκ as a space of translation surfaces

The purpose of this section is to explain the structure of a differential df/f when realized as a translation

surface. In Section 3.1, we begin with a discussion of some generalities of translation surfaces induced by

meromorphic differentials and the induced horizontal foliation. In Section 3.2, we discuss the notion of a strip

decomposition of the translation surface for df/f and some important related notions (strips, slits, fixed/free

prongs). This will give a combinatorial decomposition of Ωκ into cells; in Section 3.3, we discuss the global

structure of this decomposition. In the body of this paper, we will only make use of the constructive aspects

of the theory we establish here (as a technique for exploring the space Ωκ and computing the monodromy of

loops); in later work, we hope to make use of the global structure theory obtained in Proposition 3.10.

3.1. Flat cone metrics and the horizontal foliation. The integration map

z 7→
∫ z

z0

df

f

provides a system of holomorphic charts on C away from the zeroes of f and f ′ for which the transition

functions are translations z 7→ z + c. The horizontal foliation on C given by lines of constant real part

(equivalently determined as the kernel of the real 1-form dy = Im(dz)) pulls back to a singular foliation F on

the domain.

Near a zero ζi of order ki, these charts realize ζi as a cone point with cone angle 2π(ki+1). At such a point

F has a prong singularity of order 2ki + 2. In the flat coordinates, the prongs alternate between pointing to

the right and left and will be referred to as such. We also note that there is a natural cyclic ordering on

both the left and right prongs, and each set of prongs carries the structure of a torsor over Z/(ki + 1)Z by

measuring the counterclockwise angle from one prong to the other.

The local structure near a simple pole is slightly less well-known, but is equally straightforward. First note

that in the case of ω = dz/z, the integration map (i.e. the logarithm) sends the punctured disk 0 < |z| ⩽ 1 to

the half-infinite strip

SL = {a+ bi | a ⩽ 0, 0 ⩽ b ⩽ 2π}

with the top and bottom identified via the translation z 7→ z + 2πi; likewise, for c ∈ C∗, the integration map

sends a neighborhood of c dz/z near 0 to the rotated strip cSL. For a general differential ω = g(z)dz/z with

a simple pole at z = 0, the coordinate

w(z) = exp(

∫ z

z0

ω)

pulls ω back to dw/w, showing that in general, a neighborhood of a simple pole of residue c is realized on the

translation surface via the rotated strip cSL (again with opposite edges identified). At such a pole, F has an

“infinite prong singularity”, where the foliation structure is locally given by the set of rays emanating from a

point.

Given a translation surface T represented as a finite collection of disjoint polygons {Pi} ⊂ C with edge

identifications, a cut move is a subdivision of some Pi into P
1
i , P

2
i along with the identification of the cut

edges. To perform a paste move, take distinct polygons Pi, Pj for which there is an edge of Pi identified to

an edge of Pj , and translate Pj so that the identified edges coincide. If Pi and Pj overlap only along this

edge, then the paste move can be performed by joining Pi and the translate of Pj into a single polygon,

inheriting the remaining edge identifications. It is a basic fact in the theory of translation surfaces that T and

T ′ determine the same point in their stratum (in this case, Ωκ) if and only if they are related by a sequence

of cut/paste moves.
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The horizontal foliation for df/f . The integration map
∫
df/f induces a translation surface structure

on an n-times punctured plane, for which the horizontal foliation has the local features discussed above.

Conversely, any “combinatorially suitable” translation surface structure T on an n-times punctured plane

determines a differential ω = df
f ∈ Ωκ. Here, by “combinatorially suitable”, we mean the following:

• T has n half-infinite cylindrical strips SL
1 , . . . , S

L
n , each equivalent to SL via a translation (each

extends infinitely far to the left and has height 2πi),

• T has one half-infinite cylindrical strip S∞ equivalent to −nSL via a translation (thus extending

infinitely far to the right and of height 2nπi),

• T has cone points p1, . . . , pm of orders k1, . . . , km, where κ = {k1, . . . , km},
• The complement of the strips SL

1 , . . . , S
L
n , S∞ has finite area.

That every such translation surface is induced by a differential df/f ∈ Ωκ is immediate: T induces a

Riemann surface structure on an n-times punctured plane, equipped with a differential ω on which SL
1 , . . . , S

L
n

correspond to simple poles of residue 2πi, S∞ corresponds to a simple pole of residue −2nπi, and which has

zeroes of multiplicity specified by κ; i.e. ω ∈ Ωκ.

The global structure of the horizontal foliation F on CP1 induced by df/f is extremely simple.

Lemma 3.1. Let f ∈ Polyn(C)[κ] be given, and let F be the horizontal singular foliation on CP1 induced by

df/f . Then F has the following properties:

• With the finitely many exceptions of leaves incident to a critical point of f , every leaf connects a zero

of f to ∞. In particular, F has no closed leaves.

• Let pj be a critical point of order kj, corresponding to a cone point of order kj on the translation

surface and inducing a 2kj+2-pronged singularity of F . Then the prongs alternate between terminating

at a zero of f and at ∞. In particular, at most one prong at pj terminates at each zero of f .

Proof. We first claim that F has no closed leaves. Integration of df/f along such a leaf would yield a real

period of df/f , but the periods of df/f are purely imaginary. If a leaf does not terminate at a singularity, it

must accumulate somewhere on the compact space CP1. Such a nearly-closed leaf can be completed via a

short vertical segment into a simple closed curve whose period has positive real part, again a contradiction.

Thus every leaf must terminate at both ends at a singularity of F . At a critical point of order k, F has a

2k + 2-pronged singularity, so that there are finitely many leaves terminating at a critical point as claimed.

Integrating df/f along a path terminating at a zero of f has real part tending to −∞, so that at most one

end of every leaf can terminate at such a point; likewise at most one end can terminate at ∞.

This same observation proves the second assertion: when integrating along consecutive prongs, the real

part of
∫
df/f is monotonic, so that exactly one prong in each consecutive pair terminates at a zero of f . If

two prongs at pj terminate at the same zero, we consider the bounded region of the plane enclosed by these

leaves. By the above, there must be at least one prong originating inside this region which must terminate at

∞, but it cannot escape the region enclosed by the two prong leaves, showing a contradiction. □

Remark 3.2. In [DM22], Dougherty and McCammond study a pair of transverse singular foliations equivalent

to those induced by the real and imaginary parts of df/f . Their point of view is somewhat different: they

induce F by pulling back the transverse foliations |z| = c and arg(z) = c on C∗ under the map f : C → C,
but the result as unmeasured foliations is the same. They equip their foliations with measures that are

different from the ones coming here from the flat structure, considering instead the measure induced by the

Euclidean structure on C∗. Using this, they are able to obtain a detailed picture of various combinatorial
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structures associated to the polynomial f . It would be interesting to see if the translation surface perspective

has anything to add to the story they pursue.

z1
z2

z3

z4

z5

w1 w2

w3

S1

S2

S3

S4

S5

∫
df
f

Figure 1. A strip decomposition of a differential df/f . The polynomial f has simple zeroes

z1, . . . , z5, and critical points w1, w2, w3 with w2 having multiplicity 2. On the left, the

points zi, wj are shown in C along with the prongs of the horizontal foliation. The strip

decomposition is shown on the right. Colors on the right indicate gluing instructions, and

correspond to the colorings of the prongs at left.

3.2. Strip decomposition. A translation surface T ∈ Ωκ admits a finite number of combinatorially-

determined standard forms which we call a strip decomposition. Assign a numbering SL
1 , . . . , S

L
n to the n

left-infinite strips of height 2πi, or equivalently a numbering z1, . . . , zn of the zeroes of f . The strips SL
i

extend infinitely far to the left by hypothesis. Following the leaves of the horizontal foliation in SL
i to the right

(towards ∞), we observe that there must be at least one leaf terminating at a critical point wj , for otherwise,

this region would close up into a topological cylinder, rendering the translation surface disconnected (except,

of course, in the case n = 1 with differential dz/z). Choosing one such leaf, we fix an identification SL
i
∼= SL

by identifying wj with 0 ∼ 2πi in SL. We remark that we allow for the non-generic possibility that the leaf

connecting zi to wj passes through one or more additional cone point.

Define Si ⊂ T as the continuation to the right of the leaves of the horizontal foliation passing through SL
i .

This is then a bi-infinite strip of height 2πi, possibly containing additional cone points. The boundary of SL
i

is determined by the prong of wj from which the leaf terminating at zi emanates. We say that Si is bounded

by the cone point wj , and call the distinguished prong a fixed prong. By Lemma 3.1, all of the leaves of the

horizontal foliation not terminating at a cone point are contained in some strip Si, and so this produces a

decomposition of T as claimed.

Strips Si and Sj are said to be vertically adjacent if the top right boundary of Si is identified with the

lower right boundary of Sj or vice versa. We will speak of the strips above and below Si via this definition.

Strip coordinates. The strip decomposition of T of course depends on various non-canonical choices. To

track this, and moreover to understand the global structure of the space Ωκ, we define

Ωord
κ → Ωκ
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as the covering space consisting of differentials df/f ∈ Ωκ together with labelings z1, . . . , zn and w1, . . . , wp

of the zeroes and critical points of f , respectively. Note that the stabilizer of a labeled configuration of two or

more points in C under the affine group is trivial, so that Ωord
κ is a manifold cover of the orbifold Ωκ. For the

ensuing discussion, we will lift df/f ∈ Ωκ to one of its preimages in Ωord
κ .

Having fixed such data, one can then encode the combinatorial type of a strip decomposition by tracking

the prongs of the cone points. A cone point wj of order kj has 2kj + 2 prongs emanating from it, of which

kj + 1 point to the left on the translation surface. Since
∑p

j=1 kj = n− 1, there is a total of n− 1 + p left

prongs. Of these, n are fixed prongs; we call the remaining p− 1 free prongs. Generically, the leaf emanating

from a free prong is contained in the interior of a unique strip Si; exceptionally it may terminate at some

other cone point. Given a labeled differential df/f , a choice of strip decomposition yields the following data:

(1) For each zero zi of f , a choice of some left prong to bound the strip Si,

(2) An assignment of the remaining p− 1 free prongs to one of the strips containing it (generically, a free

prong lies in a unique strip; exceptionally it may lie on the boundary between two that are vertically

adjacent),

(3) The p− 1 relative periods γj of the arcs connecting each free prong to the fixed prong for its strip,

each an element of R+ [0, 2π]i; if two free prongs belong to the same strip, the relative periods must

be distinct (so that the cone points do not collide).

Conversely, we can use the relative periods of the free prongs to put a system of coordinates (“strip

coordinates”) on Ωord
κ . A strip coordinate chart is indexed by a labeling system which includes the data

specified by (1) and (2) above. Without further constraint, the relative periods of (3) do not yet induce

a coordinate patch on Ωord
κ : as two free prongs in the same strip orbit around one another, one will pass

through the slit associated to the other and into a different strip. To prevent this, we additionally impose

orderings on the imaginary parts of the relative periods of the free prongs within a given strip.

Definition 3.3 (Labeling system). Fix a partition κ of n− 1 and consider the associated set of left prongs

Pκ of cardinality n+ p− 1. A labeling system L is a choice of the following data:

(1) For each 1 ⩽ i ⩽ n, a choice of prong v ∈ Pκ as the fixed prong for Si,

(2) An assignment of each of the remaining p− 1 prongs in Pκ to some strip Si,

(3) For each strip Si, a choice of ordering v1 ⩽ . . . ⩽ vmi
of the mi free prongs assigned to Si.

Not every labeling system is realized by some df/f ∈ Ωord
κ , since some choices of labeling systems will

cause the translation surface to be disconnected. Here we state the combinatorial criterion for connectedness

only; we prove that this encodes topological connectedness in Lemma 3.6.

Definition 3.4 (Connected labeling system). Let L be a labeling system for some partition κ = {k1, . . . , kp}
of n− 1. Let ΓL be the graph whose vertices are the parts ki of κ, and where ki and kj are connected by an

edge if there are prongs of ki and kj contained in the same strip Si. Then L is said to be connected if ΓL is.

Having specified a labeling system, we turn now to the problem of parametrizing the relative periods of

the free prongs. For m ≥ 1, define the closed m-simplex via

∆m = {(y1, . . . , ym) ∈ Rm | 0 ⩽ y1 ⩽ . . . ⩽ ym ⩽ 2π}.

Definition 3.5 (Strip coordinate domain). Let L be a labeling system of some partition κ of n − 1; for

1 ⩽ i ⩽ n, suppose there are mi free prongs assigned to the strip Si. The associated strip coordinate domain

is the set

ΩL :=

(
n∏

i=1

Rmi + i∆mi

)
\ D ⊂ Cp−1,
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where D is the union of the following sets:

(1) D1 the set of points where zj1 = zj2 for j1, j2 assigned to the same strip,

(2) D2 the set of points where xj1 = xj2 < 0 and yj2 = yj1 + 2πi for j1, j2 assigned to the same strip,

(3) D3 the set of points where xj = xk > 0 and yj = 2πi, yk = 0, where j is assigned to the strip below

the strip containing k,

(4) D4 the set of points where zj = 0 or zj = 2πi.

Lemma 3.6. Let L be a connected labeling system of the partition κ. Then there is a realization map

r : ΩL → Ωord
κ .

The restriction of r to the interior of ΩL is a biholomorphism onto its image.

Proof. A point γ = (γ1, . . . , γp−1) ∈ ΩL determines a translation surface Tγ as follows: assemble n bi-infinite

strips S1, . . . , Sn, and mark 0 ∼ 2πi ∈ Si with the prong specified by L. Given a relative period γj , the

labeling system specifies a free prong in a strip Si; place the free prong at γj ∈ Si and introduce a slit running

horizontally to the right from γj to ∞. The cyclic ordering on the prongs at each cone point then specifies

gluing instructions on the slits as well as on the right halves of the top and bottom boundary components of

each Si (the top and bottom left halves of Si are identified to each other). The excision of the set D from ΩL

ensures that after gluing, no pair of free prongs are identified, and that no free prong is placed at the location

of a fixed prong.

We claim that Tγ is connected if and only if the labeling system L is connected in the sense of Definition 3.4.

Note that the vertices of ΓL are canonically identified with the cone points wj of Tγ . A first trivial observation

is that Tγ will be connected if and only if there is a path connecting each pair of strips Si, Sj . Suppose that

Tγ is connected; we wish to find a path in ΓL connecting an arbitrary pair of vertices wj , wk. Choose prongs

at wj and at wk; these live in strips S, S′ respectively. If S = S′ then wj and wk are connected by definition;

otherwise, let c be a path in Tγ connecting S to S′, and one can use this to build a corresponding path in ΓL

by moving through a sequence of cone points lying in the sequence of strips passed through by c.

Conversely, suppose that ΓL is connected. Given a strip Si, let wi be the corresponding bounding cone

point. Observe that it suffices to show that strips Sa and Sb are path-connected in Tγ if the associated

vertices wa, wb of ΓL are either equal or adjacent. If wa = wb = w then a path connecting Sa to Sb can be

constructed by winding some number of times around w. If wa and wb are adjacent, then there is some strip

Sc containing a prong of both wa and wb; a path connecting Sa to Sb can be constructed by concatenating a

path between neighborhoods of wa and wb in Sc with paths winding around wa and wb between Sc and Sa,

resp. Sb.

At this point, we have shown that this construction process yields a well-defined map r : ΩL → Ωord
κ . We

next observe that r is holomorphic - this is a simple consequence of the fact that the relative period maps on

Ωord
κ are holomorphic. It remains to show that r is injective on the interior of ΩL. To see this, observe that

translation surfaces Tγ and Tδ determine the same point in Ωord
κ only if the sets of relative periods between

cone points are equal. The sets of relative periods between fixed cone points is a torsor on the group of

absolute periods; in this case the absolute periods is just the set 2πiZ ⊂ C. If γ, δ ∈ int(ΩL) are distinct,

then the corresponding relative periods all have imaginary part strictly between 0 and 2π, so that the relative

periods of Tγ cannot be obtained from those of Tδ by translation by some absolute period. □

3.3. Change of coordinates; a cell structure on Ωord
κ . We next consider the transition maps between

strip coordinate domains with overlapping image. There are two basic transitions to study: (1) changing

which of the prongs in Si is fixed, and (2) pushing the topmost (relative to the ordering) free prong out the
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top right side of Si and into the bottom of the strip above (or in reverse, pushing the bottom free prong

through the bottom right side). All coordinate changes are compositions of these two, e.g. pushing a free

prong out the top left side is equivalent to changing the free prong to the fixed, and pushing the new free

prong (formerly the fixed) out the bottom right. The lemmas below record the effects of these moves on strip

coordinates; the proofs follow from inspection of Figures 2 and 3.

Lemma 3.7 (Type 1: changing the fixed prong). Let L be a connected labeling system for κ. Choose some

strip Si; let v0 denote the fixed prong and let v1 ⩽ . . . ⩽ vmi
denote the free prongs in Si together with their

cyclic ordering. Define L′ as the labeling system obtained from L by choosing some vj as the new fixed prong

for Si, and ordering the free prongs via

vj+1 ⩽ . . . ⩽ vmi
⩽ v0 ⩽ v1 ⩽ . . . ⩽ vj−1.

The map on relative periods t : ΩL → ΩL′ is given by

t(γ1, . . . , γmi) = (γj+1 − γj , . . . , γmi − γj , 2πi− γj , γ1 + 2πi− γj , . . . , γj−1 + 2πi− γj).

v0

v1
v2

v3

v2
v3

v0

v1

Figure 2. Type 1: changing the fixed prong from v0 to v2.

Lemma 3.8 (Type 2: pushing up/down). Let L be a connected labeling system for κ. Let Si be a strip with

fixed prong v0 and let v1 ⩽ . . . ⩽ vmi denote the free prongs in Si together with their cyclic ordering. Denote

the relative periods by γ1, . . . , γmi , and suppose that γmi = x + 2πi with x > 0. Let Sj be the strip whose

bottom right boundary is identified with the top right boundary of Si, and let v′1 ⩽ . . . ⩽ v′mj
denote the free

prongs in Sj.

Changing the assignment of vmi
from Si to Sj yields the labeling system L′ obtained from L by reassigning

vmi
to Sj with ordering in Sj

vmi ⩽ v′1 ⩽ . . . ⩽ v′mj

and relative period x.

Conversely, if v1 has period x ∈ R with x > 0, then we may reassign it to the strip Sj whose top right

boundary is identified with the bottom right on Si, assigning it to the maximal position in Sj with period

x+ 2πi.

Lemma 3.9. Let L,L′ be connected labeling systems for κ, and let

df/f ∈ r(ΩL) ∩ r(ΩL′)

be a differential (with zeroes and poles labeled) in the image of the strip coordinate domains for both L and L′.

Then L′ can be obtained from L by a sequence of moves of type 1 and 2.
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Si

Sj

v0

v1

v2

v3

v′1

Figure 3. Type 2: pushing v3 up from Si to Sj .

Proof. By hypothesis, there are two translation surfaces T and T ′ coming from ΩL and ΩL′ , respectively,

that determine the same point in Ωord
κ . Thus T and T ′ are equivalent via a sequence of cut/paste moves that

moreover preserve the labelings of each of the poles and zeroes of the associated differential df/f . Applying

the strip decomposition to T and T ′, it follows that each of the corresponding strips are individually cut/paste

equivalent. A cut/paste move applied to a given strip corresponds to a move of type 1 on the labeling system.

After applying a cut/paste isomorphism taking T to T ′ as labeled translation surfaces, the only remaining

choices in the assignment of a labeling system arises in assigning prongs lying on the boundary of two strips

to one or the other; this corresponds to moves of type 2. □

Summary. We summarize the results of the section in the following result, describing the global structure of

Ωord
κ obtained by gluing together strip coordinate patches according to moves of types 1 and 2.

Proposition 3.10. There is a biholomorphism

Ωord
κ

∼=
∐

ΩL/ ∼,

where the union is taken over all connected labeling systems for κ and ∼ is the equivalence relation generated

by moves of types 1 and 2 as in Lemmas 3.7 and 3.8.

Proof. We claim that the topological space
∐

ΩL/ ∼ is a manifold under the system of coordinates provided

by ΩL. This is not quite immediate from what we have shown - the strip coordinate domains are not open,

and their interiors do not quite cover Ωord
κ , missing points where some free prong has period with imaginary

part 0 or 2πi. But such points lie in the interior of the union of two strip coordinate domains, e.g. as shown

in Figure 3. By Lemmas 3.7 and 3.8, the transition functions between overlapping ΩL,ΩL′ are holomorphic

(and indeed affine), and hence
∐

ΩL/ ∼ is a complex manifold.

By Lemma 3.6 and Lemma 3.9, the set of realization maps r : ΩL → Ωord
κ assemble into a biholomorphism.

□

Remark 3.11. While one can exhibit a deformation retraction showing that an individual set r(ΩL) is

contractible, it is not the case that all intersections of sets r(ΩL) are contractible. Specifically, if v lies on the

top right of its strip, and v′ lies on the bottom right of the strip above, then there is a three-fold intersection

of labeling systems where at most one of v or v′ has been moved up or down. This intersection has two

components, arising from the different linear orderings on the real parts. To compute the homotopy type

of Ωord
κ as the nerve of a covering, it is therefore necessary to further subdivide the pieces ΩL (taking into

account the various orderings of the real parts) so as to account for this phenomenon.
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4. Winding numbers

In this section, we begin our study of the monodromy of strata of polynomials (Theorem A). Our ultimate

objective is Lemma 4.7, which asserts that the monodromy image Bn[κ] = ρ(Bn[κ]) lies in the kernel of a

certain crossed homomorphism ϕr. This will be constructed as a measure of “change of winding number” for

arcs on a translation surface; accordingly, we begin with a discussion of the theory of relative winding number

functions. In Section 4.2, we use the theory of winding number functions to give an example of a braid which

satisfies the convexity condition enforced by the Gauss-Lucas theorem, but which nevertheless cannot be

realized as the braid of root and critical points of any family of polynomials.

4.1. Winding number functions. To avoid a lengthy digression, we give here an abbreviated account of

the theory of winding number functions which will suffice for our purposes; see [CS23, Section 2] for a fuller

discussion.

Definition 4.1 (Relative winding number function). Let Cn,p denote the surface CP1 with three sets of

marked points: n points Sr ⊂ C which we call the roots, p points Sc ⊂ C called the critical points, and ∞.

Let S = Sr ∪ Sc. We allow for the possibility of tracking only roots, and not critical points, and hence we

permit p = 0. We further endow Cn,p with a weighting

w : S → Z

for which w(z) = −1 for each root, and w(z) > 0 for each critical point. In the context under study, we think

of w as the function that assigns to each point its order as a zero or a pole.

Let An,p denote the set of isotopy classes of properly-embedded smooth oriented arcs, disjoint from all

marked points on their interior, that connect some root in C to ∞ (in that order, relative to the orientation).

A Z/rZ relative winding number function is a set map

ψ : An,p → Z/rZ

that satisfies the twist-linearity condition

ψ(Tc(a)) = ψ(a) + ⟨a, c⟩ ||c|| , (2)

where c ⊂ Cn,p is a simple closed curve and ||c|| is determined by the formula

||c|| = 1 +
∑

z∈int(c)∩S

w(z), (3)

where the sum runs over the points of S in the interior of c (i.e. the component of CP1 \ c not containing ∞).

As usual, ⟨a, c⟩ denotes the algebraic intersection pairing, relative to the specified orientation on a and the

orientation on c for which ∞ lies to the left. When r = 0, we call such an object an integral relative winding

number function.

Example 4.2 (Horizontal winding number function ψT ). Let n ≥ 2 be given, let κ be a partition of n− 1,

and let T ∈ Ωκ be a translation surface structure on CP1. Such T corresponds to a differential df/f , and we

let Cn,p(T ) be the surface with the roots and critical points of f marked. Let w be the weighting given by

the order of the corresponding pole or zero of df/f .

T endows Cn,p(T ) with an integral relative winding number function ψT called the horizontal winding

number function. Let a ⊂ Cn,p(T ) be a properly-embedded smooth oriented arc connecting a pole of df/f to

∞. We assign the value ψT (a) ∈ Z as follows: realize a as an arc on the translation surface T not passing

through any of the cone points. As a connects a zero of f to the pole at ∞, it runs from left to right on

T , and as it is properly embedded, it can be isotoped so that it follows a leaf of the horizontal foliation
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outside of some compact region of T . Such a representative carries an integral winding number wnT (a) ∈ Z
by measuring the winding of the forward-pointing tangent vector relative to the horizontal vector field (the

winding number is integral because of the condition that the arc coincide with a leaf of the horizontal foliation

outside of a compact region).

Lemma 4.3. The function

ψT (a) := wnT (a)

is a well-defined integral relative winding number function on Cn,p(T ).

Setting r = gcd(κ), the mod-r reduction

ψT (a) := ψT (ã) (mod r),

where a ∈ Cn(T ) is an arc and ã ∈ Cn,p(T ) is an arbitrary lift, is a well-defined Z/rZ relative winding number

function on Cn(T ).

Proof. To see that ψT is well-defined, we must check (i) that wnT (a) is unchanged by an isotopy of a, and

(ii) that ψT (a) satisfies the twist-linearity condition (2). To see that ψT (a) is well-defined, we must further

check (iii) that wnT (ã) is unchanged mod r by an isotopy of ã across a cone point of T .

To establish (i), we recall that a is horizontal except on a compact set. As the winding number of such

an arc is integral (and hence discretely-valued), it follows that the winding number is invariant under any

compactly-supported isotopy. Under an isotopy with noncompact support, a can wrap around a pole some

number of times, potentially altering the winding number. But this is in fact a special case of (ii): winding a

around a pole of T is equivalent to applying the Dehn twist around a curve c enclosing this single pole, i.e.

for which ||c|| = 0.

To establish (ii), let c ⊂ Cn,p be a simple closed curve. It follows from the Poincaré-Hopf theorem that the

winding number of c on T is given by ||c|| as in (3), as the index of the horizontal vector field at a root or

critical point is given by w. Applying the Dehn twist Tc to a, we see that

wnT (Tc(a)) = wnT (a) + ⟨a, c⟩ ||c||

holds, since at each intersection between a and c, the twist Tc(a) wraps once around c, contributing ± ||c|| to
the winding number, the sign determined by the sign of the intersection.

For (iii), we again invoke the Poincaré-Hopf theorem to see that as a curve is isotoped across a zero of

index k on a vector field, the winding number changes by k. By hypothesis, the order of each zero is divisible

by r. Thus, after reducing mod r, the quantity wnT (ã) is independent of the choice of lift ã of a ⊂ Cn(T ) to

Cn,p(T ). □

As Bn,p acts on the set An,p of arcs, there is an induced action

β · ψ(a) = ψ(β−1a)

on the set of relative winding number functions, and hence there is an associated stabilizer subgroup of Bn,p,

which we call the framed braid group. In the case where we track roots but not critical points, we call such

groups r-spin braid groups, by analogy with the theory of “r-spin structures” and their associated “r-spin

mapping class groups” in higher genus, cf. [CS21].

Definition 4.4 (Framed braid group Bn,p(ψ), r-spin braid group Bn(ψ)). Let ψ be an integral relative

winding number function on Cn,p. The associated framed braid group Bn,p(ψ) is the subgroup of Bn,p

stabilizing ψ under the above action on the set of integral relative winding number functions.
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Likewise, if ψ is a Z/rZ relative winding number function on Cn, the associated r-spin braid group Bn(ψ)

is the stabilizer of ψ.

In Lemma 4.6, we will see that the monodromy of a stratum Polyn(C)[κ] is contained in a certain framed

braid group. To establish this, we must digress briefly to give a precise construction of the monodromy

homomorphism.

Definition 4.5 (Monodromy). Let κ be a partition of n− 1 with |κ| = p parts, and let Bn,p be the subgroup

of Bn+p preserving the division of the n + p strands into groups of size n and p. Recalling the definition

Bn[κ] := π1(Polyn(C)[κ]), the monodromy is a homomorphism

ρ : Bn[κ] → Bn,p

constructed as follows. Let f ∈ Polyn(C)[κ] be chosen as a basepoint, and let T = df/f be the associated

translation surface in Ωκ. Fix a choice of marking (i.e. homeomorphism) µ : Cn,p → T . Let β : [0, 1] →
Polyn(C)[κ] be a loop based at f , which induces a loop in Ωκ, which we will also write β; we write the

image of this latter loop as β(t) = Tt with T0 = T1 = T . The family {Tt} of translation surfaces over [0, 1] is

topologically trivial, and hence there is a well-defined isotopy class of identification ft : T0 → Tt for t ∈ [0, 1],

which induces a propagation µt : Cn,p → Tt of the marking map. The monodromy of β is the element

ρ(β) = µ−1
1 µ0 ∈ Mod(Cn,p),

where Mod(Cn,p) denotes the mapping class group of Cn,p. As the marking µ can be enhanced to identify a

tangent vector at ∞ ∈ Cn,p with the canonical horizontal direction on translation surfaces in Ωκ, we can

identify Mod(Cn,p) with the mapping class group of the n, p-times punctured disk Dn,p, i.e. the subgroup

Bn,p ⩽ Bn+p preserving setwise the roots and critical points.

That ρ : Bn[κ] → Bn,p is a homomorphism is a consequence of the fact that if β, γ are loops for which

the propagated markings at t = 1 are denoted µβ , µγ : Cn,p → T , then µγµ
−1
0 µβ gives a propagation of the

marking along the composite path βγ.

Note that ρ is not completely canonical: it depends on a choice of marking µ0 : Cn,p → T (and in particular

depends on a choice of basepoint T ∈ Ωκ). However, it is easy to see that different choices of marking lead to

conjugate monodromy homomorphisms.

Note also that we obtain a reduction

ρ : Bn[κ] → Bn

by forgetting the braid of the critical points.

Define

Bn,p[κ] := ρ(Bn[κ])

and

Bn[κ] := ρ(Bn[κ]).

Lemma 4.6. Let T ∈ Ωκ be a basepoint. Under the monodromy map ρ : Bn[κ] → Bn,p based at T , there are

containments

Bn,p[κ] ⩽ Bn,p(ψT )

and

Bn[κ] ⩽ Bn(ψT ).
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Proof. We assume the notation of Definition 4.5, and consider the monodromy of a loop β in Polyn(C)[κ].
As the marking is propagated along the loop, this induces an identification of the sets An,p(Tt) of the arcs

on the translation surfaces Tt. It follows that β induces a continuously-varying family of winding number

functions ψTt on the set An,p of arcs on the reference surface Cn,p. As the set of winding number functions is

a discrete set, it follows that all such winding number functions coincide. In particular, ψT0 = ψT1 , but from

the definitions we have ψT1
= β · ψT0

, showing that Bn,p[κ] ⩽ Bn,p(ψT ) as claimed.

The containment Bn[κ] ⩽ Bn(ψT ) is a straightforward consequence of the fact that the integral relative

winding number function ψT on Cn,p(T ) descends to the Z/rZ relative winding number function ψT on

Cn(T ) under the forgetful map Cn,p(T ) → Cn(T ). □

4.2. Convexity is not enough: the braided Gauss-Lucas theorem. To illustrate Lemma 4.6, we

give here in Figure 4 an example of a braid in Bn,p that admits a “convex representative”, i.e. where the

p-stranded braid of critical points lies inside the convex hull of the n-stranded braid of roots for all times t,

and yet which does not arise from any loop of polynomials.

Figure 4. A braid which cannot be realized by a family of polynomials in Poly4(C)[13].
The four roots are illustrated in black, and the three simple critical points are colored. A

choice of arcs connecting roots to infinity (depicted here as the entire boundary for visual

simplicity) are shown in gray. As the blue point orbits the central root, it alters the winding

number of the corresponding arc (as can be seen from the twist-linearity formula), and is

thus not contained in the framed braid group B4,3(ψT ). By Lemma 4.6, it follows that this

braid cannot be realized by a loop in Poly4(C)[13].

4.3. Mod-r winding numbers as crossed homomorphisms. From here to the end of the paper, we will

concentrate on the monodromy ρ of the roots only, leaving a study of the refinement ρ for future work.

Here, we show that the r-spin braid group Bn(ψT ) can be identified with the kernel of a certain crossed

homomorphism ϕκ, and show that ϕκ has a very simple formula; as this ultimately depends only on r = gcd(κ)

and not κ itself, in the sequel we will work instead with the equivalent crossed homomorphism ϕr with the

simple formula.
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Lemma 4.7. Let T ∈ Ωκ, and let S1, . . . , Sn be the strips in a strip decomposition for T . For i = 1, . . . , n,

let ai ⊂ Cn be an arc corresponding to a horizontal leaf on T contained entirely in Si. Then the function

ϕκ : Bn → (Z/rZ)n

β 7→
∑

ψT (β
−1ai)ei

is equal to the crossed homomorphism

ϕr : Bn → (Z/rZ)n

σi 7→ ei+1

(where Bn acts on (Z/rZ)n on the left via the coordinate-permutation action induced from the quotient

Bn → Sn, β 7→ β).

In particular, there is a containment

Bn[κ] ⩽ ker(ϕκ) = ker(ϕr).

Proof. To establish that ϕκ is a crossed homomorphism, we make the following observation. If a and a′ are

two arcs on T with the same beginning and end points, then a∪ a′ is an oriented closed curve. There are two

cusps at the common endpoints, and otherwise a ∪ a′ is smoothly immersed. By the Poincaré-Hopf theorem,

the winding number of a ∪ a′ (reduced mod r, as usual) counts the total number of poles on T enclosed by

a ∪ a′ (up to a correction factor of 1 coming from the change in winding number arising from smoothing out

the cusps). Thus this quantity is invariant under the action of the braid group:

ψT (βa)− ψT (βa
′) = ψT (a)− ψT (a

′).

Now given α, β ∈ Bn, we use this to compute

ϕκ(αβ) =
∑

ψT (β
−1α−1ai)ei

=
∑(

ψT (β
−1α−1ai)− ψT (β

−1a
α−1i

) + ψT (β
−1a

α−1i
)
)
ei

=
∑(

ψT (α
−1ai)− ψT (aα−1i

) + ψT (β
−1a

α−1i
)
)
ei.

Splitting into three vectors, we observe that the first is ϕκ(α), the second is identically zero (each component

ψT (ai) is zero since ai is a leaf of the horizontal foliation), and the third is identified as α · ϕκ(β). Thus ϕκ is

a crossed homomorphism as claimed.

To identify ϕκ with ϕr, it suffices to check equality on the standard generators σi. Under the standard

marking shown in Figure 5 below, we see that σ−1
i takes ai to ai+1 and ai+1 to Tciai, where ci is the

boundary of the standard arc Ai,i+1 connecting marked points i and i+ 1 (cf. Definition 6.5 below). By the

twist-linearity formula, it follows that

ψT (σ
−1
i aj) =

0 j ̸= i+ 1

1 j = i+ 1

from which the claim follows. □

5. Constructing monodromy elements

In this section, we “fill out” the monodromy image of Polyn(C)[κ], showing that the image Bn[κ] contains

the subgroup Γr
n of “basic (r + 1)st twists”. This group is defined in Definition 5.1 below; we exhibit some

monodromy elements in Lemma 5.3, and after some group theory carried out in Lemma 5.4, we show the

containment Γr
n ⩽ Bn[κ] in Lemma 5.5.
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Definition 5.1 (Basic (r + 1)st twist Σa;r, subgroup Γr
n). For n ≥ a+ r, the basic (r + 1)st twist Σa;r ∈ Bn

is defined to be the element

Σa;r = σa . . . σa+r−1.

The basic (r + 1)st twist group is the subgroup

Γr
n ⩽ Bn

generated by the set of basic (r + 1)st twists.

Remark 5.2. Pictorially, the basic twist Σa;r is given by taking the strand in position a and crossing it over

the next r strands to the right, and the inverse Σ−1
a;r is the same but with the strand crossing over r strands

to the left. In particular, β ∈ Γr
n if and only if it admits a diagram for which each overcrossing passes over a

multiple of r strands below it.

Lemma 5.3. Let

κ = {k1, . . . , kp}
be a partition of n− 1. Then Bn[κ] contains the elements

Σ1;k1
, Σk1+1,k2

, . . . , Σk1+···+kp−1+1;kp
.

S1

Sk1+1

Sk1+2

Sk1+k2+1

Sn

Figure 5. The standard marking. At left, the reference translation surface Tκ for the

stratum κ = {k1, . . . , kp}. The top left and bottom left of each strip are identified. There

are p blocks of strips, each one corresponding to a given cone point (depicted as the colored

points). Within each block of strips of the same color, the top right segment of Si is identified

to the bottom right on Si+1, with remaining gluing instructions specified by color as in

Figure 1. All but the bottom-most cone point (red in the figure) have one free prong in the

top strip of the block below. The colored horizontal lines equip Tκ with a marking. At right,

the corresponding standard marking of the n-punctured disk.

Proof. Consider the “standard marking” of the translation surface Tκ ∈ Ωκ shown in Figure 5. In Figure 6,

we exhibit loops in Ωκ based at Tκ. By comparing markings of the surface before and after, we compute
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their monodromy in Bn to be Σ−1
k1+···+ki−1+1;ki

. Recalling from (1) that the projection Bn[κ] → πord
1 (Ωκ) is

surjective, we see that we can lift these loops to Polyn(C)[κ], realizing them as elements of the monodromy

group Bn[κ]. □

Lemma 5.4. Let a, b be integers, and let G ⩽ Ba+b+1 be the subgroup generated by Σ1;a and Σa+1,b. Then

Σ1;gcd(a,b) ∈ G.

Proof. Observe that Σ1;aΣa+1;b = Σ1;a+b, and that

Σj
1;a+b Σp;q Σ−j

1;a+b = Σp+j;q (4)

so long as the indices p+ j, . . . , p+ j + q − 1 lie on the interval [1, a+ b]. Thus by conjugating, we can shift

the first index of any Σp;q to any valid position, and by taking Σ−1
p;qΣp;r for q > r and conjugating, we obtain

Σp;r−q from Σp;q and Σp;r. By repeatedly shifting and deleting initial segments in this way, we can perform

the Euclidean algorithm on a, b, eventually obtaining Σ1;gcd(a,b). □

Lemma 5.5. For any n ≥ 2 and any partition κ of n− 1, the group Bn[κ] contains the elements Σ1;r and

Σ1;n−1, and hence every basic (r + 1)st twist Σk;r. Thus,

Γr
n ⩽ Bn[κ].

Proof. By Lemma 5.3, Bn[κ] contains the elements

Σ1;k1
, Σk1+1,k2

, . . . , Σk1+···+kp−1−1;kp
.

By repeated application of Lemma 5.4, one sees that Σ1;r ∈ Bn[κ], and also

Σ1;n−1 = Σ1;k1 Σk1+1,k2 . . . Σk1+···+kp−1−1;kp ∈ Bn[κ].

By (4), Bn[κ] thus contains all Σk;r. □

Corollary 5.6. Let n ≥ 2 be given, and let κ be a partition of n− 1 for which r = gcd(κ) = 1. Then the

monodromy map ρ : Bn[κ] → Bn is surjective.

Proof. By Lemma 5.5, the image of ρ contains all basic (r + 1)st twists Σk;r, but for r = 1 these are just the

standard half-twist generators of Bn. □

6. Generating ker(ϕr)

In the previous two sections, we have seen how the monodromy image Bn[κ] is contained in the kernel of

a crossed homomorphism ϕr, and conversely contains the subgroup Γr
n of basic (r + 1)st twists. Here, we

complete the circle of containments, showing that when n is sufficiently large compared to r, the kernel of ϕr

is generated by basic (r + 1)st twists.

We must first specify what is meant by “sufficiently large”. Define

n0(r, d) =


8 r = 2

(6 + d)r r odd

(12 + d)r r ≥ 4 even.

(5)

Theorem 6.1. Let n ≥ 3 and r ≥ 2 be given; let d ∈ {0, 1, 2} be the remainder of n/3. Then for n ≥ n0(r, d),

the kernel of ϕr is generated by σ1 . . . σr and σ1 . . . σn−1.
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recut

push

reorder

recut

change of marking

Figure 6. We depict the block of strips on Tκ between Sk1+···+ki−1+1 and Sk1+···+ki
. Reading

lexicographically, we first recut the bottom strip Sk1+···+ki−1+1 so that it is bounded by the

same cone point as the rest. Then we push each of the free prongs down one strip. Next,

we apply a cut/paste move to reorder the strips, moving each one up one spot. Finally, we

recut the bottom strip once again so that it is bounded by the other cone point. Note that

in the case of the bottom block, there is no free prong in the bottom strip, in which case we

skip the recutting steps, and in the case of the top block, there is no free prong in the top

strip, and there is a slightly different picture (omitted). The picture at bottom right depicts

the change of marking, i.e. the monodromy of the loop.

The material of this section is purely braid-theoretic and does not require any knowledge e.g. of winding

number functions. The outline is as follows. In Section 6.1, we discuss a new crossed homomorphism Υr,
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which can be computed graphically given a braid diagram as a count of “virtual undercrossings”; we show

in Lemma 6.3 that Υr = ϕr. In Section 6.2, we use this graphical reformulation to give an algorithm for

factoring an element of ker(ϕr) supported on a small number of strands into the group Γr
n of basic (r + 1)st

twists. Finally in Section 6.3, we exploit the factorization algorithm to show the equality ker(ϕr) = Γr
n, first

in Lemma 6.8 on the level of the pure braid group, and finally in Theorem 6.10 in general.

6.1. ϕr as a count of virtual undercrossings.

Definition 6.2 (Virtual undercrossing map). Let r ≥ 1 be given. The virtual undercrossing map is the

homomorphism1 Υr : Bn → GLn+1(Z/rZ) ⋉ (Z/rZ)n+1 defined as follows. Number the components of

(Z/rZ)n+1 from 0 to n, and, for 1 ⩽ i ⩽ n− 1, let Pi ∈ GLn+1(Z/rZ) be the matrix obtained from In+1 by

replacing the ith column with ei−1 − ei + ei+1. Then define

Υr(σi) = (Pi, ei+1 − ei)

for 1 ⩽ i ⩽ n− 1. For β ∈ Bn, write

Υr(β) = (M(β), v(β)).

As is common to all homomorphisms into semi-direct products, the second factor v(β) defines a crossed

homomorphism v : Bn → (Z/rZ)n+1 under the action of Bn on (Z/rZ)n+1 via M .

Also note that Υr defines an action of Bn on (Z/rZ)n+1 via

β · x⃗ =M(β)x⃗+ v(β). (6)

Lemma 6.3. Let f : (Z/rZ)n → (Z/rZ)n+1 be given by

ei ∈ (Z/rZ)n 7→ ei − ei−1 ∈ (Z/rZ)n+1.

Then f induces a map of Bn-modules, where (Z/rZ)n carries the standard permutation action of Sn and

(Z/rZ)n+1 carries the action via M . Under the induced map on homology,

f∗(ϕr) = v.

Moreover, ker(ϕr) = ker(v).

Proof. That f is a map of Bn-modules under the indicated actions is a routine calculation. To see that

f∗(ϕr) = v, it suffices to verify this on the standard generators σi. To that end, we compute

f∗(ϕr)(σi) = f(ϕr(σi)) = f(ei+1) = ei+1 − ei = v(r).

As v = f∗(ϕr), there is a containment ker(ϕr) ⩽ ker(v), and as f is readily seen to be an injection, it follows

that this containment is an equality. □

Virtual undercrossings. There is a graphical description of Υr which provides the key tool for expressing

the kernel of these crossed homomorphisms in terms of (r + 1)st-twists. Let β ∈ Bn be given. We imagine β

(depicted in black) as sitting “on top of” a trivial braid (in blue) with a very large number of strands, where

the ends of the blue strands are not fully fixed but are allowed to “slide” horizontally. Given x⃗ ∈ (Z/rZ)n+1,

we interpret the entries x0, . . . , xn as a mod-r count of the number of strands in the bottom (blue) layer

positioned in between each pair of adjacent strands of β at the top of the figure. To compute the action of β

on x⃗ via Υr, we thread the strands in the bottom layer downwards, subject to the rule that strands in the

bottom layer never cross, and that at each crossing of β, the total number of strands crossing under (counting

both layers) is 0 mod r.

1That this is indeed a homomorphism is verified by a routine calculation.
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xi−1 xi xi+1

xi−1 + xi −xi − 1 xi + xi+1 + 1

Figure 7. The virtual undercrossing procedure for the braid σi. The blue strands are

imagined as lying in a layer below the black strands of σi. Each blue strand is actually

composed of a very large number of individual strands; the numbers of such strands mod r

are depicted above and below. By convention, all strands in the middle group (labeled xi at

the top) must cross in the same direction as the undercrossing in β. We then split the right

strand (labeled xi+1 at the top) so that altogether, the number of strands crossing under

(both blue and black) is 0 mod r. As all xi blue strands in the middle group must cross

under, and σi itself contributes one, we must borrow −xi − 1 (mod r) from the right strand

to satisfy this condition.

Figure 7 illustrates this procedure in the case of a single crossing σi, and shows that the effect on the

vector x⃗ = (x0, . . . , xn) is exactly given by σi · x⃗ as in (6). To compute this action for a general braid, we

simply repeat this process at each crossing, working from top to bottom. In particular, the value v(β) is

computed as the output of the virtual undercrossing procedure applying the zero vector at the top of the

braid diagram for β. For future reference, we record the following characterization of ker(ϕr).

Lemma 6.4. A braid β ∈ Bn lies in ker(ϕr) if and only if the virtual undercrossing action for β satisfies

β · 0⃗ = 0⃗. If β is moreover a pure braid, then β · x⃗ = x⃗ for x⃗ ∈ (Z/rZ)n+1 arbitrary.

Proof. As noted above, applying the virtual undercrossing procedure on a braid β to 0⃗ yields v(β). By

Lemma 6.3, v(β) = 0⃗ if and only if ϕr(β) = 0⃗. If β is any pure braid, then M(β) = In+1, and so

β · x⃗ =M(β)x⃗+ v(β) = x⃗+ v(β). Thus if β ∈ ker(ϕr) is pure, β · x⃗ = x⃗ as claimed. □

6.2. The factorization algorithm. As discussed in the section outline above, the factorization algorithm

in this section gives a method for expressing an element of ker(ϕr) in Γr
n when it is supported on a small

number of strands. Our algorithm will require that the supporting subdisk have a particularly simple form

which we call a standard embedding; we begin with this definition.

Definition 6.5 (Standard arc). Let Dn denote the disk with n marked points. An embedded arc α ⊂ Dn

with endpoints at distinct marked points is standard if it is contained entirely in the lower half-disk. For each

pair of marked points i, j, there is a unique isotopy class of standard arc connecting i and j, which is denoted

αij .

Definition 6.6 (Standard embedding). Let Dn denote the disk with n marked points. An embedding

i : Ds → Dn sending marked points to marked points is standard if it can be represented as a regular

neighborhood of a union of standard arcs which are disjoint except at endpoints.

An example of a standard embedding is depicted in Figure 8.
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Figure 8. The red disk is a standard embedding of D5, as it is a regular neighborhood of

the four standard arcs shown in blue.

Lemma 6.7 (Factorization algorithm). Let n ≥ rs. Let i : Ds → Dn be a standard embedding, and let

i∗ : Bs → Bn denote the corresponding inclusion of braid groups. Then there is a containment i∗(PBs) ∩
ker(ϕr) ⩽ Γr

n.

Proof. We begin with an important special case, when Ds is the standard disk consisting of the first s points.

This will serve to illustrate all of the key ideas of the argument. Then we will discuss the modifications

necessary to apply in the general case.

Special case: first s strands. While reading this portion of the argument, the reader is invited to consult

the worked example demonstrated in Figure 9. Let β ∈ PBs ∩ ker(ϕr) be given. We view this as a braid α

on s strands juxtaposed with a trivial braid τ on n− s ≥ (r − 1)s strands lying to the right. The key idea is

to treat the strands of τ as the virtual strands in the virtual undercrossing procedure. Accordingly, we will

depict the strands of α as black, and those of τ as blue, as in our discussion of virtual undercrossings above.

Recall (Remark 5.2) that a basic (r + 1)st twist Σi;r consists of a single strand passing over r strands, so

that in order to exhibit β as an element of Γr
n, it suffices to factor β so that all crossings have this form. To

perform the factorization, we will isotope the strands of τ , moving them to the left so that each overcrossing

in α has 0 (mod r) total strands (black and blue) passing underneath.

In carrying this factorization out, we will make use of the following operation. Given a braid β, obviously

the product βΣi;r lies in the same left coset of Γr
n as β. Graphically, βΣi;r is obtained from β by taking

the packet of r consecutive strands from i + 1 to i + r and passing them one unit to the left under the

ith strand, the latter of which moves over r units to the right. We call this procedure passing a packet

to the left; evidently there is also the analogous move of passing a packet to the right, corresponding to

right-multiplication by Σ−1
i;r . Likewise, we do not change the left coset by passing packets of r strands at the

top of the braid.

Before presenting the algorithm, we make one final observation. Suppose we are given a particular braid

diagram for β (not just its isotopy class). As usual, we think of the strands of α as black and the strands of τ

as blue. At any vertical level where no two strands of β (black or blue) cross, we have a well-defined count of

the number of blue strands in between each adjacent pair of black strands, giving us an integer vector v⃗ with

s+ 1 entries. We call the space between strands i and i+ 1 of α as the ith position. If the blue strands of τ

are isotoped so as to conform to the conventions of the virtual undercrossings procedure (as described in
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0 0 0

0 1 1

1 0 1

1 1 0

0

0

0

Figure 9. The factorization algorithm applied in the case r = 2 to σ4
1 . Reading left to right,

we work our way down through the crossings, borrowing blue strands so that successive

crossings have a total of r = 2 strands crossing under. Since ϕ2(σ
4
1) = 0⃗, after performing this

procedure at all four crossings, the number of blue strands in each position is 0 (mod 2), and

they can be passed back under in pairs, preserving the property that every overcrossing has an

even number of strands passing underneath. Thus the algorithm produces the factorization

σ4
1 = (σ1σ2)

2(σ2σ3)
2(σ1σ2)

−1(σ2σ3)
−1. The red numbers indicate the counts of blue strands

in the indicated positions at the indicated levels; notice that they record the values of v(σk
1 )

for k = 0, . . . , 4.

Figure 7), the reduction of v⃗ (mod r) is equal to v(α′), where α′ is the portion of α from the top down to

the specified vertical level.

We now explain the factorization algorithm. Express α as a product of the standard generators of Bs, and

suppose α begins with σε
i with ε = ±1. To begin the factorization, pass a packet of the first r strands of τ to

the left; in the case of ε = 1, pass these to the (i+ 1)st position, and if ε = −1, pass these to the (i− 1)st.

Pass r − 1 of these under the overcrossing and the remaining strand straight down, exactly as illustrated in

Figure 7. We call this process resolving a crossing.

Now repeat this procedure for the remaining crossings of α: pass packets of r blue strands from τ to the

relevant position, and borrow the necessary number of strands so as to create an undercrossing by r strands.

If ever there are r or more blue strands in a single position after resolving a crossing, pass them in multiples

of r all the way back to the right.

We must verify that as long as there are at least (r− 1)s blue strands, it is always possible to pass a packet

of r strands from the right over to the location of the overcrossing so as to facilitate a borrowing. Borrowing

from the right is necessary only when the number of blue strands in consecutive positions is strictly less than
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the r − 1 needed to ensure that r strands pass under the given overcrossing, i.e. there are consecutive strand

counts xi, xi+1 for which xi + xi+1 ⩽ r− 2. Since we have passed packets of r strands to the right (i.e. to xn)

whenever possible, each of the remaining s− 2 components xj for 0 ⩽ j ⩽ n− 1 has xj ⩽ r − 1. Altogether

then, in this situation, we have

n−1∑
i=0

xi ⩽ (s− 2)(r − 1) + r − 2 = (r − 1)s− r,

so that xn ≥ r as was to be shown.

By Lemma 6.4, at the conclusion of this process, the number of blue strands mod r in each position is

equal to the corresponding component of v(α) = 0⃗. As we have methodically passed packets of r blue strands

to the right whenever possible, this shows that in fact there are no blue strands in between the black strands

of α. In other words, the resuling braid diagram is isotopic to the original juxtaposition of α and τ . On the

other hand, we have isotoped the blue strands of τ so that at every overcrossing, there are 0 (mod r) strands

passing underneath, exhibiting β as a product of (r + 1)st twists as required.

1 1 0

0 0 0

0 1 1

1 0 1

1 1 0

Figure 10. The factorization algorithm as applied to a braid under a standard embedding

(r = 2). As before, the method is to work down from the top, resolving crossings so as to

have r strands crossing under each overcrossing. Note that after each crossing is resolved,

the count of blue strands in each position is given by α′ · x⃗, where x⃗ = (1, 1, 0) is the count

of blue strands at the top of the diagram, α′ is the initial segment of α to the given level,

and the action is given by (6).

General case: arbitrary standard embedding. The reader is now invited to consult Figure 10. Let

i : Ds → Dn be a standard embedding, and let β ∈ i∗(PBn) ∩ ker(ϕr) be given. As i is standard, we can

represent β as a juxtaposition of a braid i∗(α) for α ∈ PBs in black on top of a trivial braid of n− s strands

in blue. In the language established above, the only difference between this setting and the special case
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above is that here we begin the factorization algorithm with blue strands in arbitrary positions, not with all

n− s strands in position s as above. We proceed as before, working our way down from the top, resolving

crossings by borrowing blue strands. The analysis above applies verbatim to show that when n ≥ rs, there

are sufficiently many blue strands available to make borrowing possible. It remains to be shown that the blue

strands return to their original positions after all of the crossings of α are resolved. Recalling the hypothesis

that β be a pure braid, this now follows from Lemma 6.4. □

6.3. Factoring general braids. In this section, we conclude the proof of Theorem A. The main technical

result is Lemma 6.9, which establishes the containment ker(ϕr)∩PBn ⩽ Γr
n. From there, the full containment

(Theorem 6.10) and the proof of Theorem A are relatively easy.

To begin the analysis of ker(ϕr) ∩ PBn, we investigate the restriction of ϕr to PBn.

Lemma 6.8. The restriction of ϕr to PBn is a genuine homomorphism ϕr : PBn → (Z/rZ)n, given on the

standard generators Aij of PBn via

ϕr(Aij) = ei + ej .

Proof. Since the action of Bn on (Z/rZ)n factors through the quotient Bn → Sn, it follows that the restriction

of ϕr to PBn is a homomorphism. We evaluate

ϕr(A12) = ϕr(σ
2
1) = ϕr(σ1) + σ1 · ϕr(σ1) = (1 + (12)) · e2 = e1 + e2.

The formula

ϕr(ghg
−1) = g · ϕr(h)

for g ∈ Bn and h ∈ PBn is readily seen to hold, from which the expression ϕr(Aij) = ei + ej follows. □

Lemma 6.9. Let n ≥ 3 and r ≥ 2 be given, and let d ∈ {0, 1, 2} be the remainder of n/3. Then for

n ≥ n0(r, d) (where n0(r, d) is defined as in (5)), there is a containment PBn ∩ ker(ϕr) ⩽ Γr
n.

Proof. Let

w =

m∏
k=1

Aεk
ikjk

∈ PBn ∩ ker(ϕr) (7)

be given. By hypothesis,

ϕr(w) =

m∑
k=1

εk(eik + ejk) = 0⃗ ∈ (Z/rZ)n.

To express w ∈ Γr
n, we will exploit the factorization algorithm (Lemma 6.7) to rewrite the initial segment

of w as a product of commuting elements of small support which has the same value under ϕr, removing

initial segments that lie in ker(ϕr) whenever possible. This will take slightly different forms in the regimes

r = 2, r odd, and r ≥ 4 even; we begin with the case r = 2 since it is the simplest and will serve to illustrate

the essential idea.

The case r = 2. Assume r = 2, and write

w = Aε1
i1j1

Aε2
i2j2

w′

with w′ given as the product defining w in (7) above but starting at k = 3.

There are three possibilities for the size of the set {i1, j1, i2, j2}. Suppose first that {i1, j1} = {i2, j2} = {i, j},
in which case necessarily ε1 = ε2. Suppose for simplicity ε1 = ε2 = 1; the argument in the other case is

analogous. Here, A2
ij ∈ ker(ϕ2). We note that A2

ij is a pure braid in ker(ϕ2) under a standard embedding

of a disk with two marked points, and as n ≥ 8 by hypothesis, we can apply the factorization algorithm
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Lemma 6.7 to express A2
ij ∈ Γ2

n. Thus in this case, we can write w = γw′ with γ ∈ Γ2
n, proceeding in turn to

factorize w′.

Suppose next that i1 = i2 but j1 ̸= j2. In this case, we have that

ϕ2(A
±1
i1j1

A±1
i2j2

) = ej1 + ej2 = ϕ2(Aj1j2),

so that

A±1
i1j1

A±1
i2j2

A−1
j1j2

∈ ker(ϕ2).

This element is again in the image of a standard embedding, so that we can apply the factorization

algorithm (Lemma 6.7) to express A±1
i1j1

A±1
i2j2

A−1
j1j2

as an element of Γ2
n; the disk is standard and has four

marked points, and hence this is possible for n ≥ 8. Thus, by left-multiplying by an element of Γ2
n we can

replace the initial segment A±1
i1j1

A±1
i2j2

with the initial segment Aj1j2 , which has smaller support. Similar

arguments apply to the various cases when |{i1, j1, i2, j2}| = 3.

The remaining possibility is that |{i1, j1, i2, j2}| = 4. In this case, we replace the initial segment A±1
i1j1

A±1
i2j2

with the segment Aa,bAc,d, where {i1, j1, i2, j2} = {a, b, c, d} and a < b < c < d. Note in particular that the

elements Aa,b, Ac,d of the initial segment commute, and that the pair of elements Aa,dAb,c also commute; we

say that the former pair is un-nested and the latter nested.

We continue in this way, expressing

w = γA±1
ip,jp

m∏
k=p+1

Aεk
ikjk

with γ a product of pairwise un-nested commuting generators of PBn. The support of the element A±1
ip,jp

intersects the support of 0, 1, or 2 of the elements of γ. If it intersects zero, it may be nested with up to one.

This can be resolved by pulling these two commuting elements to the front of γ and replacing them as above

with their un-nested counterpart. If it intersects one, these two elements can likewise be moved to the front

of γ and resolved into one or two basic elements as above. Finally suppose it intersects the support of two,

say Ai1,j1 and Ai2,j2 ; by the non-nestedness hypothesis, i1 < j1 < i2 < j2. For A
±1
ip,jp

to intersect both, we

must have

i1 ⩽ ip ⩽ j1 and i2 ⩽ jp ⩽ j2.

Thus the product Ai1,j1Ai2,j2Aipjp is supported on a standardly-embedded disk of up to six elements. As we

are only assuming n ≥ 8 and the factorization algorithm (Lemma 6.7) requires n ≥ 2s = 12 strands to factor

an element supported on six strands, we first rewrite Ai1,j1Ai2,j2 = Ai1j2Ai2j1 . If i1 < ip < j1 < i2 < jp < j2,

we can then rewrite Ai1j2A
±
ipjp

as the un-nested pair Ai1ipAjpj2 which is then un-nested with Aj1i2 . If i1 = ip,

then the initial segment Ai1j2Ai1jp can be replaced with Aj2jp ; the remaining cases where the total support

is five strands can be handled analogously. Finally, if A±1
ipjp

intersects both Ai1j1 and Ai2j2 but the total

number of strands is four, then this can be rewritten directly via the factorization algorithm without any

need for initial re-writing.

Altogether then, this process converts an arbitrary word w ∈ PBn ∩ ker(ϕ2) into a product of pairwise

un-nested and commuting generators Aij . Since ϕ2(w) = 0 by hypothesis, this implies that each Aij appears

an even number of times; these can then be successively removed from w by means of the factorization

algorithm (Lemma 6.7).

The case r ≥ 3 odd. In broad outline, we proceed in the same way as in the case r = 2. Given

w ∈ PBn ∩ ker(ϕr) as in (7), we rewrite the initial segment of w as a set of elements with disjoint and small
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support. Whereas in the case r = 2 these elements were the generators Aij of PBn, here we will use elements

Ai;a,b,c which we proceed to define.

Let a, b, c ∈ Z/rZ be given. Set p = (r + 1)/2, and define

Ai;a,b,c = A
p(a+b−c)
i,i+1 A

p(a−b+c)
i,i+2 A

p(−a+b+c)
i+1,i+2 .

Observe that

ϕr(Ai;a,b,c) = aei + bei+1 + cei+2.

Also note that Ai;a,b,c and Aj;a′,b′,c′ have disjoint support whenever |i− j| ≥ 3.

Divide the strands from 1 to n into groups of three; the last group will contain 3, 4, or 5 depending on

the value of d, i.e. the remainder of n (mod 3). We extend the definition of A1+3k;a,b,c to this last group by

taking A1+3k;a,b,c,d,e = A1+3k,a,b,cA3+3k,0,d,e in the case d = 2 and similarly for d = 1; to simplify notation

we will tacitly understand that the last Ai;a,b,c may be of this form. Suppose we have a partial factorization

w = γA
εp
ip,jp

w′,

where γ is a product of elements of the form A1+3k;a,b,c. Then A
εp
ip,jp

intersects the support of at most two

such elements, and altogether the product of these three elements is supported on a standardly-embedded

disk with at most 6 + d punctures. Pulling these to the front of γ, since we assume n ≥ n0(r, d) = (6 + d)r,

we apply the factorization algorithm (Lemma 6.7) and replace this with a product of up to two elements of

the form A1+3k;a,b,c with the same ϕr-value.

After completing this process, we have factored w = γ into a product of elements of the form A1+3k;a,b,c.

As ϕr(w) = 0⃗ by hypothesis, it follows that each ϕr(A1+3k;a,b,c) = 0⃗ as well. Applying the factorization

algorithm to each of these in turn, we express w = γ as an element of Γr
n.

The case r ≥ 4 even. In this last case, we combine the methods of the previous two. Again, the objective is

to factor initial segments of w into disjoint elements of small support with the same value of ϕr. Like in the

case of r odd, we partition the strands into groups of three and attempt to factor the initial segment into

elements supported on these groups. But unlike this case, there is a parity phenomenon to keep track of,

which will require us to link two such groups if the parity of ϕr on each is odd.

We define Ai;a,b,c analogously as above, this time subject to the requirement that a+ b+ c be even; under

this hypothesis, each of the integers ±a± b± c is even and so can be divided by two in the exponent. As

before, the last A1+3k;a,b,c may actually be supported on up to five strands. Given an initial segment γ ∈ Bn

of w, we say that a group of integers 1 + 3k, 2 + 3k, 3 + 3k is even if the sum of the coefficients of ϕr(γ) on

e1+3k, e2+3k, e3+3k is even, and odd otherwise. Observe that there is always an even number of odd groups,

since each A±1
ij changes the parity of either zero or two groups.

We now describe the structure of the initial segment we will construct. We will express w = γw′ where γ

is a product of A1+3k;a,b,c over all even groups, along with products of the form

A1+3k;a,b,cA1+3k′;a′,b′,c′Ai,j ,

where the groups starting at 1 + 3k and 1 + 3k′ are odd, and where the first group contains i and the second

contains j. We moreover impose the condition that there are no odd groups in between 1 + 3k and 1 + 3k′.

In this way, the structure of the supports mimics that in the case r = 2: they are disjoint, un-nested, and

supported on standardly-embedded disks.

Given a partial factorization

w = γA
εp
ipjp

w′
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of this form, we consider the various possibilities for how the support of A
εp
ipjp

intersects the supports of

the elements in γ. This exactly mirrors the analysis carried out in the case r = 2, but this time we apply

the factorization algorithm to elements supported on up to 12 + d strands, in the case where we need to

convert between nested and un-nested factorizations on two pairs of odd groups, one of which contains the

exceptional group of 3 + d elements. □

Theorem 6.10. Let n0(r, d) and d be given as in Lemma 6.9. Then for n ≥ n0(r, d), there is an equality

ker(ϕr) = Γr
n,

i.e. ker(ϕr) is generated by the finite set of basic (r + 1)st twists.

Proof. The bulk of the work has been carried out above in Lemma 6.9, which establishes the containment

PBn ∩ ker(ϕr) ⩽ Γr
n

in the range n ≥ n0(r, d). Conversely, it is easy to verify that

ϕr(Σi;r) = 0,

so that

Γr
n ⩽ ker(ϕr).

It remains only to show that the images of ker(ϕr) and Γr
n in Sn coincide; denote these subgroups of Sn by

ker(ϕr) and Γr
n, respectively.

The basic (r + 1)st twists that generate Γr
n are sent to the r + 1-cycles

(1 . . . r + 1), (2 . . . r + 2), . . . , (n− r − 1 . . . n)

in Sn. Thus

(1 r + 1 r + 2) = (1 . . . r + 1)−1(2 . . . r + 2) ∈ Γr
n,

and hence also

(1 2 3) = (2 . . . r + 2)2(1 r + 1 r + 2)(2 . . . r + 2)−2 ∈ Γr
n.

As also Γr
n contains the element Σ1;n−1 = σ1 . . . σn−1, the image Γr

n contains the cyclic permutation (1 . . . n).

Conjugating (1 2 3) by this, it follows that Γr
n contains all 3-cycles of the form (i i + 1 i + 2). This is

well-known to generate the alternating group An. We conclude that

An ⩽ Γr
n

for all n, r. For r odd, the r + 1-cycles are odd permutations and are even otherwise, from which it follows

that

Γr
n =

Sn r odd

An r even.

It remains only to show that ker(ϕr) ⩽ An when r is even. To see this, we recall that ϕr can be viewed as

the homomorphism

ϕr : Bn → Sn ⋉ (Z/rZ)n

which sends σi to the pair ((i i+ 1), ei+1). Let sgn : Sn → Z/2Z denote the sign homomorphism, and let

s : (Z/rZ)n → Z/2Z be the reduction mod 2 of the sum-of-coefficients map. Then

sgn+s : Sn ⋉ (Z/rZ)n → Z/2Z

is a surjective homomorphism, and the composition (sgn+s) ◦ ϕr is identically zero (being zero on each

generator of Bn by above), from which it follows that ker(ϕr) ⩽ An as was to be shown. □
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Proof of Theorem A. Lemma 4.7 establishes the containment

Bn[κ] ⩽ ker(ϕr),

Lemma 5.3 shows that

Γr
n ⩽ Bn[κ],

and Theorem 6.10 shows the equality

Γr
n = ker(ϕr)

in the range n ≥ n0(r, d). □
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