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Abstract. This paper answers a basic question about the Birman exact sequence in the theory of

mapping class groups. We prove that the Birman exact sequence does not admit a section over any

subgroup Γ contained in the Torelli group with finite index. A fortiori this implies that there is no

multi-section for the universal surface bundle with Torelli monodromy. This theorem was announced

in a 1990 preprint of G. Mess, but an error was uncovered and described in a recent paper of the first

author.

1. Introduction

Let S be a surface of finite type. A fundamental tool in the study of the mapping class group

Mod(S) of S is the Birman exact sequence, which describes the relationship between Mod(S) and

Mod(S′) of a surface S′ obtained from S by filling in boundary components and/or punctures on S. In

its most basic form, S = Σg,∗ is a surface of genus g ≥ 2 with a single puncture ∗ ∈ Σg, and S′ = Σg is

the closed surface obtained by filling in ∗. In this case, the Birman exact sequence takes the form

1→ π1(Σg, ∗)→ Mod(Σg,∗)→ Mod(Σg)→ 1. (1)

Given any subgroup Γ 6 Mod(Σg), we can form the Birman exact sequence for Γ by pullback. We

have the following question:

Question 1.1 (Birman exact sequence splitting problem). For which subgroups Γ 6 Mod(Σg) does

the Birman exact sequence for Γ

1→ π1(Σg)→ Γ̃→ Γ→ 1 (2)

split?1

For Γ = Mod(Σg), the full Birman exact sequence (1) does not split for any g ≥ 2. This is an

easy consequence of two observations. For one, there exist non-cyclic torsion subgroups of Mod(Σg),

and secondly, it is simple to show that no such subgroups exist in Mod(Σg,∗). While this argument

quickly dispatches the case of Γ = Mod(Σg), it is unsuitable even for general finite-index subgroups, as

Mod(Σg) is known to be virtually torsion-free (see e.g. [FM12, Theorem 6.9]).
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1Recall that a group homomorphism p : G → H is said to split if there is a homomorphism s : H → G such that

p ◦ s = id. More generally, such a p is said to virtually split if there is a finite-index subgroup H′ such that the restriction

of p to p−1(H′) splits. For a short exact sequence 1 → A → B → C → 1, the homomorphism under consideration is

always the surjection B → C.
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For g = 2 the Birman exact sequence does virtually split, as follows from the fact that every Riemann

surface of genus 2 is hyperelliptic and is therefore equipped with 6 distinguished Weierstrass points.

The purpose of this paper is to show that a similar phenomenon cannot occur for higher genus surfaces,

and moreover to resolve Question 1.1 for a large class of groups that includes all finite-index subgroups.

For the definition of the Torelli group I(Σg), see Section 2.2.

Theorem A. For g ≥ 4, the Birman exact sequence does not virtually split. Moreover, for any

subgroup Γ 6 I(Σg) of finite index in the Torelli group, there is no splitting σ : Γ → I(Σg,∗) of the

restriction of the Birman exact sequence to Γ.

Topological reformulation: multisections. Question 1.1 and Theorem A admit a topological

reformulation. Let p : E → B be a Σg-bundle with monodromy representation ρ : π1(B)→ Mod(Σg),

and define Γ := Im(ρ). The existence of a splitting of the Birman exact sequence for Γ as in (2) is

equivalent to the existence of a section of p : E → B, i.e., a continuous map s : B → E satisfying

p ◦ s = id.

More generally, a multisection (of cardinality n) of p is a continuously-varying choice of n distinct

points on each fiber. A multisection is not necessarily an amalgamation of n distinct sections, since

the points may be permuted by moving around loops in B. However, this permutation monodromy

can be made trivial by pulling back the surface bundle along a well-chosen finite-sheeted cover B′ of B.

Thus a multisection always gives rise to a virtual section of p : E → B, i.e., a finite-sheeted cover B′ of

B such that the pullback of p to B′ admits a section.

The topological reformulation of Theorem A concerns multisections of the universal curve π : Mg,∗ →
Mg. Here, Mg is the moduli space of Riemann surfaces of genus g, and Mg,∗ is the moduli space of

Riemann surfaces of genus g equipped with a marked point. In order to avoid technicalities induced

by the orbifold structure on Mg, we consider instead the finite-sheeted cover π : Mg,∗[3] → Mg[3]

of (marked) Riemann surfaces equipped with a framing of Z/3Z-homology; Mg[3] is a manifold and

π : Mg,∗[3]→Mg[3] is a Σg-bundle. In the topological setting, the Torelli group corresponds to the

Torelli space Ig whose points correspond to Riemann surfaces equipped with a framing of integral

homology; likewise Ig,∗ consists of homologically-framed curves equipped with a marked point. There

are covering maps Ig →Mg[3] and Ig,∗ →Mg,∗[3], and these maps are compatible with the bundle

projection maps. We thus obtain Theorem B below as an immediate corollary of Theorem A.

Theorem B. For g ≥ 4, the universal family π : Ig,∗ → Ig does not admit any continuous

multisection. A fortiori, for g ≥ 4, there is no continuous multisection of π : Mg,∗[3]→Mg[3].

Context for Theorem A: how to study finite-index subgroups? The class of finite-index

subgroups of Mod(Σg) is famously mysterious, and there are very few nontrivial results known about

an arbitrary Γ 6 Mod(Σg). Indeed, many guiding conjectures about the mapping class group ask

whether all finite-index subgroups have a particular property:

• The congruence subgroup conjecture asks if every finite-index subgroup contains a subgroup of

a particular form (a so-called congruence subgroup).
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• The virtual first Betti number problem asks whether the first rational Betti number of every

finite index subgroup of Mod(Σg) is 0.

• The virtual Nielsen realization problem asks whether any finite index subgroup of Mod(Σg) is

realizable as a group of homeomorphisms.

A pioneering study of arbitrary finite-index subgroups of Mod(Σg) was carried out by Ivanov [Iva84].

Below, the extended mapping class group Mod(Σg)
± is the group of mapping classes that do not

necessarily preserve orientation; it contains Mod(Σg) as a normal subgroup of index 2.

Theorem 1.2 (Ivanov’s rigidity theorem). Any injective homomorphism from a finite index subgroup

of Mod(Σg) to Mod(Σg) is induced by conjugation by Mod(Σg)
±.

Ivanov’s method is to extract topological information from the relevant algebraic data. For any

finite-index subgroup Γ 6 Mod(Σg) and any simple closed curve c, there exists some N (possibly

depending on c) such that the Dehn twist power TNc is contained in Γ. By studying the images of

these elements under an injective map, Ivanov shows that an injective homomorphism induces an

automorphism of a simplicial complex C(Σg) known as the curve complex for the surface Σg. Ivanov

also shows that Aut(C(Σg)) ∼= Mod(Σg)
±, leading to the result.

Any näıve attempt to apply Ivanov’s methods to Question 1.1 is fated to be unsuccessful. Ivanov’s

methods do extend to show that a virtual splitting of the Birman exact sequence induces an injective

map between curve complexes C(Σg) ↪→ C(Σg,∗), which might appear paradoxical. However, such

maps exist in abundance! This follows, for instance, from a theorem of Birman–Series [BS85]. Thus to

address the virtual splitting of the Birman exact sequence, we must develop methods beyond Ivanov’s

in order to look deeper into the structure of a general finite-index subgroup of Mod(Σg).

The work of Mess. Theorem A is claimed in the 1990 preprint [Mes90] of G. Mess. Unfortunately,

as detailed in the paper [Che17] of the first author, Mess’ argument contains a fatal error. In [Che17],

the first author proves Theorem A in the special case of the full Torelli group Γ = I(Σg). The

methods therein make essential use of some special relations in I(Σg) which disappear upon passing to

finite-index subgroups.

In the present note, we return to the outline of the argument as proposed by Mess. We follow his

argument to the point where his error occurs; this is essentially the content of Section 2. The core of

Mess’ idea is to show that a splitting of the Birman exact sequence for Γ as in Theorem A induces (at

least up to finite index) a section s of a fibration π of configuration spaces

π : PConf2(Σp)→ Σp.

Here PConf2(Σp) denotes the space of distinct ordered pairs of points on the surface Σp and π is

the projection onto the first coordinate; the relation of p to the original genus g is explained at the

start of Section 3. Roughly speaking, Mess incorrectly assumes that any section s must necessarily

be horizontal, i.e., that the projection onto the second coordinate must be constant, and derives a

contradiction predicated on this assumption.
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Our approach. Unfortunately, π does admit continuous sections (e.g. the graph of any fixed-point-free

map f : Σp → Σp), which seems to spell trouble for Mess’ method. However, the section s is far from

arbitrary: it arises from a hypothetical section of a surface bundle with a rich monodromy group.

We exploit this to extract more properties of a hypothetical section s, both of an algebraic and a

geometric nature. The core of our analysis is a study of the following intriguing questions about rigidity

properties of homomorphisms between surface groups. Below, we say that an element c ∈ H 6 π1(Σg)

is a simple curve power if i(c) = dk for some d ∈ π1(Σg) in the homotopy class of a simple closed curve

on Σg.

Question 1.3. Let H 6 π1(Σg) be a finite-index subgroup. Let i : H → π1(Σg) denote the inclusion

map, and let p : H → π1(Σg) be an arbitrary homomorphism.

(1) Suppose that p(c) = i(c) for all simple curve powers c ∈ H. Must p = i?

(2) Suppose that p(c) = 1 for all simple curve powers c ∈ H. Must p be the trivial homomorphism?

The first of these is answered in the affirmative in Lemma 3.6. We answer the latter question (again

affirmatively) under the additional assumption that p has a certain equivariance property; this is the

content of Lemma 3.7. Ultimately this is used to obtain information about the Lefschetz number of

certain maps between surfaces which is used to obstruct the existence of sections s satisfying all the

properties we show they must.

Splittings over normal subgroups. For an arbitrary subgroup Γ, Question 1.1 is far too broad to

be approachable. To better understand the splitting problem for subgroups Γ 6 Mod(Σg), it is best to

focus attention on classes of subgroups for which some amount of structure is imposed. Restricting

to the class of normal subgroups Γ C Mod(Σg) is one reasonable starting point, but attempting to

study Question 1.1 for the class of all normal subgroups is still too audacious – there is nothing even

approaching a conjectural classification or taxonomy of normal subgroups of mapping class groups.

Moreover, there are known examples of normal subgroups of Mod(Σg) that are abstractly isomorphic

to free groups, and more generally certain right-angled Artin groups [DGO17,CMM19]. It is trivial to

construct splittings of the Birman exact sequence over such subgroups.

In spite of this, it is now known that a broad collection of normal subgroups Γ additionally have the

property Aut(Γ) ∼= Mod(Σg)
± (see [BM18]). Examples of such subgroups include the Torelli group,

each term of the Johnson filtration, the terms of the Magnus filtration, and the groups generated

by kth powers of all Dehn twists - in contrast, the automorphism groups of the right-angled Artin

subgroups mentioned above are much larger.

Question 1.4. Let Γ C Mod(Σg) be a normal subgroup with Aut(Γ) ∼= Mod(Σg)
±. Does the restriction

of the Birman exact sequence to Γ split?

Organization of the paper. Section 2 collects the necessary facts from the theory of mapping

class groups, and establishes some preliminary results. Major points of interest are Definition 2.10,
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which defines the handle-pushing subgroups at the center of the argument, and Lemma 2.14, which

characterizes the behavior of special mapping classes under a splitting of (2). The proof of Theorem A

is then carried out in Section 3. The first major intermediate result is Corollary 3.5, which shows that

the map s discussed above has one of two very special forms and leads to Question 1.3. After resolving

this in Lemmas 3.6 and 3.7, Section 3.4 finishes the argument by a reduction to Lefschetz’s fixed point

theorem.

Acknowledgements. The first author would like to thank Jonathan Bowden for discussing the

content of the paper of Mess and possible fixes during the Oberwolfach meeting on surface bundles

in 2016 and afterwards. Both authors would like to thank an anonymous referee for comments that

greatly improved the paper.

2. Mapping class groups

Definitions and conventions. The mapping class group of a surface S is the group Mod(S) of

isotopy classes of orientation-preserving homeomorphisms of S that restrict trivially to the (possibly

empty) boundary of S and fix marked points as a set. Before beginning discussion of the theory of

canonical reduction systems, we establish some standard conventions that arise when working with

homeomorphisms and curves up to isotopy. To avoid cumbersome notation, we will not use brackets to

denote isotopy classes, so that e.g. the symbol f could denote both a specific homeomorphism as well

as an entire mapping class, and the symbol c could denote both a specific simple closed curve and its

isotopy class. Where necessary we will indicate precisely which is meant, but the reader should be

aware of some standard abuses of language. For instance, one may say that a mapping class f fixes a

curve c: precisely this means that any representative homeomorphism for f fixes any representative

curve for c up to isotopy. We will also speak of cutting a surface S along an isotopy class of curve c:

by this we mean cutting S along a representative curve for c.

2.1. Canonical reduction systems. The central tool for the proof of Theorem A is the notion

of a canonical reduction system, which can be viewed as an enhancement of the Nielsen–Thurston

classification and is originated from work of [BLM83]. We remind the reader that a curve c ⊂ S is said

to be peripheral if c is isotopic to a boundary component or a puncture of S. The Nielsen–Thurston

classification asserts that each nontrivial element f ∈ Mod(S) is of exactly one of the following types:

periodic, reducible, or pseudo-Anosov. A mapping class f is periodic if for some representative f , there

is some n ≥ 1 such that fn is isotopic to the identity. A mapping class f is reducible if it is of infinite

order but for some n ≥ 1, there is some non-peripheral simple closed curve c ⊂ S such that fn(c) is

isotopic to c. If neither of these conditions are satisfied, f is said to be pseudo-Anosov. In this case, f

has a representative homeomorphism of a very special form. We will not need to delve into the theory

of pseudo-Anosov mappings, and refer the interested reader to [FM12, Chapter 13] and [FLP12] for

more details.

Definition 2.1 (Reduction systems). A reduction system of a reducible mapping class h in Mod(S)

is a set of disjoint non-peripheral isotopy classes of curves that h fixes as a set (up to isotopy). A
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reduction system is maximal if it is maximal with respect to the inclusion of reduction systems for h.

The canonical reduction system CRS(h) is the intersection of all maximal reduction systems of h.

Canonical reduction systems allow for a refined version of the Nielsen–Thurston classification.

For a reducible element f , there exists n such that fn fixes each element in CRS(f) and after

cutting out CRS(f), the restriction of fn on each component is either identity or pseudo-Anosov.

See [FM12, Corollary 13.3]. In Propositions 2.2 - 2.5, we list some properties of the canonical reduction

systems that will be used later.

For two curves a, b on a surface S, let i(a, b) be the geometric intersection number of a and b (for

the definition of the geometric intersection number, see [FM12, Section 1.2.3]). For two sets of curves

P and Q, we say that P and Q intersect if there exist a ∈ P and b ∈ Q such that i(a, b) 6= 0. We

emphasize that “intersection” here refers to the intersection of curves on S, and not the abstract

set-theoretic intersection of P and Q as sets.

Proposition 2.2. Let h be a reducible mapping class in Mod(S). If {γ} and CRS(h) intersect, then

no power of h fixes γ.

Proof. Suppose that hn fixes γ. Therefore γ belongs to a maximal reduction system M . By definition,

CRS(h) ⊂M . However γ intersects some curve in CRS(f); this contradicts the fact that M is a set of

disjoint curves. �

Proposition 2.3. Suppose that h, f ∈ Mod(S) and fh = hf . Then CRS(h) and CRS(f) do not

intersect.

Proof. Conjugating relation gives CRS(hfh−1) = h(CRS(f)). Since hfh−1 = f , it follows that

CRS(f) = h(CRS(f)). Therefore h fixes the whole set CRS(f). There is some n ≥ 1 such that hn

fixes all curves element-wise in CRS(f). By Proposition 2.2, curves in CRS(h) do not intersect curves

in CRS(f). �

For a curve a on a surface S, denote by Ta the Dehn twist about a. More generally, a Dehn multitwist

is any mapping class of the form

T =
∏

T kiai

for a collection of pairwise-disjoint simple closed curves {ai} and arbitrary nonzero integers ki.

Proposition 2.4. Let

T =
∏

T kiai

be a Dehn multitwist. Then

CRS(T ) = {ai|ai is non-peripheral}.

Proof. This follows quickly from [BLM83, Lemma 2.5] and [FM12, Proposition 3.2]. �

The final result we will require appears as [McC82, Theorem 1].

Proposition 2.5 (McCarthy). Let S be a Riemann surface of finite type, and let f ∈ Mod(S) be a

pseudo-Anosov element. Then the centralizer subgroup of f in Mod(S) is virtually cyclic.
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2.2. The Torelli group, separating twists, and bounding pair maps. For the duration of this

section, let S be a surface with b boundary components and p punctures with b+ p ≤ 1. The action of

a mapping class on homology gives rise to the symplectic representation

Ψ : Mod(S)→ Aut(H1(S;Z)).

The Torelli group is the kernel I(S) := ker(Ψ). There are several classes of elements of the Torelli

group that will feature in the proof of Theorem A. For context, background, and proofs of the following

assertions, see [FM12, Chapter 6]. A separating twist is a Dehn twist Tc, where c is a separating curve

on S. Separating twists Tc ∈ I(S) are elements of the Torelli group. A pair of curves {a, b} ⊂ S is

said to be a bounding pair if a, b are individually nonseparating, but a ∪ b bounds a subsurface of

S of positive genus on both sides. A bounding pair map is the Dehn multitwist TaT
−1
b ; necessarily

TaT
−1
b ∈ I(S) for any bounding pair {a, b}.

Purity and the Torelli group. For a general mapping class f , we have remarked above that there

exists some n ≥ 1 such that fn fixes each element of CRS(f) as well as each component of Σg \CRS(f)

and the restriction of fn to each component of Σg \ CRS(f) is either pseudo-Anosov or trivial. A

mapping class is said to be pure if n = 1 suffices; a subgroup Γ ≤ Mod(Σg) is said to be pure if all

elements are pure. In the sequel we will often use the following result without comment.

Lemma 2.6. For g ≥ 1, the Torelli group I(Σg) is pure.

Proof. According to [Iva92, Corollary 1.8], for g ≥ 1 the level-3 mapping class group Mod(Σg)[3] is

pure in the above sense; purity passes to subgroups. �

2.3. Point- and disk-pushing subgroups. The kernel π1(Σg, ∗) of the Birman exact sequence is

referred to as the point-pushing subgroup of Mod(Σg,∗). An element α ∈ π1(Σg, ∗) determines a

mapping class α ∈ Mod(Σg,∗) as follows: one “pushes” the marked point ∗ along the loop determined

by α. In the course of our argument, we will have occasion to consider two apparently distinct notions

of simplicity for curves on Σg. We pause here to explain that these are actually equivalent. An element

x ∈ π1(Σg, ∗) is said to be simple if it has a simple closed curve representative as an unbased curve on

Σg, and x ∈ π1(Σg, ∗) is said to be based-simple if it has a simple closed curve representative based

at ∗.

Lemma 2.7. Let x ∈ π1(Σg, ∗) be given. Then x is based-simple if and only if it is simple.

Proof. Certainly if x is based-simple then it is simple. For the converse, we observe that if x is simple,

then there is some conjugate of x that is based-simple. We claim that if some element of the conjugacy

class of x is based-simple, then every element of the conjugacy class is based-simple. To see this,

suppose that yxy−1 is based-simple with based representative ξ. The point-pushing subgroup π1(Σg, ∗)
of Mod(Σg, ∗) acts by inner automorphisms on π1(Σg, ∗). Let Y be a homeomorphism of (Σg, ∗)
determining the point-push along y ∈ π1(Σg, ∗); then Y −1(ξ) is a simple loop based at ∗ in the based

homotopy class of x. �
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Following Lemma 2.7, we will use the term simple to refer to both based and unbased simplicity.

There is an analogous notion of a “disk-pushing subgroup”. Let S = Σg,1 denote a surface of genus g

with one boundary component. In this setting, the Birman exact sequence is originally due to Johnson

(see [Joh83, Section 3]) and takes the form

1→ π1(UTΣg)→ Mod(Σg,1)→ Mod(Σg)→ 1. (3)

Here, UTΣg denotes the unit tangent bundle of Σg; i.e., the S1-subbundle of the tangent bundle TΣg

consisting of unit-length tangent vectors (relative to an arbitrarily-chosen Riemannian metric). In

this context, the kernel π1(UTΣg) is known as the disk-pushing subgroup. An element α̃ ∈ π1(UTΣg)

determines a “disk-pushing” homeomorphism of Σg,1 as follows: one treats the boundary component

∆ as the boundary of a disk D, and “pushes” D along the path determined by the image α ∈ π1(Σg).

The extra information of the tangent vector encoded in α̃ is used to give a consistent framing of ∂D

along its path. By convention, if α̃ ∈ π1(UTΣg) is specified, the symbol α will always denote the

projection of α̃ to π1(Σg).

The proposition below records some basic facts about point- and disk-pushing subgroups. In

item 5 below, the support of a (not necessarily simple) element α ∈ π1(Σg) is defined to be the

minimal subsurface Sα ⊂ Σg,∗ that contains α for which every component of ∂Sα is essential, i.e.,

non-nullhomotopic and non-peripheral.

Proposition 2.8.

(1) There are containments π1(Σg) ≤ I(Σg,∗) and π1(UTΣg) ≤ I(Σg,1).

(2) Let α ∈ π1(Σg) be a simple element. Viewed as a point-push map, α has an expression as a

bounding pair map

α = TαL
T−1
αR
,

where αL, αR are the simple closed curves on Σg,∗ lying to the left (resp. right) of α (by

convention, Dehn twists are left-handed).

(3) Let ζ ∈ π1(UTΣg) be a generator of the kernel of the map π1(UTΣg)→ π1(Σg). Viewed as a

push map, ζ is equal to T∆, the twist about the boundary component of Σg,1.

(4) Let α̃ ∈ π1(UTΣg) be simple (in the sense that α ∈ π1(Σg) can be represented as a simple

closed curve). Viewed as a disk-pushing map, there is an expression

α̃ = TαL
T−1
αR
T k∆

for some k ∈ Z.

(5) Let α ∈ π1(Σg) be an arbitrary (not necessarily simple) element. Then

CRS(α) = ∂(Sα),

the (possibly empty) boundary of the support Sα. Moreover, when α is non-simple as a loop,

the push map α is pseudo-Anosov on the subsurface Sα.
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Proof. Items (1)- (4) are standard; see [FM12, Chapters 4,6] for details. Item (5) is a reformulation

of a theorem of Kra, adapted to the language of canonical reduction systems. See [FM12, Theorem

14.6]. �

In Section 3, we will make use of the following lemma concerning the action of separating twist

maps on the underlying fundamental group.

Lemma 2.9. Let Tc ∈ I(Σg,∗) be a Dehn twist about a separating simple closed curve c. Let α ∈ π1(Σg)

be an arbitrary element, represented as a (not necessarily simple) curve based at ∗ ∈ Σg,∗. If

T kc (α) = α

for any k 6= 0, then there exists a representative of α that is disjoint from c.

Proof. If T kc (α) = α for some k 6= 0, then T kc and α commute as elements of I(Σg,∗). By Propositions

2.3, 2.4, and 2.8.5, we have that CRS(α) = ∂(Sα) and CRS(T kc ) = {c} must be disjoint. Thus c is

either contained in Sα or else in Σg,∗ \ Sα.

If α is a non-simple loop then by Lemma 2.8.5, the push map α is pseudo-Anosov on Sα and hence

does not fix any isotopy class of curves on Sα. But since α and T kc commute, necessarily α fixes c,

showing that c ⊂ Σg,∗ \ Sα and hence α and c admit disjoint representatives as claimed.

In the degenerate case where α is simple and c is contained in Sα the claim still holds, since in this

case α and c must actually be disjoint as isotopy classes of curves. �

2.4. The handle-pushing subgroup. As in Mess’s approach, we will prove Theorem A by showing

that certain “handle-pushing” subgroups (contained in any finite-index subgroup of I(Σg)) do not

admit sections to I(Σg,∗). To define these, let c be a separating curve on Σg. The complement Σg \ {c}
has closure consisting of two connected components P and Q, with P ∼= Σp,1 and Q ∼= Σq,1. Let

I(c) ≤ I(Σg) be the subgroup consisting of Torelli mapping classes that are a product of mapping

classes with supports on either P or Q. The subgroup I(c) satisfies the following exact sequence

(c.f. [FM12, Theorem 3.18]):

1→ Z→ I(P )× I(Q)→ I(c)→ 1,

where Z is generated by (Tc, T
−1
c ).

Definition 2.10. [Handle-pushing subgroup] Let c be a separating curve as in Figure 1, dividing

Σg \ {c} into surfaces P and Q of genera p and q, respectively. The handle-pushing subgroup on P ,

written H(P ), is defined as

H(P ) := π1(UTP ) ≤ I(c).

More broadly, any finite-index subgroup of H(P ) will also be called a handle-pushing subgroup.

Remark 2.11. Every finite-index subgroup of H(P ), being isomorphic to a finite-index subgroup

of π1(UTP ), is isomorphic to a non-split extension of a surface group of genus p′ ≥ p by Z. The

persistence of this phenomenon to every finite-index subgroup of I(Σg) provides the key family of

relations we exploit to prove Theorem A.
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c

P

Q

γ

γL

γR

Figure 1. The mapping class TγLT
−1
γR is an element of the handle-pushing subgroup for P .

Denote by A ≤ I(c) the group generated by the disk-pushing subgroups on both subsurfaces P and

Q. Then A satisfies the following exact sequence:

1→ Z→ π1(UTP )× π1(UTQ)
π−→ A→ 1. (4)

Lemma 2.12. For p, q both at least 2, the exact sequence (4) does not virtually split.

Proof. We begin with the following claim.

Claim. Let G be a group and let

1→ Z→ G̃
α−→ G→ 1 (5)

be a Z-central extension of G. Let b1(G) denote the rational first Betti number of G, and define b1(G̃)

similarly. Then if b1(G) = b1(G̃), the sequence (5) does not virtually split.

To prove the claim, let G′ ≤ G be a finite-index subgroup determining a pullback

1→ Z→ G̃′
α′−→ G′ → 1 (6)

of (5). The five-term exact sequences for (5) and (6) with rational coefficients (c.f. [Bro94, Corollary

VII.6.4]) fit together to give the following commutative diagram with exact rows.

H2(G′)
d //

��

Q //

��

H1(G̃′)
α̃∗ //

��

H1(G′) //

��

0

H2(G)
d
// Q // H1(G̃)

α∗
// H1(G) // 0

(7)

According to the theory of the Euler class for group extensions (c.f. [Bro94, Sections IV.3 and VII.6]),

if d : H2(G′) → Q is nonzero, then the sequence (6) does not split. Since G′ ≤ G is a subgroup

of finite index, the theory of the transfer map implies that the map H2(G′) → H2(G) is a sur-

jection, and thus it suffices to show that d : H2(G) → Q is nonzero. By exactness of the bottom

row of (7), d is nonzero if and only if α∗ is an isomorphism, or equivalently if and only if b1(G′) = b1(G).
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By the Claim, to prove Lemma 2.12 we only need to show that b1(A) = b1(π1(UTP )× π1(UTQ)).

However, since p ≥ 2 and q ≥ 2 by assumption, b1(π1(UTP )) = b1(π1(P )) (and similarly replacing P

with Q), and hence

b1(π1(UTP )× π1(UTQ)) = b1(π1(P )× π1(Q)).

Since there is a surjective map A→ π1(P )× π1(Q), it follows that

b1(A) ≥ b1(π1(P )× π1(Q)) = b1(π1(UTP )× π1(UTQ)).

On the other hand, π gives a surjective map π1(UTP )× π1(UTQ)→ A, and hence

b1(A) ≤ b1(π1(UTP )× π1(UTQ)).

Thus b1(A) = b1(π1(UTP )× π1(UTQ)) as desired. �

2.5. Lifts of some special mapping classes. The foundation of the proof of Theorem A is an

analysis of the possible images of bounding pair maps and separating twists under a hypothetical

section. This is recorded as Lemma 2.14. Throughout this subsection, fix a finite-index subgroup

Γ ≤ I(Σg) and a hypothetical section σ : Γ→ Mod(Σg,∗) of the Birman exact sequence for Γ. We first

record a useful preliminary observation.

Lemma 2.13. With Γ and σ fixed as above, necessarily σ(Γ) ≤ I(Σg,∗).

Proof. Proposition 2.8.1 observes that π1(Σg) ≤ I(Σg,∗). Thus the restriction of the Birman exact

sequence to I(Σg) takes the form

1→ π1(Σg)→ I(Σg,∗)→ I(Σg)→ 1,

and consequently any section σ : I(Σg)→ Mod(Σg,∗) is valued in I(Σg,∗). A fortiori the same holds

for any subgroup Γ ≤ I(Σg). �

Since Γ is a finite-index subgroup of I(Σg), there is no assumption that a given separating twist Tc

or bounding pair map TaT
−1
b is an element of Γ. However, the assumption that Γ is of finite index in

I(Σg) does imply that each separating twist Tc and each bounding pair map TaT
−1
b has some power

in Γ. In the following lemma and throughout, for a curve c̃ on Σg,∗ (resp. Σg,1), when we say c̃ is

unmarked-isotopic to a curve c on Σg, we mean that c̃ is isotopic to c after forgetting the marked point

(resp. boundary component).

Lemma 2.14.

(1) Let {a, b} be a bounding pair, and fix k > 0 such that (TaT
−1
b )k ∈ Γ. Up to a swap of a and b,

we have that σ((TaT
−1
b )k) = (Ta′T

−1
b′ )k(T−1

a′ Ta′′)
n, where n is an integer (possibly zero) and

a′, a′′, b′ are three disjoint curves on Σg,∗ such that a′, a′′ are unmarked-isotopic to a and b′ is

unmarked-isotopic to b.

(2) Let c ⊂ Σg be a separating curve such that each component of Σg \ {c} has genus at least 2,

and let k > 0 be such that T kc ∈ Γ. Then there exists a curve c′ ⊂ Σg,∗ unmarked-isotopic to c

such that σ(T kc ) = T kc′ .
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Proof. We decompose the proof into the following five steps.

Claim 2.15 (Step 1). Let a, b form a bounding pair on Σg. Then σ((TaT
−1
b )k) is reducible, i.e.,

CRS(σ((TaT
−1
b )k)) is nonempty. Similarly if c is an arbitrary separating curve on Σg, then σ(T kc ) is

reducible as well.

Proof. The proofs of the two assertions are functionally identical; we describe the bounding-pair case.

Let (TaT
−1
b )k ∈ Γ be a power of a bounding pair map. Since the centralizer of (TaT

−1
b )k contains a

copy of Z2g−3 as a subgroup of I(Σg) (see Figure 2), the centralizer of (TaT
−1
b )k as a subgroup of

Γ contains a copy of Z2g−3 as well. By the injectivity of σ, the centralizer of σ(TaT
−1
b ) ∈ I(Σg,∗)

contains a copy of Z2g−3. When g > 3, we have that 2g − 3 > 3. Therefore σ((TaT
−1
b )k) ∈ I(Σg,∗)

cannot be pseudo-Anosov because the centralizer of a pseudo-Anosov element is a virtually cyclic

group by Proposition 2.5. �

z1 z2 z3 z4 z5

x1 a x2 x3

y1 b y2 y3

Figure 2. The g−2 bounding pair maps TaT
−1
b and TxiT

−1
yi , and the g−1 separating

twists Tzi , illustrated for g = 6. Altogether this determines a copy of Z2g−3 centralizing

(TaT
−1
b )k.

In the remaining steps, we adopt the following notational convention. For any curve γ′ on Σg,∗,

denote by γ the same curve on Σg.

Claim 2.16 (Step 2).

(1) CRS(σ((TaT
−1
b )k)) only contains curves that are unmarked-isotopic to a or b.

(2) If c is a separating curve that bounds a subsurface of genus at least 2 on both sides, then

CRS(σ(T kc )) only contains curves that are unmarked-isotopic to c.

(3) If c is a separating curve that bounds a surface S ⊂ Σg of genus 1, then CRS(σ(T kc )) only

contains curves that lie in S up to unmarked isotopy.

Proof. We begin by formulating an assertion which implies all three statements. Let f denote either

(TaT
−1
b )k or T kc . Either {a, b} or {c} separates Σg into two subsurfaces C1, C2.

Claim. Suppose that Ci has Euler characteristic at most −2. Fix γ′ ∈ CRS(σ(f)). If the associated γ

is supported on Ci, then γ′ is unmarked-isotopic to a component of ∂Ci.

To prove the claim, suppose otherwise. Since χ(Ci) ≤ −2 and Ci has positive genus, there exists a

separating curve d on Ci such that i(d, γ) 6= 0. Choose m such that Tmd ∈ Γ. Since f and Tmd commute

in Γ, the two mapping classes σ(f) and σ(Tmd ) commute in I(Σg,∗). Therefore a power of σ(Tmd ) fixes
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CRS(σ(f)); more specifically a power of Tmd fixes γ. However by Lemma 2.2, no power of Td fixes γ.

This is a contradiction. �

Step 2 establishes the following picture for the canonical reduction system of σ((TaT
−1
b )k), shown

in Figure 3. There is a similar picture for CRS(σ(T kc )) which we omit.

a′ a′′

b′C1 C2

Σg,∗ Σg

a

b

Figure 3. The canonical reduction system for σ((TaT
−1
b )k). Since the curves must be

disjoint, there can be at most two curves a′, a′′ (resp. b′, b′′) that are unmarked-isotopic

to a (resp. b), and moreover there can be at most three total curves. Without loss of

generality we eliminate b′′. We further note that following Step 2 we only know that

the canonical reduction system is nonempty; prior to Step 3 it is possible that one or

more of a′, a′′, b′ does not appear.

Claim 2.17 (Step 3). CRS(σ((TaT
−1
b )k)) must contain curves a′ and b′ that are unmarked-isotopic

to a and b, respectively. Similarly, if c is a separating curve that bounds subsurfaces of genus at least 2

on both sides, then CRS(σ(T kc )) must contain a curve c′ that is unmarked-isotopic to c.

Proof. For the case of a separating curve c this follows by combining Steps 1 and 2. Suppose

that CRS(σ((TaT
−1
b )k)) does not contain a curve a′ unmarked-isotopic to a. Then by Step 2,

CRS(σ((TaT
−1
b )k)) either consists of one curve b′ unmarked-isotopic to b or two curves b′ and b′′ both

unmarked-isotopic to b. After cutting Σg,∗ along CRS(σ((TaT
−1
b )k)), there is exactly one component

C that is not a punctured annulus. Ignoring the marked point, C is homeomorphic to the complement

of b in Σg.

Since the Torelli group is pure (Lemma 2.6), σ((TaT
−1
b )k) is either pseudo-Anosov on C or else

is the identity on C. If σ((TaT
−1
b )k) is pseudo-Anosov on C, then the centralizer of σ((TaT

−1
b )k)|C

is virtually cyclic by Proposition 2.5. Combining with Tb′ and Tb′′ , the centralizer of σ((TaT
−1
b )k)

in I(Σg,∗) is then virtually an abelian group of rank at most 3. This contradicts the fact that the

centralizer of σ((TaT
−1
b )k) contains a subgroup Z2g−3, since g ≥ 4 and hence 2g − 3 > 3. Therefore

σ((TaT
−1
b )k) is the identity on C. However, (TaT

−1
b )k is not the identity on C (here we view C as a

subsurface of Σg by forgetting the marked point). Since σ is a section, σ((TaT
−1
b )k) does not act as

the identity on C either, a contradiction. �

Claim 2.18 (Step 4). σ((TaT
−1
b )k) = (Ta′T

−1
b′ )k(T−1

a′ Ta′′)
n, where n is an integer and a′, a′′, b′ are

three disjoint curves on Σg,∗ such that a′, a′′ are unmarked-isotopic to a and b′ is unmarked-isotopic

to b. Similarly σ(T kc ) = T kc′(T
−1
c′ Tc′′)

n, where c′ and c′′ are disjoint and unmarked-isotopic to c.



14 LEI CHEN AND NICK SALTER

Proof. With reference to Figure 3, it suffices to show that σ((TaT
−1
b )k) cannot be pseudo-Anosov on

either positive-genus component Ci of

Σg,∗ \ CRS(σ((TaT
−1
b )k)).

Since Ci has positive genus and Euler characteristic at most −2, there exists a curve s on Ci that

is separating on Σg. Thus σ(Tms ) commutes with σ((TaT
−1
b )k) in σ(Γ). It follows that σ((TaT

−1
b )k)

fixes CRS(σ(Tms )). By Step 1, CRS(σ(Tms )) is nonempty and by Step 2 each curve is either unmarked-

isotopic to s or else contained in a surface of genus 1 bounded by s. In either case, CRS(σ(T kc ))

includes some non-peripheral curve on Ci, and so σ((TaT
−1
b )k) is not pseudo-Anosov on Ci. It follows

that σ((TaT
−1
b )k) must be a product of Dehn twists about the curves in CRS(σ((TaT

−1
b )k)). Since

σ((TaT
−1
b )k) is a lift of (TaT

−1
b )k, the claim holds. �

Observe that at this point, Lemma 2.14.1 has been established.

Claim 2.19 (Step 5). Let c ⊂ Σg be a separating curve such that each component of Σg \{c} has genus

at least 2, and let k > 0 be such that T kc ∈ Γ. Then there exists a curve c′ ⊂ Σg,∗ unmarked-isotopic to

c such that σ(T kc ) = T kc′ .

Proof. If this is not the case, then σ(T kc ) = T lc′T
m
c′′ where c′, c′′ bound an annulus and l 6= 0,m 6= 0.

Let A be the subgroup constructed in (4) above, relative to the separating curve c. Since A centralizes

Tc, the image σ(A ∩ Γ) must be contained in the centralizer of T lc′T
m
c′′ . Observe that the centralizer of

T lc′T
m
c′′ in I(Σg) must necessarily fix each of c′ and c′′, since any mapping class exchanging c′ and c′′

must exchange the subsurfaces bounded by c′ and c′′ and hence act nontrivially on H1(Σg,∗). It follows

that σ(A ∩ Γ) must be contained in the disk-pushing subgroups on the sides of c′ and c′′ not bounding

the annulus. This gives a virtual splitting of exact sequence (4), contradicting Lemma 2.12. �

�

3. Proof of Theorem A

Beginning the proof. For the sake of obtaining a contradiction, we assume that there exists

Γ ≤ I(Σg) a subgroup of finite index for which σ : Γ→ I(Σg,∗) is a section. Our first goal is to give

the construction of a pair of diagrams (8) and (10); following this, we will use these to construct the

map s at the heart of our argument.

By the hypothesis that g ≥ 4, there exists a separating simple closed curve c ⊂ Σg that divides Σg

into subsurfaces P and Q with p, q ≥ 2. Let Tc denote the corresponding Dehn twist. Choosing k such

that T kc ∈ Γ, Lemma 2.14.2 asserts that σ(T kc ) = T kc̃ for some separating curve c̃ ⊂ Σg,∗. The curve c̃

divides Σg,∗ into two subsurfaces P̃ and Q̃, respectively homeomorphic to P and Q after forgetting ∗.
Without loss of generality, we assume that the marked point ∗ lies in P̃ .

Let P be the (closed) surface obtained from P by capping the boundary component with a disk.

The group PB1,1(P ) is then defined as the fundamental group of the configuration space PConf1,1(P ),
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where

PConf1,1(P ) := {(x, v) | x ∈ P , v ∈ T 1
y (P ), x 6= y}.

Here, T 1
y (P ) denotes the space of unit-length tangent vectors in the tangent space Ty(P ), relative to an

arbitrarily-chosen Riemannian metric. Projection onto either factor realizes PConf1,1(P ) as a fibration

in two ways. Below P ′ denotes the surface obtained from P by removing a point, so that P ′ ∼= Σp,∗.

P ′

��
UTP ′ // PConf1,1(P )

p1 //

p2

��

P

UTP

(8)

The commutative diagram (9) below relates the Birman exact sequences for P̃ and P , restricted to

their respective Torelli groups. One subtlety here is in the definition of the Torelli group for P̃ : we

define I(P̃ ) to simply be the full preimage π−1(I(P )) under the projection π : Mod(P̃ )→ Mod(P ).

1 // PB1,1(P ) //

(p2)∗

��

I(P̃ ) //

π

��

I(P ) // 1

1 // π1(UTP ) // I(P ) // I(P ) // 1

(9)

We wiill need to understand how the section σ : Γ→ I(Σg,∗) restricts to I(P ).

Lemma 3.1. Given f ∈ Mod(P ) ∩ Γ, the lift σ(f) is supported on P̃ . Consequently the restriction of

σ to Mod(P ) ∩ Γ is valued in I(P̃ ).

Proof. We begin with the following claim.

Claim. Let f ∈ Mod(P ) ∩ Γ be given. Then σ(f) preserves P̃ and Q̃.

To prove the claim, let k be given so that T kc ∈ Γ. Since f and T kc commute, so do σ(f) and

σ(T kc ) = T kc̃ , the latter equality holding by Lemma 2.14.2. Thus σ(f) preserves CRS(σ(T kc̃ )) = {c̃}.
As σ(f) ∈ I(Σg,∗) by Lemma 2.13, it follows that σ(f) moreover preserves the subsurfaces P̃ and Q̃

bounded by c̃.

Following the claim, it remains to see that σ(f) restricts trivially to Q̃. To see this, let g ∈ Γ be any

element supported on Q. Applying the claim to f and g, it follows that both σ(f) and σ(g) restrict to

Q̃. As f and g commute, so do σ(f) and σ(g). Since this holds for arbitrary g, we conclude that σ(f)

must restrict trivially to Q̃ as claimed. �

Lemma 3.1 and diagram (9) can be combined into the diagram below, where the dashed arrow

indicates that σ is only defined on the finite-index subgroup Γ ≤ I(P ).
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1 // PB1,1(P ) //

(p2)∗

��

I(P̃ ) //

π

��

I(P ) // 1

1 // π1(UTP ) //

σ

YY

I(P ) //

σ

ZZ

I(P ) // 1

(10)

3.1. The map s. We now come to the central object of study in the argument. Let H = H(P ) ∩ Γ

denote the handle-pushing subgroup inside π1(UTP ) (c.f. Definition 2.10). Combining diagrams (10)

and (8), we obtain a homomorphism

s̃ := (p1)∗ ◦ σ : H → π1(P ). (11)

We will see that s̃ has paradoxical properties, leading to a contradiction that establishes the non-

existence of the section σ. A first observation, to be recorded in Lemma 3.2 below, is that we can

replace s̃ by a map between surface groups. Let $ : π1(UTP ) → π1(P ) denote the projection, and

define H := $(H). By construction, H is a finite-index subgroup of π1(P ) (c.f. Remark 2.11).

Lemma 3.2. There is a homomorphism

s : H → π1(P ) (12)

such that s̃ factors as s̃ = s ◦$.

Proof. As noted in Remark 2.11, H has the structure of a cyclic central extension of a finite-index

subgroup H ≤ π1(P ). Viewed as a subgroup of I(P ), the center of H consists of elements of the form

T kc . Thus it will suffice to show that (p1)∗(σ(T kc )) = 1. By Lemma 2.14.2, σ(T kc ) = T kc̃ , where c̃ is

the boundary of the subsurface P̃ ⊂ Σg,∗. The map (p1)∗ : PB1,1(P ) → π1(P ) is induced from the

boundary-capping map P̃ → P , and so (p1)∗(T
k
c̃ ) = 1 as required. �

The construction of s allows us to continue the analysis of σ begun in Lemma 2.14, giving a complete

description of σ on (powers of) bounding-pair maps.

Lemma 3.3. Let a, b form a bounding pair on Σg. Then there exists a bounding pair ã, b̃ on Σg,∗ such

that σ(T ka T
−k
b ) = T kã T

−k
b̃

for any k such that T ka T
−k
b ∈ Γ.

Proof. Since g ≥ 4, given any bounding pair a, b on Σg, it is possible to choose a separating curve

c such that (1) c separates Σg into subsurfaces P,Q as above, each of genus at least 2 and (2) the

curves a, b, c form a pair of pants. (Such a triple a, b, c is depicted in Figure 1; the bounding pair there

consists of the curves γL, γR.) We continue to use the suite of notation (c̃, P̃ , Q̃, P etc.) introduced

above.

Choose ` such that T `c ∈ Γ. As T ka T
−k
b commutes with T `c , the same is true for the lifts σ(T ka T

−k
b )

and σ(T `c ) = T `c̃ . In particular, σ(T ka T
−k
b ) is supported on exactly one component P̃ , Q̃ of the surface

Σg,∗ \ {c̃}. There are thus two possibilities to consider, depending on whether this component is P̃

(which also contains ∗) or Q̃.
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According to Lemma 2.14.1, there are simple closed curves ã, ã′, b̃ ⊂ Σg,∗ and an integer m such

that

σ(T ka T
−k
b ) = T k−mã Tmã′ T

−k
b̃
. (13)

The curves ã and ã′ are both unmarked-isotopic to a, but may not be isotopic on Σg,∗, i.e., ã ∪ ã′

can bound an annulus A containing the marked point ∗. If this is not the case, then ã, ã′ determine

the same isotopy class on Σg,∗, and the result follows. Note that in the case where A ⊂ Q̃, this must

necessarily hold.

We therefore assume that A ⊂ P̃ . Since a, b, c form a pair of pants on Σg, it follows that T ka T
−k
b is

an element of H, the handle-pushing subgroup. As before, we let P denote the closed surface obtained

by capping off P . Then there is a one-to-one correspondence between elements of H represented by

(a power of) a simple closed curve on P , and the set of bounding pairs a, b under consideration. We

write α(a, b) ∈ π1(P ) for the element of H corresponding to the bounding pair TaT
−1
b . Our proof now

proceeds by analyzing s on such elements of H.

As observed above, ∗ may or may not be contained in the annulus A. If ∗ is not, we can reformulate

the above argument by observing that s(α(a, b)k) = 1. In the remaining case, we aim to show that

either m = 0 or m = k in (13). As (without loss of generality) ã′ becomes isotopic to b̃ upon capping c

by a disk, it follows that

s(α(a, b)k) = (p1)∗(T
k−m
ã Tmã′ T

−k
b̃

) = T k−mã Tm−k
b̃

= α(a, b)m−k. (14)

To summarize, we have shown that for all bounding pairs a, b under consideration, there is an

integer m(a, b, k) such that

s(α(a, b)k) = α(a, b)m(a,b,k).

The desired assertion m = 0 or m = k now follows from Lemma 3.4 below. �

Lemma 3.4. Let G ≤ π1(P ) be a subgroup of finite index, and let f : G → π1(P ) be an arbitrary

homomorphism. Suppose that for all simple elements α ∈ π1(P ), there is an integer m(α, k) such that

f(αk) = αm(α,k).

Then either m(α, k) = 0 or else m(α, k) = k, independent of α.

Proof. Suppose α, β are simple elements. Then for any `, the conjugate β`αβ−` is also simple (Lemma

2.7). Choose k, ` such that αk and β` are both elements of G. Then definitionally,

f(β`αkβ−`) = (β`αβ−`)m(β`αβ−`,k). (15)

On the other hand, since f is a homomorphism, it follows that m(β,−`) = −m(β, `) and so

f(β`αkβ−`) = f(β`)f(αk)f(β−`) = βm(β,`)αm(α,k)β−m(β,`). (16)

For an arbitrary nontrivial element γ ∈ π1(P ) and integers m,n, the elements γm and γn are conjugate

if and only if m = n. It follows that m(α, k) = m(β`αβ−`, k). Thus,

(β`αβ−`)m(α,k) = βm(β,`)αm(α,k)β−m(β,`),
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and so

β`−m(β,`)αm(α,k)βm(β,`)−` = αm(α,k).

Nontrivial elements x, y ∈ π1(P ) commute if and only if there are nonzero integers c, d such that

xc = yd. As α, β were assumed to be simple, we conclude that one of three conditions must hold: (1)

α = β±1, or (2) ` = m(β, `) or else (3) m(α, k) = 0.

Case (1) provides no further information; we henceforth assume that α 6= β±1. To finish the

argument, we must show that if m(α, k) = 0, then m(β, `) = 0 for all β, `. Suppose to the contrary

that there is some β such that m(β, `) 6= 0. Reversing the roles of α and β in the above argument, we

see that (2) must hold and so k = m(α, k), but this contradicts the assumption m(α, k) = 0. �

Translated into the setting of the homomorphism s : H → π1(P ), Lemmas 3.3 and 3.4 combine to

give the following immediate but crucial corollary.

Corollary 3.5. The homomorphism s : H → π1(P ) has one of the following properties:

(A) s(αk) = αk for all elements αk ∈ H such that α ∈ π1(P ) is simple.

(B) s(αk) = 1 for all elements αk ∈ H such that α ∈ π1(P ) is simple.

The next step of the argument considers cases (A) and (B) separately. In both cases, we will see

that the formula defining s on simple elements extends to all of H.

3.2. Case (A).

Lemma 3.6. Suppose s has property (A) of Corollary 3.5. Then s : H → π1(P ) is given by the

inclusion map.

Proof. This follows easily from the method of proof of Lemma 3.4. Let β ∈ H be an arbitrary element,

let α ∈ π1(P ) be simple, and let αk ∈ H. Then βαβ−1 is also simple by Lemma 2.7, and βαkβ−1 ∈ H.

As βαβ−1 is simple,

f(βαkβ−1) = βαkβ−1;

on the other hand,

f(βαkβ−1) = f(β)αkf(β)−1.

Arguing as in Lemma 3.4, this implies f(β) = β as desired. �

3.3. Case (B).

Lemma 3.7. Suppose s has property (B) of Corollary 3.5. Then s : H → π1(P ) is the trivial

homomorphism.

We do not know whether property (B) of Corollary 3.5 already implies the fact that s is trivial,

without the assumption that s is induced from a splitting of the Birman exact sequence for Γ. This

seems to be a harder problem worthy of further study. The extra structure present in our situation is

an equivariance property described below in Lemma 3.9. Before turning to the proof of Lemma 3.7,

our first objective is to formulate and prove this.
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By passing to a further finite-index subgroup of Γ if necessary, we can assume that H ≤ π1(UTP )

is characteristic and hence the conjugation action of I(P ) on π1(UTP ) preserves H. Let P ′ denote

the surface obtained from P by replacing the boundary component with a marked point. Then the

action of I(P ) on π1(UTP ) descends to an action of I(P ′) on H by conjugation. Thus there is a

homomorphism

λ : I(P ′)→ Aut(H).

Consider now the images Γ′ ≤ I(P ′) and Γ ≤ I(P ) of Γ ∩Mod(P ) induced by the capping maps

P → P ′ and P → P . By construction, Γ ∩ π1(P ) = H. As conjugation by H on itself is an inner

automorphism, λ descends to a homomorphism

λ : Γ→ Out(H). (17)

Remark 3.8. H is a finite-index subgroup of π1(P ), and as such, corresponds to a finite-sheeted

covering R→ P . From a topological point of view, λ is the action of Γ ≤ Mod(P ) on R induced by

lifting mapping classes from P to R.

Lemma 3.9. The homomorphism s is Γ-equivariant with respect to the action λ on H and the standard

outer action of Γ on π1(P ). That is, for any outer automorphism [α] ∈ Γ and any x ∈ H, the conjugacy

classes of s(α · x) and α · s(x) in π1(P ) coincide.

Proof. Let a ∈ Γ be given. Choose an element α ∈ Γ descending to the outer automorphism class a.

By construction, for x ∈ H, the image s(x) is given by ((p1)∗ ◦ σ)(x̃), where x̃ ∈ H is any lift. On H,

the action of Γ is induced by the conjugation action x̃ 7→ αx̃α−1. Thus

s(a · x) = (p1)∗(σ(αx̃α−1)) = (p1)∗(σ(α)) s(x) (p1)∗(σ(α))−1.

Here we exploit the fact that (p1)∗ : PB1,1(P )→ π1(P ) is the restriction of the forgetful homomorphism

(p1)∗ : I(P̃ )→ I(P ).

To finish the argument, it suffices to show that [(p1)∗(σ(α))] = a as elements of I(P ). This follows

from the fact that σ : Γ→ I(P̃ ) is a section of the map (p2)∗ : I(P̃ )→ I(P ) in combination with the

commutativity of the diagram

I(P̃ )
(p1)∗ //

(p2)∗

��

I(P ′)

��
I(P ) // I(P ).

�

Proof. (of Lemma 3.7) Let x ∈ H be an arbitrary element, and let d be an arbitrary separating curve

on P . Taking k such that T kd ∈ Γ and applying Lemma 3.9, there is an equality

s(T kd (x)) = T kd (s(x))
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of conjugacy classes in π1(P ). To proceed, we will analyze the conjugacy class of T kd (x) in H. This is

complicated by the fact that in this expression, T kd acts on x by the action λ of (17). Following Remark

3.8, T kd acts not as a separating twist on P , but rather as the lift of such a twist to a finite-sheeted

cover R→ P corresponding to the finite-index subgroup H ≤ π1(P ).

Lemma 3.10. Let Td be a Dehn twist on P , and let x ∈ H be an arbitrary element. Then there exists

some k ≥ 1, simple elements γ1, . . . , γN of π1(P ) and integers f1, . . . , fN , such that γfii ∈ H for all i,

and there is an expression

T kd (x) = γf11 . . . γfNN x

of elements of H.

Proof. Let π : R→ P be the covering map associated to the containment H ≤ π1(P ). For k sufficiently

large, T kd lifts to a mapping class on R. This lift is not unique, but there is a unique lift up to the

action of the deck group of π. Since Td is a Dehn twist on P , there is a distinguished lift

T̃ kd =
∏

T ki
d̃i

(18)

of T kd as a multitwist on R, for certain integers ki. Here, the set {d̃i} consists of all components of

the preimage π−1(d). Observe that each curve d̃i is contained in the π1(P )-conjugacy class of dei for

some ei, and that also the conjugacy class of dei is contained in H. As the deck group is finite, we can

assume that T kd acts on H as in (18), possibly after further increasing k.

Choose representative curves for each d̃i, and represent x ∈ H as a map x(t) : [0, 1]→ R, chosen so as

to intersect the set {d̃i} in minimal position. This determines a sequence of arcs α1, . . . , αN+1 as follows.

The points of intersection between x and {d̃i} can be enumerated via 0 < t1 < · · · < tN < tN+1 = 1

such that x(t) intersects the multicurve {d̃i} if and only if t = tm for some 1 ≤ m ≤ N . The arc αm is

then defined as the image of x restricted to the interval [0, tm] (so in particular, αN+1 = x).

Each arc αm connects ∗ to one of the curves d̃i, and thus determines an element γ′m of H in the

conjugacy class of the appropriate d̃i. The geometric description of T kd as a multitwist allows one

to obtain an expression for T kd (x) of the desired form. The curve T kd (x) can be described as follows:

first T kd (x) follows α1 to the first point of intersection with {d̃i}; this is the curve corresponding to γ′1.

Then T kd (x) winds around γ′1 a number of times f ′1 as specified by (18). Then T kd (x) continues along

the portion of α2 running from t = t1 to t = t2, and continues, winding around each γ′i some number

of times f ′i in succession.

By construction, after each crossing of γ′m, the curve T kd (x) traverses the portion of αm+1 from

tm to tm+1. This can be replaced by first backtracking along αm, and then traversing the entirety of

αm+1. Written as an element of π1(R) = H, this analysis produces an expression

T kd (x) = γ
′f ′1
1 . . . γ

′f ′N
N x.

The claim now follows from the observation that each γ′m is a based loop on R corresponding to a

curve d̃i. Each d̃i is a component of the preimage of d. As an element of π1(P ), each γ′m is thus of the

form γ′m = γemm for some simple curve γm ∈ π1(P ) in the conjugacy class of d. Taking fm = emf
′
m, the

result follows. �
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Applying Lemma 3.10, there is an equality

s(T kd (x)) = s(γf11 . . . γfnN x) = s(γf11 ) . . . s(γfNN )s(x) = s(x), (19)

with the last equality holding by Corollary 3.5(B) since all the γi are simple. We conclude that there

is an equality of π1(P )-conjugacy classes

T kd (s(x)) = s(x).

By Lemma 2.9, this implies that s(x) is disjoint from d as curves on P . As this argument applies for

every separating curve on P , we conclude that s(x) must be disjoint from every separating curve d

on P . Since p ≥ 2, the change-of-coordinates principle implies that any nontrivial element y ∈ π1(P )

must intersect some separating curve d. This shows that s(x) must be trivial as claimed. �

3.4. Finishing the argument. The final stage of the argument exploits the fact that the existence

of a section σ : H → PB1,1(P ) places strong homological constraints on the map s. Throughout this

section, our cohomology groups will implicitly have rational coefficients. To simplify matters further,

we forget the (inessential) tangential data encoded in the space PConf1,1(P ), and consider instead the

induced section

σ : H → PB2(P );

here PB2(P ) = π1(PConf2(P )) is the fundamental group of the configuration space of two ordered

points on P . The space PConf2(P ) is, by definition, given as

PConf2(P ) := P × P \∆,

where ∆ is the diagonal locus. In this setting, there is a factorization

s = (p2)∗ ◦ σ.

A crucial consequence of this is that s∗ : H∗(P ) → H∗(H) factors through H∗(PB2(P )). The

following lemma is proved by a standard argument using the formulation of Poincaré duality via Thom

spaces.

Lemma 3.11. Let [∆] ∈ H2(P × P ) denote the Poincaré dual class of ∆, and let

ι : PConf2(P )→ P × P

denote the inclusion map. Then ι∗([∆]) = 0 ∈ H2(PConf2(P )).

Concluding the proof. Let i : H → π1(P ) denote the inclusion. Consider the product homomorphism

i× s : H → π1(P )× π1(P ) ∼= π1(P × P ).

Observe that this coincides with the section map σ : H → PB2(P ), so that there is a factorization

i× s = ι∗ ◦ σ.

By Lemma 3.11, it follows that (i× s)∗([∆]) = (ι ◦ σ)∗([∆]) = 0 ∈ H2(H).
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Let x1, y1, . . . , xp, yp ∈ H1(P ) denote a symplectic basis with respect to the cup product form; let

also [P ] denote the fundamental class. Then

[∆] = 1⊗ [P ] + [P ]⊗ 1 +

p∑
i=1

xi ⊗ yi − yi ⊗ xi

as a class in

H2(P × P ) ∼= (H0(P )⊗H2(P ))⊕ (H2(P )⊗H0(P ))⊕ (H1(P )⊗H1(P )).

Thus

0 = (i× s)∗([∆]) = i∗(1)s∗([P ]) + i∗([P ])s∗(1) +

p∑
j=1

i∗(xj)s
∗(yj)− i∗(yj)s∗(xj).

We will see that in both cases (A) and (B), this is a contradiction. Lemma 3.6 asserts that in Case

(A), s∗ = i∗ in degree 1. Since H∗(P ) is generated as an algebra in degree 1, this implies that s∗ = i∗

in degree 2 as well. Then a basic calculation shows that in this case,

(i× s)∗([P ]) = (i× i)∗([P ]) = χ(P )[H],

where χ(P ) denotes the Euler characteristic and [H] denotes the fundamental class of the surface group

H. As this is nonzero, we have arrived at a contradiction. Similarly, Lemma 3.7 asserts that in Case

(B), s∗ = 0 in positive degrees. Then (i× s)∗([P ]) = i∗([P ]) = χ(P )[H] 6= 0, again a contradiction. �
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