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ON FINITENESS PROPERTIES OF THE JOHNSON FILTRATIONS

MIKHAIL ERSHOV AND SUE HE

Abstract. Let Γ denote either the automorphism group of the free group of rank n ≥ 4
or the mapping class group of an orientable surface of genus n ≥ 12 with 1 boundary com-
ponent, and let G be either the subgroup of IA-automorphisms or the Torelli subgroup
of Γ, respectively. We prove that any subgroup of G containing [G,G] (in particular,
the Johnson kernel in the mapping class group case) is finitely generated. We also prove

that if N ≤ 1 + n
12

and K is any subgroup of G containing γNG, the N th term of the

lower central series of G (for instance, if K is the N th term of the Johnson filtration of
G), then the abelianization K/[K,K] is finitely generated. Finally, we prove that if H
is any finite index subgroup of Γ containing γNG, then H has finite abelianization.

1. Introduction

Let Fn denote the free group of rank n, and let IAn ⊂ Aut (Fn) denote the subgroup of
automorphisms of Fn which act as identity on the abelianization; equivalently, IAn is the
kernel of the natural map Aut (Fn) → Aut (F ab

n ) ∼= GLn(Z). More generally, for each k ∈ N

define IAn(k) to be the kernel of the natural map Aut (Fn) → Aut (Fn/γk+1Fn). The
filtration IAn = IAn(1) ⊃ IAn(2) ⊃ . . . was first introduced and studied by Andreadakis
in [An]. It is easy to see that γkIAn ⊆ IAn(k) for each k, and in [Ba] it was shown that
γ2IAn = IAn(2).

The filtration {IAn(k)}k∈N is often referred to as the Johnson filtration and owes its
name to the corresponding filtration in mapping class groups whose study was initiated by
Johnson [Jo4]. Let Σ1

g be an orientable surface of genus g ≥ 2 with 1 boundary component

and Mod 1
g its mapping class group. The fundamental group π = π(Σ1

g) is free of rank 2g,

and for each k ∈ N there is a natural homomorphism Mod 1
g → Aut (π/γk+1π). Denote the

kernel of this homomorphism by I1
g (k). The subgroups I1

g = I1
g (1) and J 1

g = I1
g (2) are

well known as the Torelli subgroup and the Johnson kernel, respectively, and the filtration
{I1

g (k)}k∈N is called the Johnson filtration of Mod 1
g. Again one has γkI

1
g ⊆ I1

g (k) for each
k, but this time the inclusion is known to be strict already for k = 2.

The mapping class group Mod g of a closed orientable surface of genus g is a quotient

of Mod 1
g, and the Johnson filtration {Ig(k)}k∈N of Mod g is defined to be the image of

{I1
g (k)}k∈N in Mod 1

g.
A basic open question about Johnson filtrations is which of their terms are finitely

generated (it is easy to see that if some term is not finitely generated, then so are all
the subsequent terms in the same filtration). A complete answer is known for the first
terms: already in 1930s Magnus [Ma] proved that IAn = IAn(1) is finitely generated for
all n ≥ 2, and in 1980 Johnson [Jo5] proved that the Torelli group I1

g (and hence also its
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2 MIKHAIL ERSHOV AND SUE HE

quotient Ig) is finitely generated for g ≥ 3, while I2 is infinitely generated by [MM] (hence
the same is true for I2(k) and I1

2(k) for all k). Our first theorem settles in the positive
the finite generation problem for the second terms in sufficiently large rank:

Theorem 1.1. Let G be either IAn for n ≥ 4 or I1
g for g ≥ 12. Then [G,G] is finitely

generated.

Since G in Theorem 1.1 is itself finitely generated, it follows that any subgroup of G
containing [G,G] is finitely generated; in particular, the Johnson kernel I1

g (2) and its
quotient Ig(2) are finitely generated for g ≥ 12.

Theorem 1.1 generalizes recent breakthrough results of Dimca and Papadima [DP] and
Papadima and Suciu [PS2] who established finite dimensionality of the first rational ho-
mology H1(Ig(2),Q) for g ≥ 4 and H1(IAn(2),Q) for n ≥ 5, respectively.

The finite generation question remains open for the third and higher terms of the John-
son filtrations, but we will prove that at least several terms (beyond the second one) have
finitely generated first integral homology:

Theorem 1.2. Let N ≥ 2 be an integer, and let (G,K) be one of the following pairs of
groups.

(a) G = IAn and K = γNIAn where n ≥ 4 if N = 2 and n ≥ 12(N − 1) if N > 2.
(b) G = I1

g and K = γNI1
g where g ≥ 12(N − 1).

Then the quotient G/[K,K] is nilpotent. In particular, for any subgroup G ⊇ L ⊇ K, the
abelianization L/[L,L] ∼= H1(L,Z) is finitely generated.

Thus, each of the following groups has finitely generated abelianization:

IAn(2) for n ≥ 4, IAn(N) for n ≥ 12(N − 1), and I1
g (N) and Ig(N) for g ≥ 12(N − 1).

Remark. The assertion thatG/[K,K] is nilpotent is equivalent to saying thatK/[K,K] ∼=
H1(K,Z) considered as a G/K-module is unipotent in the sense that is annihilated by some
power of the augmentation ideal of Z[G/K]. In the case G = Ig and K = Ig(2), g ≥ 4, it
has already been proved in [DHP] that H1(K,Q) is a unipotent G/K-module.

Both Theorems 1.1 and 1.2 will be deduced from certain properties of representations
of G that we discuss below. Let G be an arbitrary group. By a character of G we will
mean a homomorphism χ : G→ R. Two characters χ and χ′ will be considered equivalent
if they are positive scalar multiples of each other. The equivalence class of a character
χ will be denoted by [χ], and the set of equivalence classes of nonzero characters will be
denoted by S(G). In [BNS], Bieri, Neumann and Strebel introduced certain subset Σ(G)
of S(G), now known as the BNS invariant which, in the case when G is finitely generated,
completely determines which subgroups of G containing [G,G] are finitely generated:

Theorem 1.3 ([BNS]). Let G be a finitely generated group, and let N be a subgroup of G
containing [G,G]. Then N is finitely generated if and only if Σ(G) contains [χ] for every
non-trivial χ which vanishes on N . In particular, [G,G] is finitely generated if and only
if Σ(G) = S(G).

Thus, Theorem 1.1 is a direct consequence of Theorem 1.3 and the following result:

Theorem 1.4. Let G be as in Theorem 1.1. Then Σ(G) = S(G).
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The set Σ(G) admits many different characterizations. In order to prove Theorem 1.4
we will use the characterization in terms of actions on real trees due to Brown [Br].

Note that characters of a group G are in natural bijection with one-dimensional real
representations of G whose image lies in R>0. In order to prove Theorem 1.2 we consider
irreducible representations of G which vanish on K (with G and K as in Theorem 1.2),
although, somewhat surprisingly, this time we will deal with representations over finite
fields, in fact fields of prime order. Theorem 1.2 will be obtained as a direct combination
of Theorems 1.5 and 1.6 below, just like Theorem 1.1 follows from Theorems 1.3 and 1.4.

Definition. Let K be a normal subgroup of a group G and F a field. We will say that
the triple (G,K,F ) is nice if the following holds: let V be a non-trivial finite-dimensional
irreducible representation of G over F such that K acts trivially on V . Then

H1(G,V ) = 0.

Theorem 1.5. Let G be a finitely generated group, and let K be a normal subgroup of G
such that Q = G/K is nilpotent. Assume that (G,K,F ) is nice for any finite field F of
prime order. Then the quotient G/[K,K] is nilpotent, so in particular the abelianization
Kab = K/[K,K] is finitely generated.

Theorem 1.6. Let (G,K) be as in Theorem 1.2. Then (G,K,F ) is nice for any field F .

We now briefly comment on how Theorems 1.4 and 1.6 will be proved. Both results
easily follow from the existence of a ρ-centralizing generating set in G where ρ is a non-
trivial irreducible representation of G (over an arbitrary field) with Ker ρ ⊇ K (in the case
of Theorem 1.4 we set K = [G,G]). The precise definition of a ρ-centralizing set will be
given in § 3. An important special case of a ρ-centralizing set is a set S which contains a
subset T of pairwise commuting elements such that every element of S commutes with at
least one element of T and such that ρ(t) is a non-trivial central element of ρ(G) for each
t ∈ T . Note that by our hypotheses we will always deal with representations ρ such that
ρ(G) is nilpotent (and non-trivial) and hence always contains non-trivial central elements.

The group IAn has a very simple generating set constructed by Magnus already in
1930s (see § 4 for its definition). A generating set for I1

g which is in many ways analogous
to Magnus’ generating set for IAn was constructed in a recent paper of Church and
Putman [CP], which made use of an earlier work of Putman [Pu2] and the original work of
Johnson [Jo5] (see § 7.1). We will refer to these generating sets as standard. We will show
that if ρ is a “sufficiently random” representation of G which vanishes on K (with G and K
as above), then the existence of a ρ-centralizing generating set in G easily follows from the
basic relations between the standard generators; in this case a ρ-centralizing generating
set we construct will be an overset of the standard generating set. In the general case
we will use the fact that G is a normal subgroup of Γ (with Γ = IAn or Mod 1

g), and
precomposing ρ by the conjugation by a fixed element of Γ does not affect the existence
of a ρ-centralizing generating set.

Thus, we are reduced to the problem of showing that an arbitrary ρ (satisfying the above
restrictions) can be conjugated to a sufficiently random one. In the case G = IAn and
K = [IAn, IAn] this can be done fairly explicitly (see § 6). In the general case an explicit
calculation may be possible, but would be cumbersome, so we take a more conceptual
approach. First it is not hard to see that the relevant information about the conjugation
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action of Γ on G is captured by the induced action of Γ/G on L(G) =
∞⊕

n=1
γnG/γn+1G,

the Lie algebra of G with respect to the lower central series. Second, in both cases
(Γ, G) = (Aut (Fn), IAn) and (Mod 1

n,I
1
n), the quotient Γ/G contains a natural copy of

SLn(Z). In § 4 we will state our main criterion for the existence of a ρ-centralizing
generating set in a group G (see Theorem 4.3). One of the hypotheses in Theorem 4.3
is that G is a normal subgroup of a group Γ such that Γ/G contains a copy of SLn(Z)
for suitable n and such that the abelianization Gab = G/[G,G] is a regular SLn(Z)-
module, another technical notion which will also be introduced in § 4. Note that while the
proof of Theorem 4.3 will deal with the action of SLn(Z) on the entire Lie algebra L(G),
its hypotheses only involve the action on Gab, the degree 1 component of L(G). This
is very important since while the structure of Gab as an SLn(Z)-module is completely
understood and easy to describe (for G = IAn or I1

g ), this is not the case with higher
degree components of L(G).

At the end of the paper we will show that Theorem 1.6 also yields new results on the
abelianization of finite index subgroups in Aut (Fn), IAn, Mod 1

g and I1
g :

Theorem 1.7. Let (G,K) be as in Theorem 1.2, and let Γ = Aut (Fn) if G = IAn and
Γ = Mod 1

g if G = I1
g . The following hold:

(1) If H is a finite index subgroup of G which contains K, then the restriction map
H1(G,C) → H1(H,C) is an isomorphism

(2) If H is a finite index subgroup of Γ which contains K, then H has finite abelian-
ization.

In the case Γ = Mod 1
g, G = I1

g and K = I1
g (2) both assertions of Theorem 1.7 have been

previously proved by Putman (see [Pu3, Thm B] and [Pu1, Thm B]) by a different method.
It is interesting to note that while we will use Theorem 1.6 to prove both Theorem 1.2 and
Theorem 1.7, an opposite implication was used in [DHP] where [Pu3, Thm B] was one of
the tools in the proofs of special cases of Theorem 1.2 and Theorem 1.6.

Finally, let us comment on the restrictions on n, g and N in the statements of Theo-
rems 1.1, 1.2, 1.6 and 1.7 (where we set N = 2 in Theorem 1.1). If n = 2, the assertions
of all four theorems are easily seen to be false already for N = 2 since IA2 is a free group
of rank 2. As shown in [GL, Prop 6.2] (see also [BV]), Aut (F3) contains a finite index
subgroup H such that [IA3 : H∩IA3] = 2 (so H ⊃ [IA3, IA3]) and H has infinite abelian-
ization. This result combined with the proof of Theorem 1.7 implies that Theorem 1.6 and
both parts of Theorem 1.7 are false for n = 3 and N = 2. We expect that Theorems 1.1
and 1.2 do not hold in this case as well, but as far as we know these questions have not
been settled. The restriction g ≥ 12 in the mapping class group case is likely the drawback
of our method, and we expect that the result remains true for all g ≥ 4 (and possibly even
for g = 3). It may be possible to slightly improve the bound g ≥ 12 using the same method
and more delicate calculations, but it is unlikely that one can push it all the way to g = 4.
More generally, in the cases n ≥ 4 and g ≥ 3 it is possible that some (or even all) of the
above theorems remain true for arbitrary N , but the proof of such a result would almost
certainly require new ideas.

Organization. The paper is organized as follows. In § 2 we will prove Theorem 1.5. In
§ 3 we will introduce the notion of a ρ-centralizing generating set and reduce Theorems 1.4
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and 1.6 to the problem of existence of ρ-centralizing generating sets for suitable ρ (see
Proposition 3.4). In § 4 we will introduce the notion of a regular SLn(Z)-module, discuss
basic examples and properties of such modules and state Theorem 4.3, which gives a
criterion for the existence of a ρ-centralizing generating set. At the end of § 4 we will show
that the hypotheses of Theorem 4.3 are satisfied for G = IAn with n ≥ 12(N − 1). The
corresponding verification for G = I1

g and g ≥ 12(N −1) will be made in § 7. Theorem 4.3
will be proved in § 5. The results mentioned in the last three sentences imply Theorem 1.4
except when G = IAn, 4 ≤ n < 12 and Theorem 1.6 except when G = IAn, N = 2,
4 ≤ n < 12. The proof of those theorems in the remaining cases will be given in § 6.
Finally, in § 8 we will prove Theorem 1.7 and also give a summary of previously known
results of the same kind.

Acknowledgments. We are extremely grateful to Andrei Rapinchuk who encouraged
us to take on this project and suggested the general approach to the proof of Theorem 1.7.
We are also indebted to Andrei Jaikin who proposed a tremendous simplification of our
original proof of Theorem 1.5. Finally, we would like to thank Andrew Putman and Zezhou
Zhang for helpful comments on earlier versions of this paper.

Notation. When considering cohomology of a group G with coefficients in some mod-
ule, we will sometimes use the notation Hk(G,M) where M is the underlying space of
the module and sometimes Hk(G, ρ) when ρ is the action of G on M . We hope that this
inconsistency will not cause a confusion.

2. The abelianization of the kernel of a homomorphism to a nilpotent

group

In this short section we prove Theorem 1.5 using the following results of Roseblade
and Robinson. A major part of the argument below (including the use of Theorem 2.2)
was suggested to us by Andrei Jaikin who substantially simplified our original proof. The
latter was inspired by the proof of [PS2, Thm 3.6].

Theorem 2.1 (Roseblade). Let Q be a virtually polycyclic group. Then

(a) Every simple Z[Q]-module is finite and thus is an Fp[Q]-module for some prime p.
(b) Assume now that Q is nilpotent, let Ω be the augmentation ideal of Z[Q] and V

a finitely generated Z[Q]-module. If ΩM = 0 for every simple quotient M of V ,
then ΩNV = 0 for some N ∈ N.

Parts (a) and (b) of Theorem 2.1 are special cases of [Ro, Cor A] and [Ro, Thm B],
respectively.

Theorem 2.2 (Robinson [Rb]). Let Q be a nilpotent group, and let M be a Q-module.
Assume that either H0(Q,M) = 0 and M is Noetherian or H0(Q,M) = 0 and M is
Artinian. Then H i(Q,M) = 0 and Hi(Q,M) = 0 for all i > 0.

Proof of Theorem 1.5. First we claim that Kab is finitely generated as a Z[Q]-module. We
know that K contains γnG for some n, and it suffices to prove that (γnG)

ab is finitely
generated as a Z[G]-module. Let X be a finite generating set for G. Then (γnG)

ab is
generated as an abelian group by left-normed commutators in X of length at least n.
But if c is such a commutator and x ∈ X, then (c, x) = c−1x−1cx is equal to x−1.c− c in
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(γnG)
ab, so by straightforward induction (γnG)

ab is generated by left-normed commutators
in X of length exactly n as a Z[G]-module.

Now let Ω denote the augmentation ideal of Z[Q]. To prove the theorem it suffices to
show that ΩNKab = {0} for some N ∈ N (in fact, the two statements are equivalent).
Indeed, the equality ΩNKab = {0} means that [K,G, . . . , G

︸ ︷︷ ︸

N times

] ⊆ [K,K], so if K ⊇ γnG,

then [K,K] ⊇ γn+NG and G/[K,K] is nilpotent.
Let V = Kab, and assume that ΩNKab 6= {0} for any N ∈ N. By Theorem 2.1(b) there

is a simple Q-module M which is a quotient of V such that ΩM 6= 0, so Q acts on M
non-trivially. Moreover, by Theorem 2.1(a), M is a finite F [Q]-module for some finite field
F of prime order, so H1(G,M) = 0 by the hypotheses of Theorem 1.5.

Since K acts trivially on V and hence on M , we have a natural isomorphism

H1(K,M) ∼= Hom(V,M)

Under this isomorphism H1(K,M)Q, the subspace of Q-invariant elements of H1(K,M),
maps to HomQ(V,M), the subspace of Q-module homomorphisms from V to M . Since
M is a quotient of V as Q-module, we have HomQ(V,M) 6= 0 and hence H1(K,M)Q 6= 0.

On the other hand, we have the inflation-restriction sequence

0 → H1(Q,M) → H1(G,M) → H1(K,M)Q → H2(Q,M) → H2(G,M).

Since M is finite, simple and non-trivial, it is both Artinian and Noetherian, and both
H0(Q,M) and H0(Q,M) are trivial. Thus, using either condition in Theorem 2.2, we
conclude that H1(Q,M) = H2(Q,M) = 0, so H1(G,M) ∼= H1(K,M)Q 6= 0, a contradic-
tion. �

3. Centralizing generating sets

Let G be a finitely generated group. In this section we will introduce the technical
notion of a ρ-centralizing set in G where ρ is an irreducible representation of G over some
field F . We will show that

(i) the existence of a ρ-centralizing generating set implies that H1(G, ρ) = 0;
(ii) in the case F = R and ρ = eχ for some non-trivial character χ : G → R, the

existence of a ρ-centralizing generating set implies that [χ] lies in Σ(G), the BNS
invariant of G.

We will start with briefly recalling Brown’s characterization of Σ(G) in terms of actions
on R-trees [Br] and establishing a very simple property of group 1-cocycles.

We will need only very basic properties of group actions on R-trees (see, e.g. [AB] for
the proofs). Let X be an R-tree with metric d, and suppose that a group G acts on X by
isometries; denote the action by α. For each g ∈ G define l(g) = infx∈X d(α(g)x, x) (it is
known that the infimum is always attained), and let Ag = {x ∈ X : d(α(g)x, x) = l(g)}.
An element g ∈ G is called elliptic (with respect to α) if l(g) = 0, in which case Ag is the
fixed point set of g. If l(g) > 0, then g is called hyperbolic. In this case Ag is a line, called
the axis of g, and g acts on Ag as a translation by l(g); moreover, Ag is the unique line
invariant under the action of g.

An action α is called
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• abelian if there exists a character χ : G→ R such that l(g) = |χ(g)| for all g ∈ G.
If such χ exists, it is unique up to sign, and we will say that α is associated with
χ.

• non-trivial if it has no (global) fixed points and no (global) invariant line.

The following characterization of the BNS invariant Σ(G) was obtained by Brown [Br]:

Theorem 3.1. Let G be a finitely generated group, and let χ : G → R be a non-trivial
character. Then [χ] ∈ Σ(G) if and only if G has no non-trivial abelian actions associated
with χ. Thus, by Theorem 1.3, [G,G] is finitely generated if and only if G has no non-
trivial abelian actions.

Now let (ρ, V ) be a non-trivial irreducible representation of a group G over a field F .
Recall that H1(G, ρ) = Z1(G, ρ)/B1(G, ρ) where

Z1(G, ρ) = {f : G→ V : f(xy) = f(x) + ρ(x)f(y) for all x, y ∈ G}

B1(G, ρ) = {f : G→ V : there exists v ∈ V s.t. f(x) = ρ(x)v − v for all x ∈ G}.

Lemma 3.2. Let G, ρ and V be as above, and let Cρ(G) be the set of all g ∈ G such
that ρ(g) is a non-trivial central element of ρ(G). Let f ∈ Z1(G, ρ) be a cocycle, and let
g ∈ Cρ(G). The following hold:

(i) There exists a coboundary b ∈ B1(G, ρ) with f(g) = b(g)
(ii) Suppose that f(g) = 0. Then f(x) = 0 for every x ∈ G such that f(gx) = f(xg);

in particular, f(x) = 0 for every x ∈ G which commutes with g.

Proof. (i) Since g ∈ Cρ(G), by Schur’s Lemma the operator ρ(g) − 1 is invertible. Thus,
if v = (ρ(g)− 1)−1f(g), then the map b(x) = ρ(x)v− v is a coboundary with the required
property.

(ii) We have f(xg) = f(x) + ρ(x)f(g) = f(x) and f(gx) = f(g) + ρ(g)f(x) = ρ(g)f(x),
so (ρ(g) − 1)f(x) = 0 and hence f(x) = 0. �

Definition. Let G, ρ and Cρ(G) be as above. Let S = {g1, g2, . . . , gk} be a finite ordered
subset of G, and for each 1 ≤ i ≤ k let Gi = 〈g1, . . . , gi〉. We will say that S is a
ρ-centralizing set if g1 ∈ Cρ(G) and for each 2 ≤ i ≤ k there exists j < i such that
gj ∈ Cρ(G) and [gi, gj ] ∈ Gi−1.

The following straightforward observation describes a particularly simple instance where
G has a ρ-centralizing generating set:

Lemma 3.3. Let G, ρ and V be as above. Suppose that Cρ(G) contains a subset T such
that elements of T commute with each other and the union of the centralizers of elements
of T generates G. Then G admits a ρ-centralizing generating set.

Proposition 3.4. Let G be a finitely generated group. The following hold:

(a) If (ρ, V ) is an irreducible representation of G over some field and G admits a
ρ-centralizing generating set, then H1(G, ρ) = 0

(b) Let χ : G → R be a non-trivial character and ρ = eχ the corresponding 1-
dimensional representation. If G admits a ρ-centralizing generating set, then
[χ] ∈ Σ(G). In particular, if G admits a π-centralizing generating set for every
non-trivial 1-dimensional R-representation π, then [G,G] is finitely generated.
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Proof. In both parts of the proof we let S = {g1, . . . , gk} be a ρ-centralizing generating
set of G and Gi = 〈g1, . . . , gi〉 for 1 ≤ i ≤ k (so that Gk = G).

(a) Take any f ∈ Z1(G, ρ). By Lemma 3.2(i), after modifying f by a coboundary, we
can assume that f(g1) = 0. Then f = 0 on G1, and we will now prove that f = 0 on Gi

for all 1 ≤ i ≤ k by induction on i.
Take i ≥ 2, and assume that f = 0 on Gi−1. By hypothesis there exists j < i and

r ∈ Gi−1 such that gj ∈ Cρ(G) and gigj = gjgir. Then f(gigj) = f(gjgi) + ρ(gjgi)f(r) =
f(gjgi), whence f(gi) = 0 by Lemma 3.2(ii). Since Gi = 〈Gi−1, gi〉, we have f(Gi) = 0 as
desired.

(b) The following argument is similar to the proof of the main theorem in [OK]. By
Theorem 3.1 we need to show that if (α,X) is an abelian action of G on an R-tree X
associated to χ, then α is trivial. By assumption g1 is hyperbolic (with respect to α). We
claim that its axis A = Ag1 is invariant under the entire group G (which will finish the
proof). We will prove that A is invariant under Gi for all 1 ≤ i ≤ k by induction on i.

Take i ≥ 2, and assume that A is invariant under Gi−1 (in particular, A is the axis
for any hyperbolic element in Gi−1 by the uniqueness of the invariant line of a hyperbolic
element). By hypothesis there exists j < i and r ∈ Gi−1 such that gj is hyperbolic and

g−1
i gjgi = gjr. The element g−1

i gjgi is also hyperbolic (being a conjugate of gj), and its

axis is α(g−1
i )(A). On the other hand g−1

i gjgi = gjr ∈ Gi−1, so A is the axis of g−1
i gjgi.

Thus, α(g−1
i )(A) = A, so A is gi-invariant and hence Gi-invariant. �

4. n-groups and regular SLn(Z)-modules

For the rest of the paper, given n ∈ N, denote by n the set {1, 2, . . . , n}.

Definition. Let n ∈ N. An n-group is a group G endowed with a collection of subgroups
{GI}I⊆n such that

(i) Gn = G
(ii) GI ⊆ GJ whenever I ⊆ J

We will say that G is a good n-group if the following extra condition holds:

(iii) GI andGJ commute (elementwise) whenever I∩J = ∅ and I consists of consecutive
integers, that is, I = {i, i + 1, . . . , i+ |I| − 1} for some i ∈ n.

Given d ∈ N, we will say that G is generated in degree d if G = 〈GI : |I| = d〉.

The basic example of a good n-group that we will use in this paper is G = SLn(Z)
with {GI} defined as follows. Let e1, . . . , en be the standard basic of Zn. Given I ⊆ n, let
ZI = ⊕i∈IZei, and let

(4.1) GI = {g ∈ G : g(ZI) ⊆ ZI and g(ej) = ej for all j 6∈ I}.

Clearly, SLn(Z) is generated in degree 2, and GI commutes with GJ for any disjoint
subsets I and J (in particular, condition (iii) holds). As we will explain at the end of this
section, IAn has a natural structure of a good n-group generated in degree 3 and also
satisfying a stronger form of condition (iii). The unnatural restriction that I consists of
consecutive integers in (iii) is imposed so that the Torelli group I1

g satisfies the definition
of a good g-group for g ≥ 3 – this easily follows from the results of [CP] and will be
explained in § 7.
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Next we introduce another slightly technical concept, that of a regular SLn(Z)-module.
Informally speaking, a regular SLn(Z)-module is a graded (in a somewhat unconven-
tional sense) SLn(Z)-module which satisfies some key properties of an R-form of a finite-
dimensional SLn(C)-module (where R is some commutative ring).

Definition. Let V be an abelian group (written additively). A grading of V is a collection
of additive subgroups {VI : I ⊆ n} of V such that

∑

I⊆n

VI = V

(note that the sum is not required to be direct). The degree of V (with respect to the
grading {VI}), denoted by deg (V ), is the smallest integer k such that VI = 0 whenever
|I| > k (this automatically implies that

∑

|I|≤k VI = V ). If no such k exists, we set

deg (V ) = ∞.

As usual, Eij ∈ SLn(Z) will denote the matrix which has 1’s on the diagonal and at the
position (i, j) and 0 everywhere else. By Fij ∈ SLn(Z) we will denote the matrix obtained

from the identity matrix by swapping ith and jth rows and then multiplying the jth row
by −1. Note that Fij = EijE

−1
ji Eij.

Definition. Let {GI : I ⊆ n} be the subgroups of SLn(Z) defined by (4.1). Let V be
an SLn(Z)-module endowed with a grading {VI}. We will say that V is regular if the
following properties hold:

(1) GJ acts trivially on VI if I ∩ J = ∅
(2) If I ⊆ n, i ∈ I, j 6∈ I, then for any g ∈ {E±1

ij , E
±1
ji } and v ∈ VI we have

gv − v ∈ VI\{i}∪{j} + VI∪{j}

(3) If I ⊆ n, i, j ∈ n with i 6= j, then FijVI = V(i,j)I where (i, j)I is the image of
I under the transposition (i, j). In particular, if i ∈ I and j 6∈ I, then FijVI =
VI\{i}∪{j}.

Condition (2) in the above definition is tailored specifically for the purposes of this
paper. Our notion of a regular SLn(Z)-module certainly has some formal similarities with
the notion of an FI-module from [CEF], but it is not clear if there are deep connections
between the two notions.

The following result provides our starting examples of regular SLn(Z)-modules.

Lemma 4.1. Let R be a commutative ring with 1, n ≥ 2, let Rn be a free R-module of
rank n with basis e1, . . . , en, and let (Rn)∗ = HomR(R

n, R) be the dual module, with dual
basis e∗1, . . . , e

∗
n. Consider R

n and (Rn)∗ as SLn(Z)-modules with standard actions. Define
(Rn){i} = Rei, (R

n)∗{i} = Re∗i for 1 ≤ i ≤ n and (Rn)I = 0, (Rn)∗I = 0 for |I| 6= 1. Then

with respect to these gradings Rn and (Rn)∗ are regular of degree 1.

Proof. The only non-obvious part is condition (ii) in the definition of a regular SLn(Z)-
module. Condition (ii) is vacuous if |I| 6= 1, so assume that I = {i} and j 6= i, in which
case I \ {i} ∪ {j} = {j} and I ∪ {j} = {i, j}.

We have E±1
ij (rei) = rei, E

±1
ji (rei)− rei = ±rej ∈ (Rn){j}, E

±1
ji (re∗i ) = re∗i , E

±1
ij (re∗i )−

re∗i = ∓re∗j ∈ (Rn)∗{j}, so (ii) holds (note that in this case terms from VI∪{j} do not

arise). �
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Lemma 4.2. The following hold:

(a) Let V and W be regular SLn(Z)-modules.
(i) Define (V ⊕W )I = VI ⊕WI . Then V ⊕W is regular and deg (V ⊕W ) =

max{deg (V ),deg (W )}.
(ii) Define (V ⊗ZW )I =

∑

I=I1∪I2

VI1⊗WI2 . Then V ⊗ZW is regular and deg (V ⊗Z

W ) ≤ deg (V ) + deg (W )
(b) Let V be a regular SLn(Z)-module and U a submodule. For I ⊆ n set UI = U ∩VI

and (V/U)I = VI + U . Then V/U is always regular with deg (V/U) ≤ deg (V ),
and U is regular with deg (U) ≤ deg (V ) provided U =

∑

I⊆n

UI .

(c) Suppose that SLn(Z) acts on an N-graded Lie ring L = ⊕∞
m=1L(m) by graded

automorphisms. Suppose that L is generated in degree 1 (as a Lie ring) and that
L(1) is a regular SLn(Z)-module of degree d. For each m > 1 and I ⊆ N define

L(m)I =
∑

I=I1∪I2∪...∪Im

[L(1)I1 , L(1)I2 , . . . , L(1)Im ] (∗ ∗ ∗)

Then L(m) is a regular SLn(Z)-module of degree at most md.

Proof. Parts (a)(i) and (b) are straightforward.
(a)(ii) As in the proof of Lemma 4.1, we only need to check condition (ii) in the definition

of a regular module. So take I ⊆ n, i ∈ I and j 6∈ I. It is enough to check the condition
for v of the from v = x⊗ y where x ∈ VI1 , y ∈WI2 and I1 ∪ I2 = I. We will consider the
case when i belongs to both I1 and I2 (the case when i only lies in one of those sets is
analogous). Thus, I1 = K1 ∪ {i} and I2 = K2 ∪ {i} with i 6∈ K1,K2.

Let g ∈ {E±1
ij , E

±1
ji }. Since V and W are regular, we have gx = x + x1 + x2 and

gy = y + y1 + y2 where x1 ∈ VK1∪{j}, x2 = VK1∪{i,j} y1 ∈WK2∪{j}, x2 =WK2∪{i,j}. Then
x1 ⊗ y1 ∈ (V ⊗W )K1∪K2∪{j} = (V ⊗W )I\{i}∪{j} and each of the 7 terms x⊗ y1, x ⊗ y2,
x1 ⊗ y, x1 ⊗ y2, x2 ⊗ y, x2 ⊗ y1 and x2 ⊗ y2 lies in (V ⊗W )K1∪K2∪{i,j} = (V ⊗W )I∪{j},
so condition (ii) holds.

(c) Consider the map ϕ : L(1)⊗m → L(m) given by ϕ(v1⊗. . .⊗vm) = [v1, . . . , vm] (where
the commutator on the right-hand side is left-normed). Since SLn(Z) acts on L by graded
automorphisms, ϕ is a homomorphism of SLn(Z)-modules, and since L is generated in
degree 1, ϕ is surjective. Thus, L(m) is a quotient of L(1)⊗m as an SLn(Z)-module, and
the grading (***) coincides with the quotient grading defined in (b). Thus, (c) follows
from (a)(ii) and (b). �

Given a group G, let L(G) = ⊕∞
i=1γiG/γi+1G. The graded abelian group L(G) has a

natural structure of a graded Lie ring with the bracket on homogeneous elements defined
by

[gγi+1G,hγj+1G] = [g, h]γi+j+1G for all g ∈ γiG and h ∈ γjG,

where [g, h] = g−1h−1gh. The bracket operation is well defined since [γiG, γjG] ⊆ γi+jG.
It is clear from the definition that L(G) is generated in degree 1 as a Lie ring.

Theorem 4.3. Let G be a finitely generated group and L = L(G) = ⊕∞
i=1γiG/γi+1G.

Suppose we are given another group Γ which contains G as a normal subgroup and a
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homomorphism ϕ : SLn(Z) → Γ/G. Define the action of SLn(Z) on L by automorphisms
by

(4.2) x · (g + γi+1G) = ϕ(x)gϕ(x)−1 + γi+1G for all x ∈ SLn(Z), i ∈ N and g ∈ γiG.

Let d ∈ N, let N =
[

n
d(d+1)

]

+ 1, and suppose that

(i) G has the structure of a good n-group generated in degree d.
(ii) L(1) = G/[G,G] = Gab has the structure of a regular SLn(Z)-module of degree at

most d.
(iii) For every I ⊆ n, with |I| ≥ d, the image of GI in Gab = L(1) contains

∑

J⊆I

L(1)J

Then G has a ρ-centralizing generating set for any non-trivial irreducible representation ρ
(over an arbitrary field F ) such that Ker (ρ) ⊇ γNG.

In the remainder of this section we will show how Theorem 4.3 can be applied to
G = IAn. The corresponding verification for the Torelli groups requires more work and
will be given in § 7.

4.1. Hypotheses of Theorem 4.3 hold for G = IA(n) with n ≥ 3. In [Ma], Magnus
proved that IAn is generated by the automorphisms Kij , i 6= j and Kijk, i, j, k distinct,
given by

Kij :

{
xi 7→ x−1

j xixj
xk 7→ xk for k 6= i

, Kijk :

{
xi 7→ xi[xj , xk]
xl 7→ xl for l 6= i

Since K−1
ijk = Kikj, it is enough to consider Kijk with j < k. The elements Kij and Kijk

with j < k will be referred to as the standard generators of IAn.

We claim that hypotheses of Theorem 4.3 are satisfied with Γ = Aut (Fn), G = IAn,
ϕ : SLn(Z) → Aut (Fn)/IAn

∼= GLn(Z) the standard embedding and d = 3.
Define the structure of an n-group on IAn as follows: for each I ⊆ n let (IAn)I =

〈Kij ,Kijk : i, j, k ∈ I〉. All properties in the definition of a good n-group are clear, and
IAn is generated in degree 3, so condition (i) in the statement of Theorem 4.3 holds.

Next we describe IAab
n as a GLn(Z)-module. Recall that IAn and IAn(2) are de-

fined as the kernels of the natural maps Aut (Fn) → Aut (Fn/γ2Fn) and Aut (Fn) →
Aut (Fn/γ3Fn), respectively. Define a map ψ : IAn → Hom(Fn/γ2Fn, γ2Fn/γ3Fn) by

(ψ(g))(x + γ2Fn) = x−1g(x) + γ3Fn for all g ∈ IA(n), x ∈ Fn.

It is easy to see that ψ is a well defined homomorphism, Kerψ = IAn(2), and the elements
{ψ(Kij), ψ(Kijk)} span Hom(Fn/γ2Fn, γ2Fn/γ3Fn), so ψ is surjective. Since IAn(2) =
[IAn, IAn] by [Ba, Lemma 5], we deduce an isomorphism of abelian groups:

IAab
n

∼= Hom(Fn/γ2Fn, γ2Fn/γ3Fn)

Now let V = Zn. Then Fn/γ2Fn
∼= V and γ2Fn/γ3Fn

∼= V ∧ V as abelian groups. Thus,

IAab
n

∼= Hom(V, V ∧ V ) ∼= V ∗ ⊗ (V ∧ V ) (∗ ∗ ∗)

as abelian groups, and it is straightforward to check that this is actually an isomorphism of
GLn(Z)-modules (see [Kaw, Thm 6.1] for a self-contained proof of this isomorphism). The
isomorphism (***) and Lemmas 4.1 and 4.2 imply that IAab

n is a regular SLn(Z)-module
generated in degree 3, so condition (ii) in Theorem 4.3 holds.
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If e1, . . . , en is the standard basis of V and e∗1, . . . , e
∗
n is the corresponding dual basis in

V ∗, then the grading on W = V ∗ ⊗ (V ∧ V ) coming from Proposition 4.1 and Lemma 4.2
is given by

WI =
∑

I={i,j,k}

Ze∗i ⊗ (ej ∧ ek) where we do not require that i, j, k are distinct.

Finally, it is easy to check that under the isomorphism (***), Kij maps to e∗i ⊗ (ei ∧ ej)
and Kijk maps to e∗i ⊗ (ej ∧ ek). This shows that condition (iii) in Theorem 4.3 also holds.

5. Proof of Theorem 4.3

Throughout this section we fix the notations introduced in Theorem 4.3. Without loss
of generality we can assume that the homomorphism ϕ : SLn(Z) → Γ/G is surjective since
if not, we can replace Γ by ϕ−1(Γ).

Let (ρ, V ) be a non-trivial irreducible representation of G over a field F with γNG ⊆
Ker ρ. Recall that Cρ(G) denotes the set of all elements of G such that ρ(g) is central and
non-trivial.

Let m be the largest integer such that γmG acts non-trivially on V , and let

H = Ker ρ ∩ γmG.

Thus by assumptions 1 ≤ m ≤ N − 1, whence n ≥ md(d+ 1), and γmG \H ⊆ Cρ(G).
Now let L(1) = G/[G,G] and L(m) = γmG/γm+1G. Given I ⊆ n, define L(m)I as in

Lemma 4.2(c). Then deg (L(m)) ≤ md, that is,

(5.1) L(m) =
∑

|I|≤md

L(m)I and L(m)I = 0 if |I| > md

Claim 5.1. If |I| ≥ d, then the image of γmGI in L(m) contains L(m)J for every J ⊆ I.

Proof. Fix J ⊆ I. By definition L(m)J is spanned by elements of the form [x1, . . . , xm]
where xk ∈ L(1)Jk for some Jk ⊆ J . Since |I| ≥ d, hypothesis (iii) of Theorem 4.3 implies
that there exist elements {gk ∈ GI}

d
k=1 such that xk = gk[G,G]. Then [x1, . . . , xm] is the

image in L(m) of the element [g1, . . . , gm] which lies in γmGI . �

Let U be any abelian group which contains an isomorphic copy of every finitely generated
abelian group, and let

Ω = HomZ(L(m), U)

We will define the action of SLn(Z) on Ω in the usual way:

(gλ)(x) = λ(g−1x) for all g ∈ SLn(Z), λ ∈ Ω and x ∈ L(m).

Since G is a finitely generated group, L(m) is a finitely generated abelian group, whence
every subgroup of L(m) is the kernel of some element of Ω. Choose λH ∈ Ω such that
KerλH = H/γm+1G (recall that H = γmG ∩Ker ρ).

Definition. Let λ ∈ Ω. Define supp(λ), the support of λ, to be the set of all subsets I ⊆ n

such that λ does not vanish on L(m)I , that is, L(m)I 6⊆ Kerλ.
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Proposition 5.2. For 1 ≤ k ≤ d+1 let Ik = {(k−1)md+1, (k−1)md+2, . . . , kmd} (note
that Ik ⊆ n since n ≥ md(d + 1) by assumption). Suppose that supp(λH) contains d + 1
subsets J1, . . . , Jd+1 such that Jk ⊆ Ik for each k. Then G has a ρ-centralizing generating
set.

Remark. Representations ρ satisfying the hypotheses of Proposition 5.2 are the “suffi-
ciently random” ones we have referred to in the introduction.

Proof. For each k we have Jk ⊆ Ik and |Ik| = md ≥ d. By Claim 5.1, the image of γmGIk

in L(m) is not contained in KerλH = H/γm+1G, so there exist elements gk ∈ γmGIk \H ⊆
Cρ(G) ∩ GIk for 1 ≤ k ≤ d + 1. Since I1, . . . , Id+1 are disjoint and consist of consecutive
integers, the elements gk commute with each other by condition (iii) in the definition of a
good n-group.

Now take any I ⊆ n with |I| = d. There exists 1 ≤ k ≤ d + 1 such that I ∩ Ik = ∅.
Then every element of GI commutes with gk. Since G is generated in degree d, applying
Lemma 3.3 with T = {g1, . . . , gk}, we conclude that G has a ρ-centralizing generating
set. �

To treat the general case, we observe that if we precompose ρ : G → GL(V ) with a
conjugation by an element of Γ, existence (or non-existence) of a ρ-centralizing generating
set will not be affected. Suppose the new representation ρ′ is given by ρ′(x) = ρ(a−1xa)
with a ∈ Γ, and choose g ∈ SLn(Z) such that ϕ(g) = aG. Then

(Ker ρ′ ∩ γmG)/γm+1G = a(Ker ρ ∩ γmG)a
−1/γm+1G

= g ((Ker ρ ∩ γmG)/γm+1G) = g(H/γm+1G) = gKerλH = Ker (gλH).

Thus to prove Theorem 4.3 it suffices to show that there exists g ∈ SLn(Z) such that
supp(gλH) contains d+1 subsets J1, . . . , Jd+1 with Jk ⊆ Ik (with Ik from Proposition 5.2).
This easily follows from Proposition 5.3 below.

Definition. Let 0 6= λ ∈ Ω and s ∈ N. If A1, . . . , As are elements of supp(λ), define

D(A1, . . . , As) =

s∑

i=1

|Ai| −
∑

i 6=j

|Ai ∩Aj |

The maximum possible value of D(A1, . . . , As) will be denoted by Ds(λ), and any s-tuple
in supp(λ) on which this maximum is achieved will be called maximally disjoint for λ.

Proposition 5.3. Let 0 6= λ and s be as above and let {A1, . . . , As} ⊆ supp(λ) be maxi-
mally disjoint. Then one of the following holds:

(i) A1, . . . , As are disjoint
(ii) ∪Ai = n

(iii) There exists g ∈ SLn(Z) such that Ds(gλ) > Ds(λ)

First we explain why Proposition 5.3 finishes the proof of Theorem 4.3. Indeed, let
s = d+1. Then case (ii) above cannot occur unless (i) also holds. Indeed, if A1, . . . , Ad+1 ∈
supp (λ), then |Ak| ≤ md by (5.1), so | ∪d+1

i=1 Ai| ≤ (d + 1) ·md ≤ n with equality only
possible if Ai are disjoint. If we now choose g0 ∈ SLn(Z) such that Dd+1(g0λH) is maximal
possible, then applying Proposition 5.3 to λ = g0λH we must be in case (i).
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Let A1, . . . , Ad+1 be disjoint subsets in supp(g0λH). Since |Ak| ≤ md, there exists a
permutation σ ∈ Sn such that σ(Ak) ⊆ Ik for each k where Ik are as in Proposition 5.2.
Condition (3) in the definition of a regular module implies that supp(Fijµ) = (i, j)supp(µ)
for all µ ∈ Ω. Thus if we write σ as a product of transpositions σ =

∏
(it, jt) and let

g =
∏
Fitjt, then supp (gg0λH) contains σ(Ak) for each k, as desired.

Proof of Proposition 5.3. Assume that none of the conditions (i)-(iii) holds. Without loss
of generality we can assume that |A1 ∩A2| 6= ∅, and choose i ∈ A1 ∩ A2 and j 6∈ ∪s

i=1Ai.
Since the s-tuple (A1, . . . , As) is maximally disjoint, supp(λ) does not contain Ak\{i}∪{j}
and Ak ∪ {j} for any k.

Now take any g ∈ {E±1
ij , E

±1
ji }. We claim that supp(gλ) contains Ak for any k. Indeed,

by assumption Ak ∈ supp (λ), so λ(x) 6= 0 for some x ∈ L(m)Ak
. By conditions (1) and

(2) in the definition of a regular module, g−1x−x ∈ L(m)Ak\{i}∪{j}+L(m)Ak∪{j} ⊆ Kerλ.

Hence (gλ)(x) = λ(g−1x) = λ(x) 6= 0, so Ak ∈ supp (gλ).
Since supp(gλ) contains A1, . . . , As and (A1, . . . , As) is also maximally disjoint for λ,

we must have Ds(gλ) ≥ Ds(λ). On the other hand, Ds(gλ) ≤ Ds(λ) by our hypothesis,
so Ds(gλ) = Ds(λ) and (A1, . . . , As) is also maximally disjoint for gλ.

Applying the same argument to Eijλ, we conclude that (A1, . . . , As) is also maximally

disjoint for E−1
ji Eijλ and likewise maximally disjoint for EijE

−1
ji Eijλ. In particular, A1 \

{i}∪{j} 6∈ supp(EijE
−1
ji Eijλ). On the other hand, EijE

−1
ji Eij = Fij , and condition (3) in

the definition of a regular module implies that supp(Fijλ) contains (i, j)A1 = A1\{i}∪{j},
a contradiction. �

6. Proof of the main theorems for IAn with N = 2

In this section we will prove Theorem 1.4 for G = IAn, 4 ≤ n < 12 and Theorem 1.6(a)
in the case N = 2, 4 ≤ n < 12 (these are the only cases which do not follow from
Theorem 4.3).1 By Proposition 3.4, we are reduced to proving the following result:

Theorem 6.1. Let G = IAn for some n ≥ 4, and let (ρ, V ) be a non-trivial irreducible
representation of G with Ker ρ ⊇ [G,G]. Then G has a ρ-centralizing generating set.

The general method of proof of Theorem 6.1 will be similar to that of Theorem 4.3, but
we will make use of specific relations in IAn and properties of the action of SLn(Z) on IA

ab
n

which are not captured by the notions of a good n-group and a regular SLn(Z)-module,
respectively.

We start with the list of relations in IAn that will be used in the proof.

Lemma 6.2. Let a1, a2, a3, b1, b2, b3 ∈ n, and assume that {ai} are distinct and {bi} are
distinct. The following relations hold:

(R1) [Ka1a2 ,Kb1b2 ] = 1 if a1 6= b1, b2 and b1 6= a1, a2
(R2) [Ka1a2 ,Kb1b2b3 ] = 1 if a1 6= b1, b2, b3 and b1 6= a1, a2
(R3) [Ka1a2a3 ,Kb1b2b3 ] = 1 if a1 6= b1, b2, b3 and b1 6= a1, a2, a3
(R4) [Kbcd,Kab] = [Kad,Kac] if a, b, c, d ∈ n are distinct

1The restriction n ≤ 12 will not be used in the proof.
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For the rest of the section, G,n, ρ and V be as in Theorem 6.1, and define Ω as in § 5
with m = 1. By discussion at the end of § 4,

Gab = L(1) ∼=
⊕

j<k

Ze∗i ⊗ (ej ∧ ek)⊕
⊕

i 6=j

Ze∗i ⊗ (ei ∧ ej)

under the map which sends Kijk to e∗i ⊗ (ej ∧ ek) and Kij to e∗i ⊗ (ei ∧ ej). Given λ ∈ Ω,
define

cijk(λ) = λ(e∗i ⊗ (ej ∧ ek)).

The following two observations can be verified by direct computation. Observation 6.3
shows that when we act by an elementary matrix Eij on an arbitrary λ ∈ Ω, at most 4 of
the coefficients cxxy will change.

Observation 6.3. Let i, j, a ∈ n be distinct and λ ∈ Ω. Then

caaj(Eijλ) = caaj(λ)− caai(λ)

ciij(Eijλ) = ciij(λ)− cjji(λ)

cjja(Eijλ) = cjja(λ) + cjai(λ)

ciia(Eijλ) = ciia(λ)− cjai(λ)

and cxxy(Eijλ) = cxxy(λ) for all (x, y) 6= (a, j), (i, j), (j, a), (i, a).

Observation 6.4. Let i, j ∈ n with i 6= j and let σ be the transposition (i, j). Then for
any λ ∈ Ω and x, y, z ∈ n we have cxyz(Fijλ) = ±cσ(x)σ(y)σ(z)(λ).

In the proof of the following lemma we will repeatedly use Observation 6.3 without an
explicit reference.

Lemma 6.5. Assume that n ≥ 4. Then for any nonzero λ ∈ Ω there exists g ∈ SLn(Z)
such that c112(gλ), c221(gλ), c334(gλ) and c443(gλ) are all nonzero.

Proof. Step 1: There exists g1 ∈ SLn(Z) such that c112(g1λ) 6= 0.
First of all, by Observation 6.4 it suffices to find distinct a, b ∈ n such that caab(g1λ) 6= 0.
If cxxy(λ) 6= 0 for some x 6= y, we are done. Suppose now that cxxy(λ) = 0 for all x 6= y.

Then there must exist distinct distinct a, b, c with cabc(λ) 6= 0, in which case

caab(Ecaλ) = caab(λ) + cabc(λ) = 0 + cabc(λ) 6= 0.

Step 2: There exists g2 ∈ SLn(Z) such that c112(g2λ), c113(g2λ) 6= 0.
By Step 1, we can assume that c112(λ) 6= 0. If c113(λ) 6= 0, we are done. And if c113(λ) =

0, then c113(E23λ) = c113(λ)− c112(λ) = 0− c112(λ) 6= 0 and c112(E23λ) = c112(λ) 6= 0

Step 3: There exists g3 ∈ SLn(Z) such that either c112(g3λ), c113(g3λ), c221(g3λ) 6= 0 or
c112(g3λ), c334(g3λ) 6= 0

By Step 2, we can assume that c112(λ), c113(λ) 6= 0. If c224(λ) 6= 0 or c221(λ) 6= 0, we
are done (using Observation 6.4 in the former case), so assume that c224(λ) = c221(λ) = 0.
We consider 3 cases.

Case 1: c223(λ) 6= 0. Then

c224(E34λ) = c224(λ)− c223(λ) = −c223(λ) 6= 0
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c113(E34λ) = c113(λ) 6= 0

Hence c113(E34λ), c224(E34λ) 6= 0.

Case 2: c223(λ) = 0 and c132(λ) = 0. Then

c112(E21λ) = c112(λ) 6= 0

c221(E21λ) = c221(λ)− c112(λ) = −c112(λ) 6= 0

c113(E21λ) = c113(λ) + c132(λ) = c113(λ) 6= 0.

Case 3: c223(λ) = 0 and c132(λ) 6= 0.
Again we have c112(E21λ) 6= 0 and c221(E21λ) 6= 0, and this time

c223(E21λ) = c223(λ)− c132(λ) = −c132(λ) 6= 0.

Hence we are done by Observation 6.4.

Step 4: There exists g4 ∈ SLn(Z) such that c112(g4λ), c334(g4λ) 6= 0.
By Step 3, we can assume that c112(λ) 6= 0, c221(λ) 6= 0 and c113(λ) 6= 0. If c443(λ) 6= 0

or c224(λ) 6= 0, we are done (by Observation 6.4).
So assume that c443(λ) = c224(λ) = 0. Then

c224(E14λ) = c224(λ)− c221(λ) = −c221(λ) 6= 0

Case 1: c431(λ) = 0. Then c113(E14λ) = c113(λ) − c431(λ) 6= 0, so c113(E14λ) 6= 0 and
c224(E14λ) 6= 0.

Case 2: c431(λ) 6= 0. Then c443(E14λ) = c443(λ)+c431(λ) = c431(λ) 6= 0 and c221(E14λ) =
c221(λ) 6= 0, so c443(E14λ) 6= 0 and c221(E14λ) 6= 0.

In both cases we are done by Observation 6.4.

Final Step. By Step 4, we can assume that c112(λ), c334(λ) 6= 0. Set α = 0 if c221(λ) 6= 0
and α = 1 if c221(λ) = 0 and β = 0 if c443(λ) 6= 0 and β = 1 if c443(λ) = 0. Then

g = Eα
21E

β
43 satisfies the assertion of Lemma 6.5. �

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Let H = Ker ρ. By Lemma 6.5, after precomposing ρ with con-
jugation by a suitable element of g ∈ Aut (Fn) (which has the effect of replacing H by
gHg−1 and λH by gλH), we can assume that H has empty intersection with the set
S = {K12,K21,K34,K43}. Using relations (R1)-(R3) of Lemma 6.2, it is easy to show
that the only standard generators of IAn which do not commute with an element of S
are K134,K234,K312,K412. However, by relations (R4) each of these 4 elements commutes
with an element of S modulo the subgroup generated by all Kxy. Thus, if we order
the standard generators of IAn so that K12,K34,K21,K43 come first (in this order) and
K134,K234,K312,K412 come last, we obtain a ρ-centralizing generating set. �
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7. Verifying hypotheses of Theorem 4.3 for the Torelli subgroups.

Let g ≥ 3, and let Σ = Σ1
g be an orientable surface of genus g with 1 boundary

component. The mapping class group Mod 1
g = Mod (Σ1

g) is defined as the subgroup

of orientation preserving homeomorphisms of Σ1
g which fix ∂Σ1

g pointwise modulo the

isotopies which fix ∂Σ1
g pointwise.

Choose a base point p0 on the boundary ∂Σ. Since Σ has a bouquet of 2g circles as
a deformation retract, the fundamental group π = π1(Σ, p0) is free of rank 2g; moreover,
for a suitable choice of a free generating set {αi, βi}

g
i=1 of π, the boundary ∂Σ represents

Π =
∏g

i=1[αi, βi]. Thus, there is a natural homomorphism from Mod 1
g to the subgroup of

automorphisms of π which fix Π. It is well known that this map is an isomorphism.
Thus, we can identify Mod 1

g with a subgroup of Aut (F2g), and using this identification

we can define the Johnson filtration {I1
g (k)}

∞
k=1 by I1

g (k) = Mod 1
g ∩ IA2g(k). The sub-

groups I1
g = I1

g (1) and J 1
g = I1

g (2) are known as the Torelli subgroup and the Johnson

kernel, respectively. Note that I1
g can also be defined as the set of all elements of Mod 1

g

which act trivially on the integral homology group H1(Σ
1
g).

For the rest of this section we set M = Mod 1
g, I = I1

g = I1
g (1) and J = J 1

g = I1
g (2).

Our goal is to show that the hypotheses of Theorem 4.3 hold for Γ = M, G = I, d = 3
and n = g. The homomorphism ϕ : SLg(Z) → M/I will be defined in § 7.6 (assuming
the canonical isomorphism M/I ∼= Sp(V ) defined in § 7.2).

7.1. The g-group structure on I. We can think of Σ1
g as a (closed) disk with g handles

attached; call the handles H1, . . . ,Hg. Choose disjoint subsurfaces S1, . . . , Sg, each home-
omorphic to Σ1

1, such that Si contains Hi. As shown in [CP, §4.1], for each I ⊆ g, one can
construct a subsurface SI homeomorphic to Σ1

|I| such that the following properties hold:

(1) S{i} = Si for each i ∈ n and Sn = Σ
(2) SI ⊆ SJ if I ⊆ J
(3) (see Figure 2 in [CP, §4.1]) Let I, J ⊆ g be disjoint subsets satisfying one of the

additional properties:
(i) i < j for all i ∈ I and j ∈ J (or vice versa)
(ii) There exist j1, j2 ∈ J with j1 < j2 such that the interval {j1 + 1, . . . , j2 − 1}

contains I and does not contain any elements of J .
Then there exist disjoint subsurfaces S′

I and S
′
J isotopic to SI and SJ , respectively.

Note that if I and J are disjoint and I consists of consecutive integers, then (i) or (ii)
above must hold.

Now define II to be the subgroup of I consisting of mapping classes which have a
representative supported on SI . Properties (1)-(3) above imply that I = I1

g is a good g-
group (here we use the obvious fact that homeomorphisms supported on disjoint surfaces
commute), and by [CP, Proposition 4.5], this g-group is generated in degree 3.

7.2. H1(Σ) as an Sp2g(Z)-module. Let V = H1(Σ). Then V is a free abelian group of
rank 2g endowed with the canonical symplectic form

([α], [β]) 7→ [α] · [β]
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where [α] · [β] is the algebraic intersection number between the closed curves α and β on
Σ. Clearly the action of M/I on V preserves this form, so there is a canonical group ho-
momorphism M/I → Sp(V ) where Sp(V ) is the group of automorphisms of V preserving
the above form. It is well known that this homomorphism is an isomorphism, so from now
on we will identify M/I with Sp(V ).

Out next goal is to describe the abelianization Iab as an Sp(V )-module. First we will
introduce two quotients of Iab, the largest torsion-free quotient and the largest quotient
of exponent 2. The corresponding homomorphisms defined on I are called the Johnson
homomorphism and the Birman-Craig-Johnson homomorphism and will be denoted by τ
and σ, respectively.

7.3. Johnson homomorphism. The symplectic form introduced above yields a canoni-
cal isomorphism of Sp(V )-modules V ∗ ∼= V . By the same logic as in the case of automor-
phisms of free groups, there exists a homomorphism of Sp(V )-modules

τ : I → V ⊗ (V ∧ V )

with Ker (τ) = J , the Johnson kernel. It is called the Johnson homomorphism. Unlike the
case of automorphisms of free groups, τ is not surjective, and Johnson [Jo3] showed that
its image is spanned by elements of the form u⊗ (v ∧w) + v⊗ (w ∧ u) +w⊗ (u∧ v). The
latter subspace is clearly Sp(V )-isomorphic to ∧3V , so I/J ∼= ∧3V as Sp(V )-modules.

We will use an explicit formula for the values of τ on a suitable generating set for
I, which is discussed below. For each simple closed curve γ on Σ denote by Tγ ∈ M =
Mod (Σ) the Dehn twist about γ. Now let (γ, δ) be a pair of disjoint non-separating simple
closed curves on Σ such that

(i) γ and δ are homologous to each other and non-homologous to zero.
(ii) the union γ ∪ δ separates Σ; moreover, if Σγ,δ is the connected component of

Σ \ (γ ∪ δ) which does not contain ∂Σ, then Σγ,δ has genus 1.
(iii) γ is oriented in such a way that Σγ,δ is on its left.

Johnson [Jo1] proved that the Torelli group I is generated by elements of the form TγT
−1
δ ,

with (γ, δ) as above, so it suffices to know the values τ on such elements.
Given (γ, δ) as above, let c ∈ V = H1(Σ) be the homology class of γ, and choose any

a, b ∈ H1(Σγ,δ) ⊂ H1(Σ) such that a · b = 1. Then

(7.1) τ(TγT
−1
δ ) = a ∧ b ∧ c.

For the justification of (7.1) and the related formula (7.2) below see [Jo6, § 2] and references
therein.

7.4. Birman-Craig-Johnson homomorphism. Now let VF2
= V ⊗ F2

∼= H1(Σ,F2).
Let B be the ring of polynomials over F2 in formal variables X = {v : v ∈ HF2

\ {0}}
subject to relations

(R1) v + w = v + w + v · w for all v,w ∈ X
(R2) v2 = v for all v ∈ X

The group Sp(V ) has a natural action on B by ring automorphisms such that g(v) = gv
for all v ∈ X. Let Bn be the subspace of B consisting of elements representable by a
polynomial of degree at most n. Then each Bn is an Sp(V )-submodule, and it is easy to
see that Bn/Bn−1

∼= ∧nVF2
for each n ≥ 1 (as Sp(V )-modules).
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In [Jo2], Johnson constructed a surjective homomorphism σ : I → B3 which induces an
Sp(V )-module homomorphism Iab → B3. Following [BF], we will refer to σ as the Birman-
Craig-Johnson (BCJ) homomorphism. We will not discuss the conceptual definition of σ
in terms of the Rochlin invariant and instead give an explicit formula for σ on elements
TγT

−1
δ with (γ, δ) satisfying (i)-(iii) above:

(7.2) σ(TγT
−1
δ ) = ab(c+ 1).

where a, b and c are defined as in (7.1) except that this time they are mod 2 homology
classes.

7.5. The full abelianization. Let α : ∧3V → ∧3VF2
be the natural reduction map, and

let β : B3 → ∧3VF2
be the unique linear map such that β(B2) = 0 and β(u v w) = u∧v∧w

for all u, v, w ∈ VF2
. Clearly α and β are both Sp(V )-module homomorphisms. Let

(7.3) W = {(u, v) ∈ ∧3V ⊕B3 : α(u) = β(v)}

Theorem 7.1. The map (τ, σ) : Iab → ∧3V × B3 given by g + [G,G] 7→ (τ(g), σ(g)) is
injective and Im ((τ, σ)) =W .

Proof. The fact that Im (τ, σ) ⊆ W holds by [Jo3, Theorem 4] and also follows immedi-
ately from (7.1) and (7.2). Once this is established, the opposite inclusion follows from
σ(Ker τ) = Kerβ, and the latter holds by [Jo2, Lemma 4]. Finally, injectivity of (τ, σ) is
proved in [Jo6]. �

Now let I ⊆ g be any subset with |I| ≥ 3, and let SI be the corresponding subsurface
of Σ introduced in § 7.1. Since SI is itself a closed orientable surface of genus ≥ 3 with
one boundary component, we can repeat the entire construction described in this section
starting with SI instead of Σ, so in particular we can define the modules V (I) = H1(SI)
and B3(I) and the homomorphisms τI : II → ∧3V (I) and σI : II → B3(I) (recall that II
was defined as the subgroup of I consisting of mapping classes supported on SI , but this
group is canonically isomorphic to the Torelli subgroup of Mod (SI)).

Proposition 7.2. The following diagrams are commutative

(7.4) (II)
ab τI

//

��

∧3V (I)

��

(II)
ab σI

//

��

B3(I)

��

Iab τ
// ∧3V Iab σ

// B3

where the vertical maps are induced by the natural inclusions II → I and H1(SI) → H1(Σ).

Proof. For both diagrams, it is enough to check commutativity for the values on the
generators TγT

−1
δ . This follows immediately from (7.1) and (7.2) since if γ and δ are

curves on SI satisfying (i)-(iii), replacing SI by Σ will not change the surface Σγ,δ or the
homology classes a, b and c. �
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7.6. Iab as a regular SLg(Z)-module. For each 1 ≤ i ≤ g choose any basis {ai, bi} for

H1(Si) ⊂ V s.t. ai · bi = 1. Then V =
g⊕

i=1
(Zai ⊕ Zbi), and {ai, bi}

g
i=1 is a symplectic basis

for V , that is, ai·aj = bi·bj = 0 for all i, j, and ai·bj = δij . Now define ϕ : SLg(Z) → Sp(V )
by

ϕ(A) =

(
A 0
0 (At)−1

)

,

where the above matrix is with respect to the ordered basis (a1, . . . , ag, b1, . . . , bg). This
yields SLg(Z)-module structures on ∧3V , B3 and hence on W defined by (7.3). We also
obtain an action of SLg(Z) on L(I) by Lie algebra automorphisms via (4.2) using ϕ above
(recall that Sp(V ) is canonically isomorphic to M/I), and it is straightforward to check
that (τ, σ) : Iab →W from Theorem 7.1 is an isomorphism of SLg(Z)-modules.

We could proceed working directly with W , but things can be simplified further with
the following observations. Let π : B3 → ⊕3

i=0 ∧
i VF2

be the unique linear map such that
π(1) = 1, π(x) = x, π(x y) = x∧y and π(x y z) = x∧y∧z where x, y, z are distinct elements
of the basis {ai, bi}

g
t=1. Clearly, π is bijective, and it is straightforward to check that π is

an isomorphism of SLg(Z)-modules 2 (but not an isomorphism of Sp(V )-modules!)

Now define π′ : ∧3V ⊕B3 → ∧3V ⊕
3⊕

i=0
∧iVF2

by π′(u, v) = (u, π(v)−α(u)). Clearly, π′ is

an isomorphism of SLg(Z)-modules, and it is easy to show that π′(W ) = ∧3V ⊕
2⊕

i=0
∧iVF2

.

Thus we have the following isomorphism of SLg(Z)-modules:

λ = π′ ◦ (τ, σ) : Iab → ∧3V ⊕

(
2⊕

i=0

∧iVF2

)

. (∗ ∗ ∗)

It is easy to see that V is a direct sum of the natural SLg(Z)-module Zg and its dual.

Using Lemmas 4.1 and 4.2 and the isomorphism λ, we endow Iab with the structure of
a regular SLg(Z)-module generated in degree 3, so condition (ii) in Theorem 4.3 holds.
Here is an explicit description of the obtained grading on Iab. The symbol et stand for at
or bt.

(1) If I = {i < j < k}, then (Iab)I = λ−1(⊕Zei ∧ ej ∧ ek).
(2) If I = {i < j}, then (Iab)I = λ−1((⊕Zei∧aj ∧bj)⊕ (⊕Zej ∧ai∧bi)⊕ (⊕F2ei∧ej)).
(3) If I = {i}, then (Iab)I = λ−1(F2ai ⊕ F2bi)
(4) If I = ∅, then (Iab)I = λ−1(F2)

It remains to check condition (iii). In the argument below the reader should not confuse
(Iab)I , the I-component of Iab as defined above, with (II)

ab, the abelianization of the
group II . Let I ⊆ g, with |I| ≥ 3, and let ιI : (II)

ab → Iab be the natural map.
We need to show that ιI((II)

ab) contains
∑

J⊆I

(Iab)J or, equivalently, that λ ◦ ιI((II)
ab)

contains
∑

J⊆I

λ((Iab)J ). We claim that the latter two sets are both equal to ZI := ∧3V (I)⊕

2This is true since SLg(Z) preserves both VA = ⊕Zai and VB = ⊕Zbi and the intersection form vanishes
on both VA and VB
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(
2⊕

i=0
∧iV (I)F2

)

(where we identify V (I) = H1(SI) with its image in V = H1(Σ)). Indeed,
∑

J⊆I

λ((Iab)J) = ZI directly from (1)-(3) above, while the equality λ ◦ ιI((II)
ab) = ZI

follows easily from Proposition 7.2.

8. Abelianization of finite index subgroups in Aut (Fn) and Mod (Σ1
g)

A group G is said to have property (FAb) if every finite index subgroup of G has finite
abelianization. Clearly Aut (F2) does not have (FAb) since it projects onto GL2(Z), which
is a virtually free group. The group Aut (F3) also does not have (FAb) – this was proved by
completely different methods in [Mc2] and [GL]. The question whether Aut (Fn) has (FAb)
for n ≥ 4 is wide open. To the best of our knowledge, the only (sufficiently general) class
of finite index subgroups of Aut (Fn) for which abelianization was (previously) known to
be finite are subgroups containing IAn – this has been proved for all n ≥ 3 independently
in [Bh] and [BV]. Slightly more was known in the case of mapping class groups. In [Mc1],
it was proved that Mod 1

2 does not have (FAb), and it is a well known conjecture of Ivanov
that Mod 1

g has (FAb) for g ≥ 3. In the case g ≥ 3, in [Ha] it was proved that Hab is

finite for every finite index subgroup of Mod 1
g containing the Torelli subgroup (see also

[Mc1] for a short elementary proof). In [Pu1] this result was extended to all subgroups
containing a large portion of the Johnson kernel (in suitable sense); in particular, to all
subgroups containing the Johnson kernel itself. 3

In this section we will prove Theorem 1.7 restated below. In particular we will establish
finiteness of abelianization for all finite index subgroups of Aut (Fn) and Mod 1

n which
contain the N th term of the Johnson filtration, provided n ≥ 12(N − 1).

Theorem 1.7. Let (G,K) be as in Theorem 1.2, and let Γ = Aut (Fn) if G = IAn and
Γ = Mod 1

g if G = I1
g . The following hold:

(1) If H is a finite index subgroup of G which contains K, then the restriction map
H1(G,C) → H1(H,C) is an isomorphism

(2) If H is a finite index subgroup of Γ which contains K, then H has finite abelian-
ization.

Theorem 1.7 is a direct consequence of Theorem 1.6 and the following general result.

Theorem 8.1. Let Γ be a group and G and K normal subgroups of Γ with K ⊆ G.
Assume that (G,K,C) is nice. The following hold:

(1) Let H be a subgroup of Γ which contains K, is normalized by G and such that [GH :
H] <∞. Then the restriction map H1(GH,C) → H1(H,C) is an isomorphism.

(2) If H is any finite index subgroup of G containing K, then the restriction map
H1(G,C) → H1(H,C) is an isomorphism.

(3) Assume in addition that Γ is finitely generated and Mab is finite for every finite
index subgroup M of Γ which contains G. Then Hab is finite for every finite index
subgroup H of Γ which contains K.

3The results of [Ha] and [Pu1] apply to mapping class groups of surfaces with an arbitrary number of
punctures and boundary components
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The extra hypothesis in part (3) holds for (Γ, G) = (Aut (Fn), IAn) with n ≥ 3 or
(Γ, G) = (Mod 1

g,I
1
g ) for g ≥ 2 by the results from [Bh], [BV] and [Ha] mentioned at the

beginning of this section.

Proof of Theorem 8.1. (1) By Shapiro’s LemmaH1(H,C) ∼= H1(GH,CoindGH
H (C)) where

CoindGH
H (C) is the coinduced module. By assumption, H is a normal finite index subgroup

of GH, so we have the following isomorphisms of GH-modules:

CoindGH
H (C)) ∼= C[Q] ∼=

⊕

V ∈Irr(Q)

(dimV )V

where Q = GH/H and Irr(Q) is the set of equivalence classes of irreducible complex
representations of Q. Hence

H1(H,C) ∼= H1(GH,C)⊕
⊕

V ∈Irr(Q)\V0

H1(GH,V )dim(V )

where V0 is the trivial representation of Q. Moreover, the inclusion H1(GH,C) →
H1(H,C) coming from the above isomorphism is the restriction map.

Thus, we only need to show that H1(GH,V ) = 0 for every non-trivial irreducible
representation V of Q. Take any such representation V . The exact sequence of groups
1 → G→ GH → GH/G → 1 yields the following inflation-restriction sequence:

0 → H1(GH/G, V G) → H1(GH,V ) → H1(G,V )GH . (∗ ∗ ∗)

Since V is irreducible and non-trivial, we have V G = 0. Since (G,K,C) is nice and K
acts trivially on V , we have H1(G,V ) = 0. Thus (***) implies that H1(GH,V ) = 0, as
desired.

(2) If H is normal in G, the result follows directly from (1). In general, since H has
finite index in G and K is normal in G, there exists a finite index normal subgroup H ′ of G
with K ⊆ H ′ ⊆ H. Then by (1) the composite restriction map H1(G,C) → H1(H,C) →
H1(H ′,C) is an isomorphism, whence H1(H,C) → H1(H ′,C) is surjective. Injectivity of
H1(H,C) → H1(H ′,C) is automatic since H ′ has finite index in H.

(3) Again the result follows from (1) if H is normal in Γ. Indeed, GH has finite index in
Γ, so (GH)ab is finite, whence H1(GH,C) = 0 and thus H1(H,C) = 0 by (1). Since H has
finite index in Γ and Γ is finitely generated, H is also finitely generated, so H1(H,C) = 0
forces Hab to be finite. In general, we can find a finite index subgroup H ′ of H which is
normal in Γ, and Hab is finite whenever (H ′)ab is finite. �
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