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Abstract. The space of monic squarefree polynomials has a stratification according to
the multiplicities of the critical points, called the equicritical stratification. Tracking the
positions of roots and critical points, there is a map from the fundamental group of a stratum
into a braid group. We give a complete determination of this map. It turns out to be
characterized by the geometry of the translation surface structure on CP1 induced by the
logarithmic derivative df/f of a polynomial in the stratum.

1. Introduction

Let Polyn(C) denote the space of monic squarefree complex polynomials of degree n.
Associating a polynomial to its roots and vice versa, this can equivalently be described as
the space UConfn(C) of unordered n-tuples of distinct points in C; its fundamental group is
the braid group Bn on n strands. The focus of this paper is on the equicritical stratification
{Polyn(C)[κ]} on Polyn(C), previously introduced in [Sal23]. Here, κ = k1 ≥ · · · ≥ kp is a
partition of n− 1, and a polynomial f ∈ Polyn(C) belongs to Polyn(C)[κ] if and only if the
critical points of f (i.e. roots of f ′) have multiplicities specified by κ.

One of the most fundamental problems about Polyn(C)[κ] is to understand its fundamental
group, a so-called stratified braid group

Bn[κ] := π1(Polyn(C)[κ]).
One would certainly expect this to be closely related to the braid group. Indeed, for a
partition κ of n − 1 with p parts, the stratum Polyn(C)[κ] admits an embedding into the
configuration space UConfn+p(C), by associating f ∈ Polyn(C)[κ] to the (n+ p)-tuple of its
roots and critical points. Taking π1, we obtain a monodromy map ρ : Bn[κ] → Bn+p.
Our main result gives a complete description of the image of ρ. We find that it is

characterized by a structure known as a relative winding number function, as defined in
Section 2. The subgroup of the braid group preserving a given winding number function is
called a framed braid group1 - see Section 2.3. A particular “logarithmic” relative winding
number function ψT arises in our setting by considering the geometry of CP1 equipped with
the logarithmic derivative df/f - see Section 4.

Theorem A. For all n ≥ 3 and all partitions κ = k1 ≥ · · · ≥ kp of n− 1 with p ≥ 2 parts,
the monodromy map

ρ : Bn[κ] → Bn+p

Date: August 12, 2024.
1This terminology is chosen to mirror the “framed mapping class groups” studied in [CS23]. This should

not be confused with a braid group relative to fixed tangent vectors at the marked points, which have also
been given this name.
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has image Bκ[ψT ], the framed braid group associated to the logarithmic relative winding
number function ψT . Since Bn[κ] is finitely generated (being the fundamental group of a
quasiprojective variety), the same is true of the framed braid group Bκ[ψT ].

Remark 1.1. Theorem A does not apply in the case p = 1 of a single critical point, but it is
easy to get a complete understanding of what happens in this case. Necessarily κ = {n− 1},
and it is readily seen that any f ∈ Polyn(C)[n − 1] is of the form f(z) = (z − α)n + β for
α ∈ C and β ∈ C∗. Thus Polyn(C)[n− 1] can be identified with C∗ ⋉ C (indeed, it carries
a free and transitive action, and hence is a torsor for C∗ ⋉ C). In particular, it has cyclic
fundamental group, and the monodromy image is seen to be generated by a “1/n rotation”,
arranging the n roots at roots of unity and applying a rotation by 2π/n.

We hope to use Theorem A as a stepping-stone to a complete determination of Bn[κ].

Conjecture 1.2. For κ = k1 ≥ · · · ≥ kp with p ≥ 3 parts, ρ is injective, and hence there is
an isomorphism

Bn[κ] ∼= Bκ[ψT ].

It is necessary to include the hypothesis p ≥ 3; indeed, P. Huxford and the author have
shown (in yet-unpublished work) that ρ is never injective for p = 2. This appears to be a
low-complexity phenomenon arising from the close connection between Bn[κ] and free groups,
which is unique to the case p = 2. For p ≥ 3, new relations arise in Bn[κ] that we believe are
sufficient to ensure injectivity of ρ. We plan to return to this question in future work; the
complex of “admissible root markings” studied in Section 3 of this paper will be essential to
our approach.

In [Sal23, Theorem A] we obtained a weaker version of Theorem A, in which we considered
only the braiding of the roots, ignoring the critical points. We found there that the image is
similarly governed by a weak analogue of a relative winding number function; the analogous
subgroup of the braid group is called an r-spin braid group. The methods of proof are almost
completely different, and notably, the version in [Sal23] only applied in a range that excluded
certain cases. As a corollary, we are able to strengthen the result of [Sal23, Theorem A],
showing that it holds in the maximal possible range.

Corollary B. For all n ≥ 3 and all ordered partitions κ = k1 ≥ · · · ≥ kp of n− 1 with p ≥ 2
parts, the root monodromy map

ρ : Bn[κ] → Bn

has image
ρ(Bn[κ]) = Bn[ψT ],

an r-spin braid group.

Context: strata of differentials. As discussed in [Sal23] and used throughout below, an
equicritical stratum Polyn(C)[κ] is closely related to a particular stratum of meromorphic
differentials on CP1, by associating f to its logarithmic derivative df/f . The study of
equicritical strata therefore fits into the larger enterprise of understanding the topology of
strata of meromorphic and abelian differentials, as pioneered by Kontsevich–Zorich [KZ03].

Already in [KZ97], the question was raised of determining the fundamental groups of strata,
originally in the setting of holomorphic differentials on Riemann surfaces of higher genus.
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This question has remained stubbornly resistant to attack, apart from Kontsevich–Zorich’s
work on the hyperelliptic case in [KZ03], as well as the beautiful work of Looijenga–Mondello
[LM14] which describes the (orbifold) fundamental groups of many strata of differentials in
genus 3.
Our interest in the equicritical stratum is motivated in large part by our belief that it

should serve as a useful test case for the more general study of topological aspects of strata: it
is rich enough to require the development of new methods, while remaining tractable enough
to actually be amenable to study.
We should also mention the close connection between the equicritical stratification and

the study of the “isoresidual fibration” as appearing in the work of Gendron–Tahar [GT21;
GT22]. There, the interest is in studying the space of all meromorphic differentials on CP1

with fixed orders of zeroes and poles. The space of polynomial logarithmic derivatives arises
here as a fiber of the isoresidual map assigning such a differential to its vector of residues -
by the argument principle, the residue at each zero of f is 2πi.

Context: configuration spaces as spaces of polynomials. The results of this paper
also fit into the literature on the study of the braid group by way of the isomorphism
UConfn(C) ∼= Polyn(C). Prior work in this direction includes [Thu+20], which (among other
results) finds a spine for Polyn(C) consisting of squarefree polynomials all of whose critical
values have modulus 1; the method of proof passes through a consideration of the logarithmic
derivative (see [Thu+20, Theorem 9.2]). McCammond states [McC22, Remark 3.4] that
similar ideas were known to Krammer. Dougherty–McCammond [DM22] have investigated
the combinatorial and topological structure of a polynomial map, obtaining something similar
to the “strip decomposition” of Section 4 (although without the perspective of the logarithmic
derivative), and in forthcoming work [DM] describe a cell structure on Polyn(C) that is
compatible with the equicritical stratification. The “strip decomposition” models we consider
here also bear some resemblance to Bödigheimer’s theory [Böd06] of radial slit configurations
as a configuration space model for the moduli space of Riemann surfaces with boundary.

Remark 1.3 (A finer stratification?). The equicritical stratification admits a further re-
finement where one tracks the multiplicities of both critical points and critical values, and
it is natural to wonder about the corresponding questions on this finer stratification. As
explained in [Sal23, Remark 1.4], this in fact quickly reduces to classical considerations, since
each of these finer strata is essentially just a Hurwitz space. Therefore, the basic topology
(fundamental group, asphericality) of these strata is already understood, and so for this
reason, we limit our interest here to the study of the equicritical stratification as we have
defined it, in terms of the critical points alone.

Remark 1.4 (Finiteness properties via BNS invariants). It is perhaps initially surprising that
Theorem A implies that the framed braid group Bκ[ψ] is finitely generated, as infinite-index
subgroups enjoy no a priori finiteness properties. We briefly record here an alternative
argument that Bκ[ψ] is finitely generated via the theory of the BNS invariant.

Define the pure framed braid group

PBκ[ψ] := Bκ[ψ] ∩ PBn+p

in the obvious way, and note that since this is of finite index in Bκ[ψ], it is finitely generated if
and only if Bκ[ψ] is. As explained in Lemma 2.11, PBκ[ψ] is normal and co-abelian in PBn+p.
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Thus finite generation of PBκ[ψ] can be established by means of the BNS invariant of PBn,
which was determined by Koban-McCammond-Meier [KMM15]. We do not wish to launch
into a detailed digression on BNS invariants, but suffice it to say that it is simple to explicitly
verify that PBκ[ψ] satisfies the BNS criterion [Str13, Theorem 4] for finite generation. Note,
though, that such methods do not furnish an explicit generating set, as is implicit in the
proof of Theorem A.

Finally, we mention that co-abelian subgroups of PBn with the further property of normality
in Bn were investigated in the recent work of Day–Nakamura [DN23].

Approach. To prove Theorem A, we make use of the basic machinery of geometric group
theory, obtaining information about a group (particularly a set of generators) from an action
on a connected graph. The graph we consider is defined in Section 3 as the graph of admissible
root markings (ARMs), written, for a partition κ of n− 1, as Mκ. Fix a marking of n+ p+ 1
points on S2, of which n are called “roots”, p are called “critical points”, and one is called
“∞”. A root marking is a system of n arcs on S2 connecting ∞ to each of the roots, which
can be realized disjointly except at the common endpoint ∞. Root markings are closely
related to the tethers studied by Hatcher–Vogtmann [HV17, Section 3]. The relative winding
number function provides for a Z-valued invariant of any such arc, and a root marking is
said to be admissible if the winding number of each constituent arc is zero. In Section 3,
we establish Proposition 3.14, which shows that Mκ is connected. From here, we study the
action of the framed braid group Bκ[ψT ] on Mκ and use this to show that Bκ[ψT ] coincides
with the subgroup of elements appearing in the image of ρ : Bn[κ] → Bκ[ψT ] (that the image
is contained in Bκ[ψT ] is not hard to show; see Proposition 5.1).

Outline. In Section 2, we define relative winding number functions and the associated
framed braid groups, and establish a number of basic results about them. In Section 3, we
turn to the graph of admissible root markings Mκ and various derivatives, ultimately showing
the connectivity result Proposition 3.14 mentioned above. In Section 4, we recall the passage
from a polynomial to a translation surface given by assigning f to the translation surface
for its logarithmic derivative df/f , and we describe the basic combinatorial features (“strip
decomposition”) of such a surface. Finally in Section 5, we prove Theorem A, by studying
the action of Bn[κ] on Mκ, using explicit deformations of translation surfaces to realize a
generating set for Bκ[ψT ].

A note on the figures. The reader should be aware that the figures in the paper sometimes
use color to convey information, although the author hopes they are capable of communicating
the ideas of the paper even in black-and-white.

Acknowledgements. The author thanks Kathryn Lindsey for insight into the paper
[Thu+20]. Many thanks are due to anonymous referees whose comments greatly improved the
exposition of the paper. Support from the National Science Foundation (grant DMS-2153879)
is gratefully acknowledged.

2. Framed braid groups

Here we introduce the main object of study in this paper, the framed braid groups. These
are certain subgroups of the braid group on S2 that preserve a structure known as a “relative
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winding number function”. In Section 4, we will see that such structures naturally arise when
considering the translation surface structures on the Riemann sphere arising from logarithmic
derivatives of polynomials.

2.1. Basic working environment; relative winding number functions. Here we recall
the theory of relative winding number functions on the plane with marked points. We follow
the treatment given in [Sal23, Section 4] with a slight upgrade in notation, systematically
replacing subscripts of the form “n, p” from [Sal23] with the more descriptive “κ”.
Let n ≥ 2 be given, and let κ = k1 ≥ · · · ≥ kp be a partition of n− 1. Let Cκ denote the

surface CP1 with n+ p+ 1 marked points. By abuse of terminology, n of these are specified
as “roots”, p are specified as “critical points”, and the remaining point is specified as “∞′′,
even when these positions do not correspond to those of any polynomial.

We equip Cκ with a weight function

w : {z1, . . . , zn+p+1} → Z

from the set of distinguished points to Z. The weight of each root and ∞ is −1, while the
weights of the critical points are given (with respect to some ordering) as k1, . . . , kp. This
is consistent with the order of vanishing/pole at the roots, critical points, and ∞ on the
logarithmic derivative df/f .
For the remainder of the paper, an integer n ≥ 2 and a partition κ = k1 ≥ · · · ≥ kp of

n− 1 with p parts shall be fixed. The roots of Cκ will be enumerated as z1, . . . , zn, and the
critical points will be enumerated as w1, . . . , wp.

Definition 2.1 (κ-marked braid group). The κ-marked braid group Bκ is the subgroup of
the spherical braid group Bn+p+1(S

2) := π1(UConfn+p+1(S
2)) consisting of braids that fix

∞, preserve the set of roots setwise, and preserve setwise each set of critical points of a
given order. Where convenient, we will write PBκ in place of the more cumbersome notation
PBn+p+1(S

2) for the subgroup of Bκ consisting of pure braids, i.e. the pure spherical braid
group on n+ p+ 1 strands.

Definition 2.2 (Relative winding number function, twist-linearity). Let Aκ denote the set
of isotopy classes of properly-embedded arcs in Cκ with one endpoint at ∞ and the other
at a root (the tangent vectors at either end are not specified or required to be fixed under
isotopy). A relative winding number function

ψ : Aκ → Z

is a function subject to the following twist-linearity property: let c ⊂ Cκ be a simple closed
curve, oriented so that ∞ lies to the right in the chosen direction of travel. Denote the disk
bounded by c to the left as D. Then for any α ∈ Aκ,

ψ(Tc(α)) = ψ(α) + ⟨c, α⟩

(
1 +

∑
pi∈D

w(pi)

)
.

Here, Tc denotes the right-handed Dehn twist about c, the arc α is oriented so as to run from
∞ to a root, ⟨·, ·⟩ denotes the relative algebraic intersection pairing, and the sum is taken
over the subset of distinguished points lying in D.
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Remark 2.3. The terminology suggests that ψ(α) ∈ Z should be interpreted as some kind
of winding number of α (“relative” here indicates that winding numbers of arcs, as opposed
to simple closed curves, are considered). Indeed, this will turn out to be the case for the
“logarithmic relative winding number function” ψT studied in Section 4, which will measure
winding numbers of arcs relative to a certain background vector field studied therein. The
twist-linearity condition axiomatizes how winding numbers change under the application of a
Dehn twist. Winding number functions were introduced by Humphries–Johnson [HJ89], who
identified the essential role of the twist-linearity condition in axiomatizing functions that
measure winding numbers of curves against a choice of vector field.

Remark 2.4. A priori, there is a concern that ψ could be ill-defined, on account of the fact
that we have not specified tangent vectors for α at the endpoints. Thus α is isotopic to Tc(α),
where c is a simple closed curve enclosing one of the endpoints of α. But since the order of
each endpoint is −1, this is consistent with the requirements of the twist-linearity condition.
For this same reason, we cannot measure winding numbers of arcs with an endpoint on a
critical point, since there, winding numbers are not well-defined without working relative to
a specified tangent vector.

The following provides a useful criterion for computing winding numbers.

Lemma 2.5 (Computing ψ via “sliding”). Let α be an arc on Cκ connecting ∞ to a root z;
let ψ be a relative winding number function. Let β be the arc obtained from α by sliding the
right side across a distinguished point of weight k. Then ψ(β) = ψ(α) + k.

Proof. In this setting, β = Tc(α) for c a simple closed curve enclosing z and the distinguished
point wi of weight k. The result now follows by twist-linearity. See Figure 1. □

c

α

β

wi

Figure 1. Sliding the right side of α across wi adds w(wi) = k to ψ(α).

2.2. Classification of relative winding number functions. Our objective in this sub-
section is Lemma 2.8, which shows that relative winding number functions on Cκ are in
non-canonical bijection with Zn. This will require the following simple lemma.

Lemma 2.6. Let ψ be a relative winding number function, and α, β ∈ Aκ be arcs with the
same endpoints. If ψ(α) = ψ(β), then for f ∈ PBκ arbitrary, ψ(f(α)) = ψ(f(β)).

Proof. Since β, γ ∈ Aκ have the same endpoints, they determine the same relative homology
class and hence ⟨c, β⟩ = ⟨c, γ⟩ for all simple closed curves c. It follows that for a pair of such
arcs, ψ(Tc(β)) = ψ(Tc(γ)) for any simple closed curve c. Since PBκ is generated by Dehn
twists [FM12, Section 9.3], inductively ψ(f(β)) = ψ(f(γ)) for any f ∈ PBκ. □

Our study of the framed braid group will revolve around systems of arcs with specified
winding numbers, called root markings. Our first use for them will be to see that they suffice
to characterize a given relative winding number function.
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Definition 2.7 ((Partial) root marking, extension). A root marking of Cκ is a collection of n
arcs A = {α1, . . . , αn} such that αi begins at ∞ and terminates at the root zi. The set of
such αi are required to be disjoint except at the common point at ∞.

A proper subset of arcs in a root marking is called a partial root marking. If A′ is a partial
root marking, a root marking A extends A′ if it contains A′ as a subset.

Lemma 2.8. Let ψ : Aκ → Z be a relative winding number function, and let {α1, . . . , αn} be
a root marking of Cκ. Then ψ is uniquely specified by the vector

(ψ(α1), . . . , ψ(αn)) ∈ Zn,

and conversely, any v ∈ Zn arises in this way via some relative winding number function.

Proof. As is well-known, the (spherical) pure braid group PBκ = PBn+p+1(S
2) acts tran-

sitively on the set of isotopy classes of arcs with fixed endpoints (this is an instance of
the “change-of-coordinates principle” of [FM12, Section 1.3]). Thus the value of ψ on any
arc connecting ∞ to some root zi is determined by the value ψ(αi), by the twist-linearity
condition in conjunction with the fact that the pure braid group is generated by Dehn twists.

Conversely, we claim that given any (x1, . . . , xn) ∈ Zn, this is realized as (ψ(α1), . . . , ψ(αn))
for some relative winding number function ψ. One provisionally extends ψ from {α1, . . . , αn}
to Aκ by declaring ψ(β) to be the value computed from the appropriate ψ(αi) via the
twist-linearity formula, and one seeks to verify that this is well-defined: if f, g ∈ PBκ satisfy
f(αi) = g(αi) = β, must the value ψ(β) as computed from f agree with that given by g?
Abusing notation, we will write “ψ(f(αi))

′′ to denote the value obtained by factoring f into
Dehn twists and repeatedly applying the twist-linearity formula.
A first question is whether ψ(f(αi)) is even independent of the factorization of f into

twists. To do so, we will examine a presentation for PBκ = PBn+p+1(S
2). Attaching a

singly-punctured disk to the boundary of an n+ p-punctured disk realizes PBn+p+1(S
2) as

a quotient of the planar pure braid group PBn+p+1 by the central twist Tz, where z ⊂ C is
a curve separating ∞ from the remaining distinguished points [FM12, Section 3.6]. Every
relation in PBn+p+1 is a product of commutators [FM12, Section 9.3]. It therefore suffices
to show that (a) ψ([Tc, Td](α)) = ψ(α) for arbitrary curves c, d on Cκ, and, (b) Tz preserves
winding numbers. (b) is easy to establish - the sum of the orders of the n+ p distinguished
points enclosed by z is −1 (being composed of n roots of order −1 and p critical points of
orders ki summing to n− 1), so by twist-linearity, Tz has no effect on winding numbers.
It remains to consider (a). Writing

[Tc, Td] = TcT
−1
Td(c)

,

we find, by the twist-linearity formula,

ψ([Tc, Td](α)) = ψ(T−1
Td(c)

(α)) +
〈
c, T−1

Td(c)
(α)
〉
k,

where k is an integer determined by the orders of the distinguished points inside c as in
Definition 4.4. Applying twist-linearity to the first term,

ψ([Tc, Td](α)) = ψ(α)− ⟨Td(c), α⟩ k′ +
〈
c, T−1

Td(c)
(α)
〉
k,
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where likewise k′ is determined by the orders of the distinguished points inside Td(c). We claim

that k = k′ and that ⟨Td(c), α⟩ =
〈
c, T−1

Td(c)
(α)
〉
. Both of these are true for the same reason:

the curves c and Td(c) enclose the same set of distinguished points (note that the algebraic
intersection number is 1 or 0 depending on whether α terminates inside c (equivalently, inside
Td(c)) or not).

Having established that the value ψ(f(αi)) can be computed from ψ(αi) via any factorization
of f into Dehn twists, we next suppose that f, g ∈ PBn+p+1 satisfy f(αi) = g(αi). We apply
Lemma 2.6 to see that ψ(f(αi)) = ψ(g(αi)) if and only if ψ(αi) = ψ(f−1g(αi)). By assumption,
f−1g fixes αi, and so can be viewed as an element of PBn+p(S

2) ⩽ PBn+p+1(S
2). Therefore,

f−1g can be factored into generators for this subgroup, which consist of Dehn twists disjoint
from αi. By the twist-linearity formula, no such twist has an effect on the winding number of
αi, as required. □

2.3. The framed braid group. Here we come to the main definition of the paper, the
framed braid group.

Definition 2.9 (Framed braid group). Let ψ : Aκ → Z be a relative winding number function.
The framed braid group Bκ[ψ] is the subgroup of Bκ consisting of f ∈ Bκ for which

ψ(f(α)) = ψ(α)

for all α ∈ Aκ. The pure framed braid group PBκ[ψ] is the intersection

PBκ[ψ] = Bκ[ψ] ∩ PBκ.

The following lemma gives a simple finite criterion for determining membership in Bκ[ψ].

Lemma 2.10. An element f ∈ Bκ is contained in Bκ[ψ] if and only if, for any root marking
{β1, . . . , βn}, there are equalities ψ(f(βi)) = ψ(βi) for i = 1, . . . , n.

Proof. By Lemma 2.8, a relative winding number function is determined by its values on
any root marking. By hypothesis, the winding number functions ψ and f−1 · ψ (where
f−1 · ψ(α) = ψ(f(α))) take the same values on {β1, . . . , βn}, and hence are equal. □

Framed braid groups are not normal in Bκ (a given Bκ[ψ] is conjugated by f ∈ Bκ to the
potentially distinct group Bκ[f · ψ]), but they are not so far off.

Lemma 2.11. For any relative winding number function ψ, the pure framed braid group is
normal in PBκ, arising as the kernel of the map

∆ψ : PBκ → Zn

f 7→ (ψ(f(α1))− ψ(α1), . . . , ψ(f(αn))− ψ(αn)),

where {α1, . . . , αn} is an arbitrary root marking.

Proof. The only point in question is that ∆ψ is a well-defined homomorphism. To see that
∆ψ does not depend on the choice of root marking, suppose α′

i is some other arc with the
same endpoints as αi. Arguing as in Lemma 2.6, then αi and α

′
i determine the same relative

homology class, and so ψ(f(α′
i))− ψ(α′

i) = ψ(f(αi))− ψ(αi) as required.
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That ∆ψ is a homomorphism is similarly easy to verify: one finds that the ith component
of ∆ψ(fg) is given by

ψ(fg(αi))− ψ(αi) = ψ(f(g(αi)))− ψ(g(αi)) + ψ(g(αi))− ψ(αi).

By the argument of the first paragraph, since g ∈ PBκ, the first two terms are equal to the
ith component of ∆ψ(f), and the latter two visibly form the ith component of ∆ψ(g). □

3. Admissible root markings

This section constitutes the technical heart of the paper. The main objective is Proposi-
tion 3.14, which establishes the connectivity of a family of graphs acted on by (subgroups
of) the framed braid group. Vertices of these graphs correspond to systems of arcs on Cκ

with prescribed winding number (admissible root markings). In Section 5, we will use these
results to identify the framed braid group with the image of the monodromy map from the
corresponding equicritical stratum of polynomials.

From here to the end of the paper, let ψ denote a fixed relative winding number function
on Cκ.

3.1. Graphs of admissible arcs.

Definition 3.1 (Admissible arc). An arc α ∈ Aκ is said to be admissible (tacitly with respect
to ψ) if ψ(α) = 0.

Definition 3.2 (Admissible root marking (ARM)). A root marking A = {α1, . . . , αn} is
admissible if each αi is admissible. An admissible root marking will be abbreviated to “ARM”.
Likewise, a partial root marking A′ is admissible if ψ(αi) = 0 for all αi ∈ A′, abbreviated to
a “partial ARM”.

Remark 3.3. An ARM A = {α1, . . . , αn} endows the set of roots with a cyclic ordering,
determined by the cyclic ordering of the tangent vectors at ∞ of the arcs αi when realized
disjointly. Except where otherwise specified, we will assume that each αi+1 is adjacent
clockwise from αi.

Definition 3.4 (Graph of ARMs). The Graph of ARMs, written Mκ, is the following graph:

• The vertices of Mκ are the ARMs on Cκ,
• ARMs A = {α1, . . . , αn} and A′ = {α′

1, . . . , α
′
n} are connected by an edge in Mκ if

αi = α′
i for all but a single index i0, and if α′

i0
is disjoint from αi0 except at their

common endpoints.

Lemma 3.5. Let A′ = {α1, . . . , αk} be a partial ARM. Then there is an extension of A′ to
an ARM A.

Proof. Certainly A′ extends to some root marking A′′ = {α1, . . . , αk, βk+1, . . . , βn}; it remains
to alter the arcs βj so as to set the winding numbers to zero. For i = k + 1, . . . , n, let ci
denote a simple closed curve in Cκ, disjoint from all arcs in A′′ except βi, that encloses the
root zi in addition to all of the critical points (and no other distinguished points). By the
twist-linearity formula, ψ(Tci(βi)) = ψ(βi) + n − 1, with the winding numbers of all other
arcs in A′′ left unchanged. Thus by repeated application of T±1

ci
, it can be arranged so that

2−n ⩽ ψ(βi) ⩽ 0 for k+1 ⩽ i ⩽ n. Figure 2 then shows how by “repositioning the basepoint”
of βi, the winding number can be adjusted to zero. □
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βi

αi

ci

|ψ(βi)|

Figure 2. The construction of Lemma 3.5. Here we introduce some graphical
conventions we will use throughout: Cκ will be denoted as a disk with the
boundary collapsed to the point ∞, roots will be marked in black, and critical
points will be marked in red. The ARM A′′ is depicted as a collection of arcs
from ∞ to the roots. There are |ψ(βi)| zeroes in the region bounded by αi, βi.

Our ultimate interest in in the connectivity of Mκ. To obtain this, it will be necessary to
consider a family of auxiliary graphs.

Definition 3.6 ((Relative) Graph of admissible arcs). Let A′ be a partial ARM. We say that
a root zi ∈ Cκ is marked if some arc of A′ terminates at zi, and is unmarked otherwise. The
graph of admissible arcs relative to A′, written Admκ(A

′), is the following graph:

• The vertices of Admκ(A
′) consist of admissible arcs from ∞ to unmarked roots that

are disjoint from A′ except at ∞,
• If there are at least two unmarked roots, then vertices α, β are connected by an edge
in Admκ(A

′) if they are disjoint except at ∞ (and in particular, must terminate at
distinct unmarked roots). If there is only one unmarked root, then α and β are joined
in Admκ(A

′) if they are disjoint except at both endpoints.

3.2. Connectivity of the graph of admissible arcs.

Lemma 3.7. Let κ = k1 ≥ · · · ≥ kp be a partition of n ≥ 3 with p ≥ 2 parts. Let A′ be a
partial ARM, possibly empty. Then Admκ(A

′) is connected.

This is the most intricate and technically demanding step of the argument. We will require
three different arguments for three different regimes: the case of A′ empty, the case of A′

marking at most n− 2 of the n roots, and the case of A′ marking n− 1 roots.

3.2.1. Case 1: A′ empty. The methods here will are reminiscent of other connectivity
arguments used in the study of framed/r-spin mapping class groups, cf [Sal19, Section 7] and
[CS23, Section 5.3]. The basic principle is to exploit the connectivity of a different graph of
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“enveloping subsurfaces” which is easier to establish, and then build a path in the original
graph by exploiting existence results for objects of the desired type inside the enveloping
surfaces.

Definition 3.8 ((Graph of) simple envelopes). A simple envelope on Cκ is a properly-
embedded arc E with both endpoints at ∞, such that on one side, E encloses exactly two
distinguished points, each of order ±1, at least one of which is a root (i.e. of order −1). For
simplicity, we will think of E as the boundary of this distinguished region.

The graph of simple envelopes Envκ is the graph with vertices given by isotopy classes of
simple envelopes, with E and E ′ adjacent if they are disjoint except at ∞.

Lemma 3.9. Let n ≥ 3 and let κ = k1 ≥ · · · ≥ kp be a partition with p ≥ 2 parts. Then
Envκ is connected.

Proof. This will follow by an application of the Putman trick [Put08, Lemma 2.1]. This
asserts the following: let G be a group acting on a graph X with generating set S = S−1.
Let v be a vertex of X. Suppose that the G-orbit of every vertex intersects the connected
component of v, and that for all s ∈ S, there is a path connecting v to s · v. Then X is
connected.

v w v′ w

a

Figure 3. We illustrate the arguments here in the maximally constrained case
n = 3, κ = {1, 1}. At left, showing that v is connected to every orbit of PBκ

on Envκ. The sequence v, v′, w is a path in Envκ; the arguments for other
orbit types are analogous. At right, exhibiting a path connecting v to Ta(v),
where a is a neighborhood of the indicated arc. These are both disjoint from a
regular neighborhood of w, which forms a simple envelope.

We consider X = Envκ the graph of simple envelopes, and consider the action of G = PBκ

on Envκ. Let us specify the basepoint vertex v; this will require special consideration in
low-complexity cases. For n ≥ 5, we take v to be an envelope enclosing two roots. The
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remaining cases are n = 3, κ = {1, 1}, and n = 4, κ = {2, 1} or {1, 1, 1}. In all of these cases,
there is a critical point of order 1, and we take v to be an envelope enclosing a root and such
a critical point.
We first verify that v is connected to a representative of every orbit of PBκ. By the

change-of-coordinates principle, such an orbit is classified by the two enclosed distinguished
points. If these points are all distinct, it is trivial to exhibit a simple envelope in the given
orbit disjoint from v. Otherwise, there is exactly one point in common. By our choice of v,
there is at least one root not enclosed by either envelope. It is again trivial to exhibit a simple
envelope (containing at least one root) disjoint from v and from the orbit representative w.
See Figure 3.
The second condition to check is that v can be connected to s · v for all s ∈ S. We take

for S the standard generating set for PBκ, consisting of Dehn twists in a neighborhood of
a system of

(
n+p
2

)
arcs, one for each pair of distinguished points. If the points enclosed by

the twisting curve are disjoint from or coincide with those enclosed by v, then s · v = v.
Otherwise, they overlap in one point. As in the previous paragraph, there is at least one
additional root, and then it is easy to exhibit a simple envelope w disjoint from v and from
the support a of the twist; see Figure 3. Thus, v, w, Ta(v) is a path in Envκ. □

Lemma 3.10. Let E be a simple envelope. Then there is some admissible arc α contained
on the distinguished side of E.

Proof. Let β be any arc connecting ∞ to one of the roots contained on the distinguished
side of E. Let c be a curve contained inside E enclosing both distinguished points, and with
⟨c, β⟩ = 1. Then by twist-linearity, applying Tc alters the winding number of β by ±1, the
sign being determined by the order of the other point. Thus, some twist T kc (β) is admissible
and contained inside E. □

Proof of Lemma 3.7 for A′ empty. Let α, β ∈ Admκ be given. Choose envelopes Eα, Eβ ∈
Envκ containing α, β, respectively. By Lemma 3.9, there is a path Eα = E1, . . . , En = Eβ
in Envκ. By Lemma 3.10, each Ei for 1 < i < n contains an admissible arc αi, and by
construction, each αi, αi+1 are disjoint except at the common basepoint ∞. Thus α and β
are connected in Admκ via the path α = α1, α2, . . . , αn = β. □

3.2.2. Case 2: A′ nonempty, ≥ 2 unmarked roots. In the sequel, we will consider the
intersection number of arcs that share one or more endpoint. As always, we define the
geometric intersection number i(α, β) to be the minimal number of crossings as α, β range
through their isotopy classes, keeping in mind that the tangent vectors of α, β at endpoints
are not required to be fixed under isotopy.
Ultimately, we will prove this case by induction on i(α, β). In preparation for this, we

establish connectivity for small values of i(α, β).

Lemma 3.11. Let κ = k1 ≥ · · · ≥ kp be a partition of n ≥ 3 with p ≥ 2 parts. Let A′ be a
partial ARM for which at least two roots are left unmarked. Let α, β ∈ Admκ(A

′) be given
with the same set of endpoints, with i(α, β) = 0. Then α and β are connected in Admκ(A

′).

Proof. We begin with a general observation. Let α, β be arcs with the same set of endpoints
and with i(α, β) = 0, but not necessarily admissible. Then α is isotopic to β via an isotopy
that drags α across each root or critical point enclosed by α ∪ β; each such point is crossed
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exactly once and with the same orientation. Via Lemma 2.5, |ψ(α)− ψ(β)| is given as the
sum of the weights of the enclosed points.

If moreover α, β is admissible, this shows that on each side of Cκ \ {α, β}, the sum of the
orders of the enclosed critical points is equal to the number of enclosed roots. By assumption,
there is at least one unmarked root on one side. Figure 4 then shows how to construct
γ ∈ Admκ(A

′) adjacent to both α, β, via essentially the same construction as in Lemma 3.5.

β

α

γ′

c

γ

|ψ(γ′)| < q

Figure 4. The construction of Lemma 3.11.

Examining the figure, the total order of the critical points enclosed by α ∪ β is q, for some
0 ⩽ q ⩽ n− 1. In fact, 0 < q < n− 1: were this not strict, α and β would be isotopic, since,
as remarked above, the total order of the critical points on either side equals the number
of enclosed roots, so absence of one type of distinguished point enforces the absence of the
other. There may be multiple critical points inside, but only one is illustrated here for clarity.
Possibly some of the roots depicted as marked are in fact unmarked, but this has no effect on
the argument. To construct γ, connect the free root to ∞ inside α ∪ β by some arc γ′, then
twist about c as shown to arrange 1− q ⩽ ψ(γ′) ⩽ 0. By “repositioning the basepoint” as in
Lemma 3.5, an admissible arc γ as shown can be constructed. □

We will also need to examine connectivity for i(α, β) = 1, subject to some special additional
hypotheses (these will arise naturally in the inductive step).

Lemma 3.12. Let κ = k1 ≥ · · · ≥ kp be a partition of n ≥ 3 with p ≥ 2 parts. Let A′ be a
partial ARM for which at least two roots are left unmarked. Let α, β ∈ Admκ(A

′) be given
with the same set of endpoints and i(α, β) = 1, so that α∪β divides Cκ into three components,
two of which are bigons bounded by one segment each from α, β. Suppose that on the interior
of each of these bigons, there is exactly one root and no other distinguished point. Then α
and β are connected in Admκ(A

′).
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β

α

kp
γ

Figure 5. The construction of Lemma 3.12.

Proof. Figure 5 shows how to construct γ ∈ Admκ(A
′) terminating at the same endpoint

and with i(α, γ) = i(β, γ) = 0. Examining the figure, we see that β ∪ γ encloses only the
critical point of smallest order kp along with the root marked by α and kp − 1 other roots
(marked or otherwise). Such γ exists only if there are kp − 1 other roots available, distinct
from the three roots involved in α ∪ β. This is always true: since kp is the smallest of at
least two integers whose sum is n− 1, necesarily kp ⩽ n− 2. The result now follows from
Lemma 3.11. □

Proof of Lemma 3.7, A′ nonempty but ≥ 2 unmarked roots. Let α, β ∈ Admκ(A
′) be given.

We will proceed by induction on i(α, β). First suppose that α, β terminate at the same
root. If i(α, β) = 0, then α, β are connected by Lemma 3.11. Otherwise, replace β with an
admissible arc β′ terminating at a different root and adjacent to β in Admκ(A

′) (such β′

always exists, by Lemma 3.5). Thus we will assume in the sequel that α and β terminate at
different roots.
We take i(α, β) ⩽ 1 as base cases. In the case i(α, β) = 0, the arcs are adjacent in

Admκ(A
′). In the case i(α, β) = 1, Figure 6 shows how to connect α, β. In (A), we see that,

possibly after exchanging α, β, the picture can be arranged so as to be of this form. The total
order of critical points enclosed by α, β is q, and the number of roots enclosed is r. Panels
(B)-(F) then consider various subcases depending on q, r:

(B) The case r ⩽ q ⩽ n− 2. Here, admissible γ can be constructed as shown, so that β ∪ γ
encloses the same set of critical points and q roots.

(C) The case q = 0. Here, γ is constructed so as to enclose all but one critical point (of order
k) along with n− 1− k ⩽ n− 2 roots.

(D) (The case 0 < q < r. Here, γ is constructed so as to enclose the critical points of total
order q along with q roots. α and γ then satisfy the hypotheses of case (C), ultimately
giving a path connecting α to β.
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(A) (B) (C)

(D) (E) (F)

r

β
α

q

γ

Figure 6. The case i(α, β) = 1.

(E) The case q = n− 1, r > 0. Admissible γ is constructed disjoint from β, and satisfying
the hypotheses of Lemma 3.12 with α.

(F) The case q = n − 1, r = 0. Here, admissible γ is constructed so that α, γ satisfy the
hypotheses of Lemma 3.12, and β, γ belong to case (C).

We now assume that if ξ, η ∈ Admκ(A
′) terminate at distinct zeroes and satisfy i(ξ, η) ⩽ N ,

then ξ, η are connected in Admκ(A
′), and consider α, β ∈ Admκ(A

′) with i(α, β) = N + 1.
Figure 7 shows how to construct γ terminating at the same root as β, with i(β, γ) = 1 and
satisfying the hypotheses of Lemma 3.12, and with i(α, γ) < i(α, β). The figure treats one
possibility for the sign at the left-most intersection of α, β; the other case is analogous. In (A):
as long as there is a marked root lying in between α, β at ∞, admissible γ can be constructed
as shown, by sliding the left side of α across the endpoint of β and compensating by sliding the
right side (repositioning the base point) near ∞. By construction, i(β, γ) < i(α, β), and α, γ
satisfy the hypotheses of Lemma 3.12, hence are connected in Admκ(A

′). In (B), we consider
the case where there is no such marked root to the right of α. Here, construct admissible γ as
shown, by dragging the basepoint around a neighborhood of ∞ and repositioning. As before,
α, γ satisfy the hypotheses of Lemma 3.12, but here, i(β, γ) = i(α, β). However, one of the
crossings has changed sign. Moving to the first crossing of β, γ, one repeats the argument.
At some point, one will encounter a crossing of the opposite sign; the argument of (A) will
then apply, decreasing intersection number.
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(A) (B)

α

γ

β

Figure 7. Reducing intersection number.

By the inductive hypothesis, α and γ are connected in Admκ(A
′), and by Lemma 3.12, β

and γ are likewise connected, thus completing the inductive step. □

3.2.3. Case 3: one unmarked root.

Proof of Lemma 3.7, A′ nonempty and one unmarked root. Let α, β ∈ Admκ(A
′) be given,

necessarily both terminating at the single unmarked root. We say that α, β have coherent
intersection if there exist representatives for which every intersection has the same sign. To
show that α, β are connected, we will proceed by induction on i(α, β), taking the case of
coherent intersection as base case (note that if i(α, β) = 1, then the intersection is necessarily
coherent).

Figure 8 shows how to connect α, β in the case of coherent intersection. At left, we see that
necessarily the leftmost crossing must be as shown (enclosing at least one critical point and
terminating immediately at the unmarked root), as otherwise the leftmost crossing would
have nowhere to go. Repeatedly applying this reasoning, we arrive at the global picture of α
at right (possibly there are additional critical points inside the spiraling portion, but this
does not affect the argument). Suppose the critical points enclosed by the bigon formed by
the terminal segments of α, β have total order q, and that i(α, β) = k. By twist-linearity, in
order for α to be admissible, the region of Cκ enclosed by the initial segments of α, β contains
r ≥ 0 roots and one or more critical points of order totalling kq+r. Thus n ≥ (k+1)q+r+1,
so that there are at least (k + 1)q + r marked roots. It is therefore possible to construct
admissible γ as indicated by sliding the leftmost crossing over the bigon (reducing intersection
number) and repositioning the basepoint to the left (down, in the figure) by q positions. This
completes the analysis in the case of coherent intersection.

For the general case, consider Figure 9. Let y denote the first crossing from the left pointing
opposite to the leftmost crossing, and let x denote the crossing immediately to the left of y.
Figure 9 shows that regardless of the type of the segment feeding into x, one of the segments



MONODROMY OF STRATIFIED BRAID GROUPS, II 17

α

γ

r

≥ kq + r

q

kq + r

Figure 8. Reducing intersection number, one unmarked root, coherent intersection.

α

γx y

Figure 9. Reducing intersection number, one unmarked root, incoherent intersection.

coming in or out of y must bound a bigon. Passing to the innermost bigon, one constructs
admissible γ satisfying i(α, γ) = 0 and i(β, γ) < i(α, β), by pulling α across all critical points
in the innermost bigon and repositioning the basepoint of γ as in Figure 7 (not shown). As in
that argument, it may be necessary to wrap γ around the boundary of the disk, introducing
another crossing with β. But since i(β, γ) decreases by at least two by removing the bigon,
so too in this case does i(β, γ) strictly decrease. This completes the inductive step. □

3.3. Connectivity of the graph of ARMs. Having established the connectivity of graphs
of a single arc at a time, we now consider the main graph that will feature in the proof of
Theorem A, the graph of ARMs.

Definition 3.13 (Relative graph of ARMs). Let A′ be a partial ARM, possibly empty. The
graph of ARMs relative to A′, written Mκ(A

′), is the complete subgraph of Mκ on vertices A
given as extensions of A′.

Proposition 3.14. Let κ = k1 ≥ · · · ≥ kp be a partition of n ≥ 3 with p ≥ 2 parts. Let A′ be
a partial ARM, possibly empty. Then the relative graph of ARMs Mκ(A

′) is connected.
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Proof. We proceed by induction on the number m of unmarked roots. In the base case
m = 1, one verifies that the definitions of the graphs Mκ(A

′) and Admκ(A
′) coincide, so

that connectivity of Mκ(A
′) = Admκ(A

′) follows from Lemma 3.7.
For the inductive step, for k = n−m, write A′ = {α1, . . . , αk}, and let A = {α1, . . . , αn}

and B = {α1, . . . , αk, βk+1, . . . , βn} be vertices of Mκ(A
′). By Lemma 3.7, there is a path

αk+1 = γ0, γ1, . . . , γq = βk+1 in Admκ(A
′), and as m > 1, each pair of successive admissible

arcs γi, γi+1 terminate at distinct unmarked roots. For 0 ⩽ i ⩽ q − 1, define

A′
i = A′ ∪ {γi, γi+1}.

By Lemma 3.5, each A′
i extends to an ARM Ai; also define A−1 = A and Aq = B.

Each pair Ai, Ai+1 forms a pair of vertices in the relative graph Mκ(A
′ ∪ {γi+1}). By

induction, there is a path in Mκ(A
′ ∪ {γi+1}) connecting Ai to Ai+1; these paths can be

concatenated to yield a path from A = A−1 to B = Aq. □

4. Logarithmic derivatives and translation surface structures on the
Riemann sphere

In this section we recall the correspondence between polynomials and translation surface
structures on the Riemann sphere. See also the treatment in [Sal23].

4.1. Polynomials and (root-labeled) translation surfaces. Here we study the relation-
ship between polynomials and the geometric world of translation surfaces.

From polynomials to translation surfaces... Given f ∈ Polyn(C)[κ], we consider the
logarithmic derivative df/f . This is a meromorphic differential on CP1 with n + 1 simple
poles at ∞ and at the distinct roots z1, . . . , zn. By the argument principle, the residues at
the roots are each 2πi, while the residue at ∞ is −(2πi)n. The zeroes of df/f occur at the
critical points w1, . . . , wp and have multiplicities k1 ≥ · · · ≥ kp as specified by the partition κ.
Let MD(κ) denote the set of meromorphic differentials on CP1 with n+ 1 simple poles,

n of which have residue 2πi, and with p zeroes of multiplicities specified by κ. According
to [Sal23, Lemma 2.1], every ω ∈ MD(κ) is of the form ω = df/f for a uniquely-specified
f ∈ Polyn(C)[κ], and there is an isomorphism of quasi-projective varieties

Polyn(C)[κ] ∼= MD(κ).

Integration of df/f endows CP1 (punctured at the roots of f and ∞) with the structure
of an infinite-area translation surface (for more on the basics of translation surfaces and
their moduli spaces, see [Sal23, Section 3] or e.g. [Wri15]). Let Ωκ denote the moduli
space of translation surfaces associated to df/f for f ∈ Polyn(C)[κ] considered, as usual,
up to cut-paste equivalence. As shown in [Sal23, Theorem 1.5], Ωκ is a complex orbifold of
dimension p− 1. We notate elements of Ωκ as pairs (T, ω), where T is a Riemann surface
homeomorphic to an n+ 1-punctured sphere, and ω is a meromorphic differentials with the
appropriate profile of poles, residues, and zeroes.

The orbifold structure can be understood explicitly as follows. The affine group Aff = C⋊C∗

acts by precomposition on the space MD(κ) (or equivalently on Polyn(C)[κ]), and for n ≥ 2,
all stabilizers are finite. Then Ωκ is realized as the orbifold quotient

Ωκ = MD(κ)/Aff ∼= Polyn(C)[κ]/Aff .
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...and back again. Translation surfaces are useful here because one can explicitly exhibit
deformations (by moving the free prongs) and so probe the fundamental group. The drawback
to working with Ωκ directly is that it is an orbifold (and so one must work in the setting of
the orbifold fundamental group), and in any event is a quotient of Polyn(C)[κ], so that there
is potential ambiguity in lifting elements of the (orbifold) fundamental group.

To resolve this, we show here how to understandMD(κ) as a space of root-labeled translation
surfaces. This will circumvent the need to reckon with orbifolds, while still allowing for the
powerful deformation arguments available in the translation surface setting.

We temporarily pass to finite covers of MD(κ) and Ωκ. Define the cover

MD(κ)2 =
{(

df
f
, z1, z2

)
| df
f
∈ MD(κ), z1, z2 ∈ C, z1 ̸= z2, f(z1) = f(z2) = 0

}
of differentials endowed with two distinguished roots. Likewise define Ωκ,2 as the cover of Ωκ
where two of the poles of residue 2πi are distinguished. Note that this is a manifold (indeed,
smooth variety) and not merely an orbifold, since the automorphism group of C marked at
two points is trivial.

Lemma 4.1. There is an isomorphism of complex manifolds

RL : MD(κ)2 → Ωκ,2 × Conf2(C).

Proof. There is a tautological assignment of (df/f, z1, z2) ∈ MD(κ)2 to the point

((C \ Z(f), df/f, z1, z2), (z1, z2)) ∈ Ωκ,2 × Conf2(C),

where Z(f) ⊂ C denotes the roots of f . Conversely, suppose ((T, ω, p1, p2), (z1, z2)) ∈
Ωκ,2 × Conf2(C) is given. By basic complex analysis (see [Sal23, Lemma 2.1]), there is a
polynomial f and an isomorphism of translation surfaces

α : (C \ Z(f), df/f) → (T, ω).

Composing with the appropriate element of Aff, there is a unique such α for which the
distinguished points p1, p2 are identified with the chosen z1, z2 ∈ C, defining the inverse
map. □

As it stands, this identification requires the additional data of a choice of pair of points.
This can be accounted for by introducing an equivalence relation on Ωκ,2 × Conf2(C). We
define an equivalence relation as follows:

((T, ω, p1, p2), (z1, z2)) ∼ ((T ′, ω′, p′1, p
′
2), (z

′
1, z

′
2))

if

(1) There is a (necessarily unique) conformal isomorphism of pointed translation surfaces

ι : (T, ω, p1, p2) → (T ′, ω′, p′1, p
′
2),

and hence each of (T, ω) and (T ′, ω′) are isomorphic to (C \ Z(f), df/f) for the same
df/f ∈ MD(κ) (and f(z1) = f(z2) = f(z′1) = f(z′2) = 0),

(2) Under the unique map α : C \Z(f) → T ∼= T ′ identifying z1, z2 with p1, p2, also z
′
1, z

′
2

are identified with p′1, p
′
2.
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We call the equivalence classes root-labeled translation surfaces, and notate the space of such
as

ΩRL
κ := (Ωκ,2 × Conf2(C)) / ∼ .

Lemma 4.2. The equivalence class map

Ωκ,2 × Conf2(C) → ΩRL
κ

is a covering map, and the root-marking isomorphism RL : MD(κ)2 → Ωκ,2 × Conf2(C) of
Lemma 4.1 descends to an isomorphism

RL : MD(κ) → ΩRL
κ .

Proof. Under the homeomorphism RL−1 : (Ωκ,2 ×Conf2(C)) → MD(κ)2, a sufficiently small
open set corresponds to a family of polynomials whose roots vary in pairwise-disjoint open
sets of C, with two of these neighborhoods distinguished by the given marking. In the
topology on the covering space MD(κ)2, two such neighborhoods with different distinguished
components are disjoint. The equivalence class of some ((T, ω, p1, p2), (z1, z2)) consists of
the same translation surface (T, ω) with different pairs of poles marked by the roots of the
underlying polynomial. Neighborhoods of each representative correspond under RL−1 to
the same set of polynomials but with different distinguished components, demonstrating the
covering space condition. It is then straightforward to see that RL preserves fibers of each of
the covering maps, and so descends to the isomorphism

RL : MD(κ) → ΩRL
κ

as claimed. □

4.2. Strip decomposition. Translation surfaces in Ωκ have a very simple structure. Follow-
ing [Sal23, Section 3], we recollect this here. The reader may wish to consult Figure 10 while
reading this discussion. Let T ∈ Ωκ be a translation surface. T carries a natural “horizontal”
singular foliation induced by the kernel of the real 1-form Im(df

f
). All but finitely many leaves

of the horizontal foliation for T run from a zero of the associated polynomial f to ∞; the
finitely many exceptions have one or more endpoints at a cone point of T (i.e. a critical point
of f). A leaf with one or more endpoints at cone points is called a prong leaf. The closure
of the set of leaves emanating from a chosen zero of f is called a strip. As shown in [Sal23,
Lemma 3.1], T is equal to the union of its strips, and each pair of strips intersect in finitely
many prong leaves.
Note that a given root z of a polynomial f ∈ Polyn(C)[κ] has a canonically-associated

strip on the translation surface for df
f
: it is the closure of the set of leaves of the horizontal

foliation that terminate at z.
Every T ∈ Ωκ admits a strip decomposition that depends on finitely many arbitrary choices.

To define this, observe that each zero zi of f must have at least one prong leaf emanating
from zi (see [Sal23, Section 3.2]). Choosing one such leaf for each zero, T is realizable as a
union of n bi-infinite strips in C of height 2π, where the top and bottom boundaries of each
strip is given by the chosen prong leaf (technically, the boundary of a strip consists of three
prong leaves - the one chosen leaf coming in from the root at left, along with two distinct
prong leaves continuing on along the top and bottom to ∞ at right). The prongs comprising
the boundary of a strip are called fixed prongs.
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∼ ∼

fixed prong

free prong

z1

z2

z1

z2

z1

z2

Figure 10. Three depictions of the same root-marked translation surface in
the stratum κ = {2, 1, 1}. The top left of each strip is glued to the bottom
left, and gluing instructions on the right sides are indicated with colors. The
solid colored dots in the middle of each strip are cone points for the flat metric,
corresponding to critical points of the polynomial. The excess cone angle
corresponds to the order of the critical point, so that e.g. the red point (with
a total angle of 6π = 2π + 2(2π)) corresponds to the critical point of order 2.
From left to center, the strips have been vertically reordered. From center to
right, the bottom strip has been recut, exchanging the roles of the fixed and
free prongs. The root labeling data is indicated by labeling two distinguished
points with z1, z2 ∈ C.

There are then p− 1 remaining prong leaves running from ∞ to a cone point, generically
lying in the interior of the strips. These remaining prong leaves are called free prongs, as they
are allowed to deform, changing the translation surface structure. As long as cone points do
not collide, such a deformation stays in the stratum Ωκ. The relative periods of the p− 1
free prongs is a set of local coordinates on Ωκ. When a strip contains multiple cone points, a
cut-and-paste move can be used to exchange one free prong for a fixed prong, as illustrated
in Figure 10.

4.3. Monodromy of root-labeled translation surfaces. We established above the exis-
tence of isomorphisms

Polyn(C)[κ] ∼= MD(κ) ∼= ΩRL
κ .

Consequently there is a monodromy homomorphism

ρ : π1(Ω
RL
κ ) → Bn+p

pulled back from the natural monodromy map defined on π1(Polyn(C)[κ]). Here we explain
how to compute the monodromy of a loop in ΩRL

κ constructed as an explicit deformation.
Let us recall the general principle of computing monodromy. Let p : E → S1 be a fiber

bundle with fibers St = p−1(t) (for t ∈ S1 = R/Z). Choose a marking µ0 : S → S0 by some
reference surface S. When, as in our setting, S0 is a sphere marked at n+ p+ 1 points (the
roots and critical points of some f , and ∞), µ0 can be specified uniquely up to isotopy by
a collection of n + p disjoint arcs running from ∞ to each of the roots and critical points.
Via parallel transport, the marking µ0 propagates to a family of markings µt : S → St,
well-defined up to isotopy. The monodromy of the family is the map µ−1

1 ◦ µ0 : S → S; it is
well-defined as an isotopy class.
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There is a crucial subtlety in our setting that must be addressed. The braid group Bn+p

is defined as the fundamental group of the configuration space UConfn+p(C); this is the
ultimate target of the monodromy map. However, the marking procedure above only recovers
the image of the braid under the point-pushing homomorphism

P : Bn+p → Mod(Cκ).

P is not injective, and has infinite cyclic kernel ⟨∆⟩ = Z(Bn+p), the center of Bn+p generated
by the full twist element ∆. However, this is ultimately a non-issue, since the kernel ⟨∆⟩
is in the image of ρ, the generator being realized by applying the S1-family of affine maps
z 7→ eiθz to any chosen basepoint.

There is an additional benefit to the a priori containment ⟨∆⟩ ⩽ Im(ρ): in computing the
mapping-class-group-valued monodromy, it is not actually necessary to track the root labeling
data! As illustrated in Example 4.3, the root labeling data can become shuffled by cut/paste
equivalence, so that in order to construct a closed loop in ΩRL

κ , it is necessary to combine
the closed loop of unmarked translation surfaces with a path in the space of root markings.
A choice of such path affects the resulting braid, but different choices differ by loops in the
space of root markings. As we have seen, this image is contained in ⟨∆⟩. Thus, ignoring the
root-marking data, the Bn+p-valued monodromy of a loop of unmarked translation surfaces in
Ωκ is well-defined up to the subgroup ⟨∆⟩ ⩽ Im(ρ), which is all that is needed for our purposes.

Example 4.3. Consider the family Tt ⊂ Ωκ of translation surfaces shown in Figure 11, for
κ = {1, 1}. The deformation proceeds by pushing the unique free prong up into the next
vertically-adjacent strip, and then exchanging the bottom two strips. The marking propagates
as shown. To understand this as a braid, identify T with a five-punctured plane via the
indicated marking. After moving through the loop, the new marking can be compared against
the old, showing that the isotopy class induced by the braid is given as shown, by orbiting
two of the roots about a fixed critical point at the center.

4.4. Relative winding number functions on translation surfaces. The bridge con-
necting the work of Sections 2 and 3 to the present setting lies in the fact that translation
surfaces in Ωκ endow the marked Riemann sphere Cκ with a distinguished relative winding
number function.

Definition 4.4 (Logarithmic relative winding number function). Let f0 ∈ Polyn(C)[κ] be
chosen, and let [((T0, ω0, p1, p2), (z1, z2))] ∈ ΩRL

κ be the associated root-marked translation
surface, chosen to lie outside the orbifold locus of Ωκ. As above, there is then a canonical
identification α : Cκ → T0 given by integrating df0

f0
. Under α, properly-embedded arcs

connecting ∞ to a root on Cκ are sent to bi-infinite arcs running from right to left on T0,
which can be isotoped so as to be eventually horizontal at both ends. The logarithmic relative
winding number function ψT : Aκ → Z is the relative winding number function on Cκ defined
by measuring the winding number of the corresponding arc on T0, relative to the horizontal
vector field. It is straightforward to verify that ψT satisfies the twist-linearity condition - see
[Chi72, Lemma 4.2].
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∼

Figure 11. Top row: the deformation of Example 4.3. The blue free prong
is pushed up the top of the middle strip into the bottom, and then these two
strips are switched, completing the loop. The blue arcs mark the roots, and
the gray arcs mark the critical points. In the middle row, the corresponding
marking of a punctured plane is illustrated at left; the effect on the marking is
shown at right. The bottom row shows the corresponding braid.

5. Proof of Theorem A

Here we bring the settings of framed braid groups and equicritical strata together to
prove Theorem A. Recall from the introduction that our ultimate interest is the monodromy
representation

ρ : Bn[κ] → Bκ.

Define the image

Im(ρ) = Γκ ⩽ Bκ.

In Section 5.1, we show that the translation surface structure for df/f constrains Γκ to lie
in a framed braid group Bκ[ψT ]. Then in Section 5.2, we show the opposite containment.
Finally, in Section 5.3, we improve the main theorem of [Sal23], giving a complete description
of the monodromy of just the roots in an equicritical stratum.
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5.1. Monodromy lives in the framed braid group.

Proposition 5.1. For all n ≥ 3 and all partitions κ = k1 ≥ · · · ≥ kp, there is a containment

Γκ ⩽ Bκ[ψT ],

where ψT is the logarithmic relative winding number function of Definition 4.4.

Proof. This was established in [Sal23, Lemma 4.6]. □

5.2. Monodromy equals the framed braid group. Following the discussion of Section 4.3,
to compute the mapping class group-valued monodromy, it is not necessary to keep track
of root-labeling information. Accordingly, we will suppress this throughout, working with
unlabeled translation surfaces Ωκ.

5.2.1. On basepoints. Our first task will be to describe a system of basepoints in Ωκ. It will
be convenient to have a whole system of basepoints with different combinatorial properties,
to account for all of the various possible ways that the n strips can be attached via slits. Our
basepoints will be indexed by orderings of the set {w1, . . . , wp} of the critical points, which
we enumerate as permutations σ of the set {1, . . . , p}. We will also have occasion to consider
a convenient admissible root marking Aσ on Tσ.

Construction 5.2 (Basepoint surface Tσ ∈ ΩRL
κ , admissible marking Aσ). Let n ≥ 2 and

κ = k1 ≥ · · · ≥ kp be given, where κ is a partition of n− 1, indexing critical points w1, . . . , wp
of corresponding order. Let σ be a permutation of {1, . . . , p}. We build Tσ ∈ Ωκ starting with
n strips S1, . . . , Sn, depicted in Figure 12 as running from bottom to top. For 1 ⩽ j ⩽ kσ(1)+1,
assign the fixed prong in Sj to the critical point wσ(1) of order kσ(1). Subsequently, for 2 ⩽
m ⩽ p, assign the fixed prong in strips Sj for kσ(1)+· · ·+kσ(m−1)+2 ⩽ j ⩽ kσ(1)+· · ·+kσ(m)+1
to the critical point wσ(m) of order km. We call the set of strips with fixed prong assigned to
wσ(m) the m

th group of strips. Note the asymmetry in the construction: the first group of
strips contains kσ(1) + 1 strips, while for m ≥ 2, the mth group contains kσ(m) strips.
Next we specify the positions of the p − 1 free prongs. By construction, there will be

exactly one free prong assigned to each critical point wσ(m) for m ≥ 2. Place a free prong at
πi in the topmost strip Skσ(1)+···+kσ(m−1)+1 in the (m− 1)st group, assigned to wσ(m).
Finally, we specify the gluings. As always, glue the top left and bottom left half-edges of

each Sj . In the first group, glue the top right of Sj to the bottom right of Sj+1, including the
top of Skσ(1)+1 to the bottom of S1. For groups 2 ⩽ m ⩽ p, likewise glue the top right of Sj
to the bottom right of Sj+1, but glue the top right of the topmost strip in the group to the
bottom of the slit emanating from the free prong assigned to wσ(m), and the bottom right of
the bottom-most strip in the group to the top of this slit. See Figure 12. This also depicts
the admissible root marking Aσ on Tσ, consisting of a system of admissible arcs at height ε
in each of the strips.

5.2.2. The half-push move and its consequences. Here we describe an extremely useful family
of deformations in Ωκ, the half-push.

Construction 5.3 (Half-push, full push). Let w and w′ be distinct cone points on T ∈ Ωκ.
Suppose that in some strip Sj, the fixed prong is assigned to w, and there is some small
neighborhood of w whose intersection with Sj contains a free prong for w′ near the top of the
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Figure 12. The basepoint surface Tσ ∈ Ωκ of Construction 5.2, illustrated in
the case n = 5, κ = {2, 1, 1}, ordered so that w1 has order k1 = 2 and is colored
red, w2 has order k2 = 1 and is yellow, and w3 has order k3 = 1 and is blue.
The gluing instructions on the right halves of the surface are illustrated with
matching colors. The admissible root marking Aσ is shown as the system of
horizontal arcs in gray.

strip, and otherwise contains no other distinguished point. The half-push deformation takes
this free prong for w′ and pushes it up the top-right side of Sj into the next vertically-adjacent
strip. This new strip is then re-cut so that the prong for w′ becomes fixed; the prong for w′

(and any other free prongs that might be present) becomes free. A full push of w about w′ is
the composition of two half-pushes, the first as described above, and the second with the
roles of w and w′ reversed. See Figures 13 and 14.

Using half-pushes, the following lemma will allow us to freely switch between basepoints as
convenient.

Lemma 5.4. For any two permutations σ, τ of {1, . . . , p}, there is a path in Ωκ from Tσ to
Tτ that takes Aσ to Aτ .

Proof. It suffices to construct such a path in the case when τ differs from σ by a single
transposition of adjacent elements. By hypothesis, there are critical points w,w′ that are
adjacent on both Tτ and Tσ, and for which w is below w′ on Tσ and above w′ on Tτ . By
Construction 5.2, on Tσ there is a free prong in the topmost slit for w that is associated to w′.
This can be pushed up on the associated slit until it is just below the fixed prong, leaving Aσ
undisturbed in the process. The local picture near the cone points for w,w′ now looks like
that of Figure 13. Let w have order k and w′ order k′. After a sequence of 2k′+1 half-pushes,
w and w′ will have switched places: the strips formerly occupied by w will now be occupied
by w′ and vice versa. Vertically re-ordering the strips, one obtains a cut-paste equivalence
realizing the resulting surface as Tτ . At no point in this process did the deformations disturb
the root marking, and so we see this path takes Aσ to Aτ as required. □
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Figure 13. A sequence of two half-pushes, local structure. Each row depicts
three portions of neighborhoods of the red/blue cone points on a fixed transla-
tion surface.

Figure 14. A sequence of two half-pushes, with full strips depicted. We
alternate between pushing and re-cutting.

We can also obtain some explicit monodromy elements via a sequence of half-pushes.

Lemma 5.5. Let w,w′ be critical points on a translation surface T ∈ Ωκ such that some
cone point for w′ lies in a small neighborhood of a cone point for w. Then there is a loop in
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Ωκ based at T inducing the full twist about the curve enclosing w,w′ contained in the union
of small neighborhoods for w,w′.

Proof. We saw in Lemma 5.4 that a sequence of 2k′ + 1 half-pushes exchanges the roles of w
and w′. Consequently, performing a total of 2(k+ k′+1) half-pushes will exchange these once
again. The monodromy of the resulting loop is a full twist of w about w′, as topologically, we
see the cone points w and w′ orbit once around each other in a small neighborhood, leaving
the rest of the surface undisturbed. □

5.2.3. Containment of vertex stabilizer. The proof of Theorem A follows standard principles
in geometric group theory (cf. [FM12, Lemma 4.10]): given an action of a group G on
a connected graph X, one sees that G is generated by elements taking a chosen vertex
v to adjacent vertices, along with the stabilizer Gv of v. We will apply this principle to
the action of Bκ[ψT ] on Mκ. For basepoint, we take T0 ∈ Ωκ to be the basepoint surface
of Construction 5.2 associated to the standard ordering k1, k2, . . . , kp, and let A0 be the
associated ARM arising from Construction 5.2. We will take the vertex of Mκ associated to
A0 as our basepoint. To see that Γκ = Bκ[ψT ], we will show that both types of generating
elements are contained in the monodromy subgroup Γκ. In Lemma 5.7, we consider the
vertex stabilizer; in preparation, we first establish a fact about braid groups.

Lemma 5.6. Let λ : [n] → Z be a “coloring” of the finite set [n] = {1, 2, . . . , n}, and let
Bn[λ] ⩽ Bn be the “colored braid group” consisting of all braids that preserve the coloring λ.
With respect to the standard generators {ai,j | 1 ⩽ i < j ⩽ n} of the pure braid group [FM12,
Section 9.3], let σi,j denote the corresponding half-twist. Then Bn[λ] is generated by the set
of elements

{σw(i,j)i,j | 1 ⩽ i < j ⩽ n},
where w(i, j) = 1 if λ(i) = λ(j) and w(i, j) = 2 otherwise.

Proof. Let the subgroup generated by the indicated elements σ
w(i,j)
i,j be denoted by Γ. Since

PBn ⩽ Bn[λ] and the generating set for Γ evidently contains the generating set {σ2
i,j | 1 ⩽

i < j ⩽ n} of PBn, it remains only to show that the quotients Γ/PBn and Bn[λ]/PBn are
isomorphic. The latter decomposes as a product of symmetric groups on the points of a given
weight, while the former includes all transpositions between points of equal weight; the result
follows. □

Lemma 5.7. Let G0 ⩽ Bκ[ψT ] denote the stabilizer of A0. Then G0 ⩽ Γκ.

Proof. A given g ∈ G0 preserves A0 as a set, but does not necessarily fix each individual
arc. We first reduce to this case. According to Remark 3.3, A0 induces a cyclic ordering
on the roots, which must be preserved by g ∈ G0. Consider the deformation on T0 induced
by performing a full push of w2 about w1, then a full push of w3 about w2 and so on, up
through a full push of wp−1 about wp. The effect is to simply vertically re-order the strips
in T0, pushing each one up by one (including taking the top strip Sn down to the bottom).
Such a deformation preserves A0 while inducing a cyclic permutation on the roots.
Thus, by applying some number of these deformations, we can assume that g preserves

each arc of A0. Let this subgroup be denoted PG0 ⩽ G0; it remains to show that PG0 ∈ Γκ.
By definition, PG0 consists of all braids that preserve each arc A0 as well as the winding
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numbers of each component of A0. But by Lemma 2.10, it follows that any braid preserving
A0 necessarily preserves ψT . Thus, PG0 can be identified with the full “colored braid group”
on the critical points on the cut-open surface Cκ \ A0 (we color the critical points according
to their orders, and allow any braid that preserves color). Any such braid can be induced by
a deformation of translation surfaces in Ωκ, as follows.

Figure 15. A system of paths on T0 avoiding A0, illustrated in the case
n = 7, κ = {2, 2, 1, 1} (it should be possible to infer the general construction
from this). Gluing instructions have been suppressed for clarity but follow what
was established in Construction 5.2. The path connecting w to w′ is bicolored
by the associated colors of w and w′.

By Lemma 5.6, the colored braid group is generated by
(
p
2

)
twists or half-twists about

a suitable collection of arcs connecting each pair of critical points. Figure 15 illustrates a
system of such arcs on the basepoint surface T0. They form the intersection pattern of the
standard generators for the pure braid group. Observe that each path is based at one end at
a free prong. The Dehn twist about a neighborhood of the path is then realized in Ωκ by
pushing the free prong along the path to the other critical point, completing one full orbit
(following Lemma 5.5), and returning.

It remains to exhibit a half-twist exchanging critical points of the same order. It suffices
to consider the case when critical points wm and wm+1 are vertically adjacent in T0, since
the braid group is generated by half-twists about such adjacent points. If each of wm, wm+1

have order k, then the construction of Lemma 5.4 in fact yields a loop based at T0 which
exchanges wm, wm+1 in a half-twist. □
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5.2.4. Moving to adjacent vertices. Finally we show that the action of Γκ on Mκ is transitive
on the vertices adjacent to the chosen basepoint. We first classify the orbits of adjacent
vertices.

Definition 5.8. Let A = {α1, . . . , αn} be an ARM on Cκ, and let γ be an admissible arc on
Cκ disjoint from A except at endpoints (necessarily ∞ and some root zi). Then γ ∪ αi forms
a simple closed curve, and every distinguished point except zi and ∞ lies in the interior of
one of the two disks on S2. This partition is ordered, in the sense that a distinguished point
either lies on the disk bounded by the left or the right side of αi (when oriented so as to run
from ∞ to zi.

The type of γ is defined to be this ordered partition.

Lemma 5.9. The stabilizer G0 ⩽ Γκ of A0 acts transitively on admissible arcs of a fixed type
disjoint from A0.

Proof. It is easy to see that the pure braid group of Cκ \ A0 acts transitively on arcs of a
given type. By Lemma 5.7, this is a subgroup of G0 ⩽ Γκ. □

Lemma 5.10. Let A′ ∈ Mκ be an ARM adjacent to A0. Then there is g ∈ Γκ for which
g(A0) = A′.

Proof. Let α′
i be the unique element of A′ not contained in A0. Then αi ∪ α′

i divides the set
of critical points into two groups C and C ′, lying to the right (resp. left) of αi when oriented
as usual to run from ∞ to a root.
Observe that the set of roots enclosed by αi ∪ α′

i to the right of αi is in fact determined
by C: letting k denote the sum of the orders of the points in C, the roots enclosed with C
consist of the k roots zi+1, . . . , zi+k lying immediately clockwise from αi in the cyclic ordering
of the roots specified by the ARM A0 (cf. Remark 3.3). Thus the type of α′

i relative to A0 is
determined only by the enclosed critical points C.
Let σ be an ordering of the critical points for which the the points of C appear last (in

any internal order). By Lemma 5.4, there is a path from T0 marked with A0 to Tσ marked
with Aσ. Let A

′
σ denote the ARM on Tσ obtained by parallel transport of A′ along this path.

Figure 16 exhibits an element of the monodromy based at Tσ taking Aσ to some adjacent
ARM A′′

σ of the same type as A′
σ; these differ only at the arcs marked α and α′′ in the first

and last panels of the figure. In the illustrated example, the set C consists of the critical
points marked in green, blue, and yellow (the topmost three). For simplicity we illustrate the
case where each of these has order 1; the deformations in the general case are completely
unchanged. Passing from (1) to (2), we push all but the bottom-most critical point in C up
as shown (if C consists of only one element, this step is not performed). Denote the strip
containing all these free prongs by S. Passing from panels (2) through (5), we work our
way from top to bottom, pushing the topmost free prong in S up through the top-left; this
necessitates repeatedly recutting S so that the topmost free prong becomes fixed. Passing
from panels (5) to (7), we push the free prongs for the same subset of critical points in C up
through the top-left of their slits; this again requires a recutting. Passing from (7) to (8) we
simply re-order the strips vertically and recut the top strip in (7). Finally, one passes from
(8) to (9) by following the inverse of the path taken from (1) to (2).
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α

α′′

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 16. A deformation based at Tσ taking Aσ to A′′
σ.

We have thus exhibited an element of the monodromy (based at Tσ) taking Aσ to A′′
σ of

the same type as A′
σ. Let A

′′ denote the ARM on T0 obtained by parallel transport of A′′
σ

back from Tσ to T0. Changing the basepoint back to T0, we obtain a loop g based at T0 that
takes A0 to some A′′ of the same type as A′. By Lemma 5.9, there is some element of Γκ
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that fixes A0 and sends A′′ to A′. Composing these, we produce the required element g ∈ Γκ
with g(A0) = A′. □

Proof of Theorem A. Let ψT be the logarithmic relative winding number function on Cκ (as
defined in Definition 4.4), and let f ∈ Bκ[ψT ] be arbitrary. With A0 continuing to denote the
basepoint ARM on T0 as in Construction 5.2, define B = f(A0). By Proposition 3.14, there
is a sequence A0, A1, . . . , Am = B of adjacent vertices in the graph Mκ of ARMs on Cκ.
We will see how to construct f ′ ∈ Γκ for which f

′(A0) = B, by inductively defining elements
fi ∈ Γκ for which fi(A0) = Ai. By Lemma 5.10, there exists g1 ∈ Γκ such that g1(A0) = A1;
define f1 := g1. Now define A′

i+1 = f−1
i (Ai+1), and note that by induction, A′

i+1 is adjacent
to f−1

i (Ai) = A0. Again by Lemma 5.10, there is gi+1 ∈ Γκ such that gi+1(A0) = A′
i+1, and

then set fi+1 = figi+1, and verify that fi+1(A0) = fi(A
′
i+1) = Ai+1.

Given such f ′, note that the composition f−1f ′ fixes A0 and hence f−1f ′ ∈ G0 ⩽ Γκ by
Lemma 5.7. It follows that f ∈ Γκ as desired. □

5.3. Proof of Corollary B. Here we see how to recover and improve the main theorem of
[Sal23]. We will be brief here and will freely refer back to [Sal23] as required.

[Sal23, Section 4] establishes the theory of relative winding number functions on C marked
only at the roots of a polynomial f ∈ Polyn(C)[κ]. In [Sal23, Lemma 4.3], it is shown that,
taking r = gcd(k1, . . . , kp), there is a well-defined “mod-r winding number function” ψT from
the set of arcs connecting ∞ to a root, valued in Z/rZ, computed as the mod r-reduction
of the associated logarithmic winding number function ψT on Cκ. To prove Corollary B, it
suffices to show that the forgetful map Bκ → Bn (induced by forgetting the critical points)
induces a surjection Bκ[ψT ] → Bn[ψT ].
To this end, let f ∈ Bn[ψT ] be arbitrary, and lift f to f ∈ Bκ. Let A be an ARM on Cκ.

Then f(A) is a root marking, and by hypothesis, each arc in f(A) is isotopic to an admissible
arc if allowed to slide over critical points. Via Lemma 2.5, each such crossing changes the
winding number by a multiple of r.

For each root zi, choose a system of arcs disjoint from f(A) and connecting zi to the critical
points wm. By twist-linearity, the Dehn twist about a neighborhood of such an arc changes
the winding number of the arc in f(A) at zi by the corresponding order km, and leaves the
winding numbers of each other arc in f(A) unchanged. By performing some suitable set of
twists, it is possible to successively alter each of the arcs in f(A) so that the winding numbers
become zero. By Lemma 2.10, the composition of f with such a collection of twists lies in
Bκ[ψT ], and induces the chosen f upon forgetting the critical points. □
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