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 Annals of Mathematics, 118 (1983), 423-442

 The structure of the Torelli group I:
 A finite set of generators for I

 By DENNIS JOHNSON

 1. Introduction

 This is the first of three papers concerning the so-called Torelli group. Let

 M = Mg be a compact orientable surface of genus g having n boundary

 components and let 9 = Xg . be its mapping class group, that is, the group of
 orientation preserving diffeomorphisms of M which are 1 on the boundary AM

 modulo isotopies which fix 3M pointwise. This group is also known to the

 complex analysts as the Teichmuller group or modular group. If n = 0 or 1, let

 further 4 = Jg . be the subgroup of D1 which acts trivially on H1(M, Z). The
 topologists have no traditional name for A, but the analysts tell me it was known

 classically and is called the Torelli group. Several interesting problems and

 conjectures exist concerning f. The principal one can be found in Kirby's

 problem list [K] and asks if gg is finitely generated. In this first paper we shall

 answer the question affirmatively for both gg 0 and fgg , when g > 3 and shall give
 a fairly simple set of generators.

 Two other conjectures were made by the author. The first involves the

 subgroup 'J of f which is generated by twists on nulhomologous simple closed

 curves. [JI] produces a surjective homomorphism T: fgg 1 A3H1(M, Z) which
 kills C, and it is conjectured there that in fact 5Y = Ker T. The proof of this is the

 content of the second paper. In the third paper we use the results of the second

 to compute the abelianization f/f' explicitly, thereby verifying another conjec-

 ture in [Ji].
 The first reasonably simple (but infinite) set of generators for fg0 was

 produced by Powell in [P]. His generators consist of two types: a) twists on

 bounding simple closed curves, b) opposite twists on a (bounding) pair of disjoint
 homologous simple closed curves, each of which are nonbounding. Using his

 result, the author showed in [J2] that the maps of the second type, which we call

 BP maps (for bounding pair), are actually sufficient to generate both Kg 0 and fg 1

 for g > 3 and in fact that we need only those whose two curves bound a genus
 one subsurface of M (note that for g = 2 all BP maps are trivial and hence the
 result fails in this case). In the finite set of generators produced in this paper only
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 424 DENNIS JOHNSON

 BP maps are used, but they include maps for which the bounded subsurface has

 genus greater than one.

 Throughout the paper all surfaces will be compact, orientable and oriented

 and all maps will be smooth. A surface of genus g with n boundary components

 will frequently be described as "an Mg ,". SCC means simple closed curve; if y

 is an SCC then it determines a twist map T, E- 'Da in the usual way. The
 convention here is that T, affects an arc crossing y by causing it to turn right as it
 approaches y, run once around y and then proceed on as before. The order of

 composition for maps is the functional one: T18Ta means apply Ta first, then Tl.
 On the other hand, if a and /3 are closed curves representing elements of 'rg(M)

 then by a/3 we mean that closed curve which traverses a first, then /3. Finally,

 [x, y] means xyx - ly - 1.

 2. Chains and chain maps

 For the purpose of describing our generators succinctly we need a different

 way than by specifying the two twisting curves; the latter is inconvenient, and

 we take another approach. Since a BP map consists of twists on the boundary of

 an Mk,2 subsurface of M, everything could be defined equally well by drawing a

 spine of the Mk,2 in M, along with which boundary curve receives the positive
 twist. Consider for example the BP map of genus k given below:

 7 I positive twist

 < _ < ) ~~~negative twist

 FIGURE la

 One possible spine of this surface is the union of the k circles numbered above

 and the k + 1 circles below:

 FIGURE lb

 This spine is a kind of "chain" of 2k + 1 circles. If we give these circles some

 order, say left to right, and write them C1, C2,..., C2k+ 15 then they acquire
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 STRUCTURE OF THE TORELLI GROUP, I 425

 orientations in a unique way if we require that:

 a) The algebraic intersection ci ci+ i is + 1 (this determines the orientations
 up to a simultaneous reversal of them all), and

 b) the odd numbered curves cl, C3,..., C2k+1, which split the Mk 2 into two
 Mo k+2's, shall be so oriented that the MO, k +2 which is on their left contains the
 positive twist boundary curve. Conversely, an oriented chain of this kind

 determines a unique BP map by taking opposite twists on the two boundary

 curves of a regular neighborhood of the chain, with the positive twist on the "left

 side" of cl, C3,..., C2k+ 1. Of course, many different chains will determine the
 same map, but for our purpose this will not be a problem. We therefore make the

 following definitions:

 Definition 1. A chain in M is an ordered collection (cl, c2,..., 5c) of
 oriented SCC's such that

 a) ci intersects ci+ 1 transversely in a single point and the algebraic intersec-
 tion ci ,ci+1 is + 1,

 b) ci fl c; is empty if Ii - jj > 1, and
 c) the homology classes of the ci's are linearly independent.

 Chains which are isotopic via an ambient isotopy are not considered as

 distinct (more precisely, we could define a chain to be an isotopy class of the

 above objects). Note that the regular neighborhood of the above chain has genus

 2 and two boundary components if n is odd and has genus 2 and one
 2 2

 boundary component if n is even. The purpose of condition c) is to insure that,

 for odd n, each of the two boundary curves is nonbounding; if n is even,
 condition c) follows from a) and b) alone. In order to call the reader's attention to

 the fact that (cl,..., c,) is a chain, we will frequently write ch(cl,..., 5c).

 Definition 2. a) The length of the above chain is n; we refer to such an

 n-chain as even or odd in accord with its length.

 b) The basic circles of the above chain are the SCC's ci.

 Definition 3. If ch(cl,..., c2k+1) is an odd chain, the unique BP map in ?
 given by opposite twists on the two boundary curves, the positive twist being

 taken on that curve lying to the "left" of cl, c3,..., C2k?1, will be written

 [c1, C2,. .., c2k+?] and called the chain map of ch(cl,..., C2k+ )*

 The mapping class group of M acts on chains in the obvious way: If g is a

 diffeomorphism representing an element of 9k and (cl,.. ., c,) is a chain, then
 we write g *(cl,..., c,) for the chain (g(cl),..., g(cJ)). This is well defined up
 to isotopy. The chain map of g *ch(cl, .. ., c,) is clearly g[cl,.. ., cJ]g - 1 (we
 are using here the fact that gTyg 1 = Tg(y) for any SCC y). We will usually, by
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 426 DENNIS JOHNSON

 analogy, write this conjugate as g * [cl,. .., n], and more generally write g * f
 for gfg -; this will simplify many of the formulas in the sequel. If y is any SCC

 disjoint from the c 's, then clearly TY*ch(c1,..., In) = ch(c1,..., cn) and so
 T, * [cl,... , cn] = [cl,... , ca]. But we note also that if y equals any one of the
 c 's then it is disjoint from the two boundary curves of the regular neighborhood

 of the chain, and hence we still have Ty * [cl,..., Ck] = [c,,..., Ck]. In this case
 however, it is not true that T. *ch(cl,..., Ck) = ch(cl,. .., Ck); for example
 consider the following 3-chain:

 T

 C2

 FIGuRE 2

 The results of [J3] (see Theorem 5, its corollary, and Theorem 6) tell us that
 the number of generators of 4 must be large. In order to construct a large number

 of chains from a given one (cl,..., c,) in a unified way, we now introduce the
 notion of a subchain. One possible definition is obvious: if ci, ci+15 ... . c; is any
 consecutive subset of the basic circles, then they clearly form a chain; we call

 such a subchain a consecutive subchain. We will need, however, a more general

 notion of a subchain.

 Let Y1,..., yn be any collection of mutually transverse oriented SCC's with
 no triple points, i.e. with yi n -y n Yk = 0 for i, j, k distinct. We use them to
 construct a collection of disjoint oriented SCC's as follows: choose disjoint disc

 neighborhoods of the intersection points and in each of them replace + by J

 (and similarly for the mirror image type of crossing). The result is well defined up

 to isotopy and we call the new collection y1 + * * * + yn. Suppose we are given r
 consecutive blocks of consecutive basic circles of our chain, that is, consecutive

 subchains K1 = ch(ci, 1i1+1. .. , ci2 1) K2 = ch(ci, .i2+ .. c'3 _ i) .
 Kr = ch(c ir,, cir+ _ 1). Then the sum of the curves in each Ki is an SCC ki and
 (k1, k2'...' kr) is easily seen to be a chain; this is our general definition for a
 subchain of ch(c1, ..., ).

 Notation. The above subchain will be denoted by (iJi2... ir+? ) or ch(i1i2. ..
 ir+1); the BP map determined by this chain will be denoted by [i1i2... ir+

 Consider for example the chain (c,,..., c6) in M3,1 shown below in Figure
 3a; the subchains (136) = (c1 + C25 C3+C4+C5) and (1247)=(c1, c2 +
 C3, C4 + C5 + c6) are depicted in Figures 3b, c, respectively.
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 STRUCTURE OF THE TORELLI GROUP, I 427

 1 3 C5

 (a) (b) (c)

 FIGURE 3

 In terms of this notation, the full chain (cl,..., cn) is just (123... n + 1),
 and we see that the notation creates a correspondence between subehains of the

 full chain and subsets of the full index set 1, 2, 3,.. ., n + 1; this explains our use

 of the term "subehain". (Note: In the notation (12... n + 1) the (n + 1)-st

 curve is not involved in the chain and may not even exist (if n = 2g). The last

 number serves to note the termination of the chain at the n-th curve.) The

 notation also makes clear the following.

 LEMMA 1. a) A consecutive subchain is notated by a consecutive set of

 indices.

 b) The length of a subchain is one less than the number of its indices.

 c) The basic circles of the subchain (iii2... ir+1) are the 1-chains (i'i2) =
 cil + Ci++* + +c(i2_15(i3), etc.

 d) The number of k-subchains of an n-chain is ( n+1 ).
 k + IF

 e) If p is a subchain of q and q of r then p is a subchain of r.

 f) If C1 = Tc then C1 commutes with the subchain map [i1i2... ] if and only
 if j and j + 1 are either both contained in or are disjoint from the i's. If

 j= im but j+ 1I m+1, that is if j= i A im l -1, we get Ci-1*[i... ] =
 [iill, im-1 im + 1, im+1*.* ] and likewise, if j + 1 = im butj iml- that is if

 j+1 =im im-1 + 1, we get

 cim -1* [il ...] =[ili... im-15 im - 1, iM+15...]

 We need only prove the last statement f). If j, j + 1 are either contained in

 or disjoint from the index set, then c1 is either a basic circle of the subchain or
 disjoint from it, and the commutativity follows. The other two cases follow easily

 by a comparison with the following pictures:

 -1

 X C C'.71

 (a) Ci.-1 (b)

 FIGURE 4
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 428 DENNIS JOHNSON

 We shall single out two specific chains on our surface M = Mg, . The basic
 circles cl,..., C2g and ca are shown in Figure 5,

 \ C2 c4 C6 C2g-2 C2g

 FIGURE 5

 and the two chains we want are the 2g-chain (cl,c2,..., c2g), consisting of all ci

 (i = 1, 2,..., 2g), and also the (2g - 3)-chain ( c,,, C5, C6,..., C2g) consisting of
 c', and all ci for i > 5. The curve b is not in either of these chains, but we note
 that if we put B = Tb, then ca = B(c4).

 Now any subchain of ch( c, ... C2g) which does not involve the first circle c'8
 is also a subchain of ch(cl,..., c2g). Thus we would like a notation for the

 subchains of ch(c'8, c5,...) which is consistent with the notation given to the
 subchains of ch(cl,..., C2g). This is easily done by using the index set 13, 5, 6,...,

 2g + 1 for notating the subchains of ch(c8, C,,,.. .). Thus ch(/3i1i2. .. ), where
 i? > 5, denotes the chain whose basic circles are (fBi1) = c,8 + c5 + * +
 cil - 1 (iii2) = etc., and any chain (i,... ) with il ? 5 denotes the same subchain
 of either ch(cl,..., C2g) or ch(c,3,..., c2g). The two original chains are denoted
 by ch(12 3... 2g + 1) and ch(f35 6... 2g + 1). Clearly we have (fBi,) =
 B *(4i1), and more generally ch(fli1i2 ... ) = B *ch(4i'i2...) whenever il ? 5.
 The circles (,/5), (/36), (/37), etc., are depicted below.

 (0 etc.

 FIGURE 6

 We are now in a position to state the principal theorem of this paper.

 MAIN THEOREM. For g ? 3 the odd subchain maps of the two chains

 ch(123... 2g + 1) and ch(,8356... 2g + 1) generate 1.

 We are thus interested in subchains of ch(1 23... 2g + 1), which will be

 called straight chains, and subchains of the form ch(/3ij ... ), which will be called
 /3-chains.

 Before getting involved in the technicalities of the proof it might be useful

 to give a brief description of our approach. By results mentioned earlier, for

This content downloaded from 128.135.12.127 on Tue, 16 Aug 2016 21:57:18 UTC
All use subject to http://about.jstor.org/terms



 STRUCTURE OF THE TORELLI GROUP, I 429

 g ? 3, Jg 1 is generated by all BP maps of genus 1, or in our present terminology
 by all possible 3-chain maps. Since all BP maps of genus 1 are conjugate in fTg 1,

 this can be rephrased in the following way: A subgroup of 5 g 1 (g ? 3) which is

 normal in fig 1 and contains a 3-chain map must be 5g 1 itself. Our aim will be

 then to prove that the group generated by straight- and /-chain maps is normal

 in 6Zg 1 (true for g ? 2). For this it suffices to choose generators Gi for fhg 1 and
 show that, for all i, the conjugate of each of our chain maps by Gi' 1 is still in the
 group they generate. Hence it would pay us to choose the Gi carefully. The most
 convenient set of generators for our purposes are those given by Humphries; in

 [H] he reduces Lickorisch's original set of 3g - 1 twist generators (see [L]) to just

 2g + 1, namely Ci = Ti (i = 1,..., 2g) and B = Tb. These generators are nicely
 "aligned" with our chains and make the computation of the required conjugates

 particularly simple. One technical hitch is that Humphries' original theorem

 shows only that the above maps generate TXg 0, but we will show below that

 they generate 6Tg 1 also. We begin now the proof in earnest.

 3. Generating the kernel of 5Jg 1

 Given the surface M = Mg 1 we may fill in the boundary curve with a disc

 D and get a closed surface M of genus g. If we think of 6X9g 1 as all maps of M
 which are 1 on D modulo isotopies which are pointwise fixed on D, then we get a

 homomorphism 6)Xgig T hat this homomorphism is surjective follows
 from the fact that every (orientation preserving) diffeomorphism of M is isotopic

 to one which equals 1 on D. The kernel K of this map may thus be thought of as

 diffeomorphisms of M which are 1 on D and isotopic to 1 on M, modulo isotopies

 which leave D pointwise fixed. Clearly K is contained in g 1' so we get an exact

 sequence 0 -- K 5g,1 5g 0, and we see that to show 5g 4 is finitely
 generated (f.g.), it suffices to show that 5 g1 is f.g.

 By a maximal odd chain on M we mean any (2g - 1)-chain (q). The
 boundary curves of a regular neighborhood of (q) then split M = M U D into an

 Mg-12 and an annulus, the latter containing D. The chain map [q] is thus
 isotopic to 1 in the annulus, i.e., [q] E K. Our first goal is to produce a

 convenient set of maximal odd chain maps which generate K. This bears on our

 problem as follows: in order to prove the main theorem we will be faced with

 showing that the conjugate of some (2k - 1)-chain map by some twist map TK
 remains in the group of (straight and 13-) chain maps. In most cases, the union

 of the (2k - 1)-chain and the curve c will lie in a subsurface of type Mk 1, and in
 this surface the conjugated chain map is maximal and hence in the kernel

 of 9ZTk 1 O 91 k, O. A detailed knowledge concerning this kernel will then enable
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 430 DENNIS JOHNSON

 us to conclude that the conjugated chain map still lies in our group of chain

 maps.

 To begin with, we need an alternate description of K. This kernel is closely

 related to the braid group of M (compare [B], pp. 5-15). For future use we will

 need this alternate description for surfaces of the form Mg with n > 1 as well.

 Let then M = Mg, w and if 8 is one of the boundary curves of M, fill it in with a
 disc D to get a surface M of type Mg n- 1'As in the above paragraph, we think of

 maps of 6Xg n as diffeomorphisms of M which are 1 on D, etc., and we still have

 a suriective homomorphism Yg, n 'DMg n-1 with kernel which we still denote
 by K.

 If now f E K, it is isotopic to 1 in M; so let f be an isotopy with fo = f and

 f, = 1. The restriction of f to D, f: D -- M, gives us then a homotopy class of
 framed curves on M in the obvious way: we fix a base point d E Int D and a

 frame v at d once and for all; then for each t we get a point ft(d) and frame

 dft(v). We call this homotopy class p(t); since a framed curve is completely
 determined up to homotopy by its first (unit) vector, p(t) lies in T =

 7Tr(UM, (d, v)), where UM is the unit tangent bundle of M and (d, v) is the

 "base point" in UM (v is now just a unit vector).

 So far (pf) depends not only on the specific diffeomorphism but also on the
 choice of isotopy ]t connecting f to 1. Note however that since 71(Diff M) = 0 for
 g > 2 (see [G], Theorem 2) any two isotopies f and f' connecting f to 1 can be
 " filled in" by a map M X D2 -- M. The latter map, restricted to the base frame,

 gives us thereby a homotopy connecting the two framed curves defined by ft and
 ft'. Thus (p is at least a function from Ker(Diff M --D> 6Dg n_1) to Fr.

 LEMMA 2. p is a honomorphism. It is zero on maps isotopic to 1 rel D and
 so is actually a honmoorphism from K to T'r.

 Proof Choose isotopies f, gt of M connecting f, g to 1. The result of the
 isotopy ft is to move each point x to f -1(x) and hence move fg(x) to g(x).
 Following this by the isotopy gt results in x; thus ft followed by gt is an isotopy
 connecting fg to 1. Restricting this composite isotopy to the base frame gives us

 (p(fg) as the composite of two framed paths .p(f) - 'p(g), proving the first

 statement. If f is isotopic to 1 on M then the isotopy leaves D pointwise fixed and

 so p(f) = 1 in i.

 LEMMA 3. p: K - iT is an isomorphism.

 Proof: Since K is all maps of M which are 1 on D and isotopic to 1 on M,
 modulo isotopies which are pointwise fixed on D, we can form a quotient K' of K
 by further dividing out by those isotopies which leave d E D fixed; K' is known

This content downloaded from 128.135.12.127 on Tue, 16 Aug 2016 21:57:18 UTC
All use subject to http://about.jstor.org/terms



 STRUCTURE OF THE TORELLI GROUP, I 431

 as the (one-point) braid group of M. Given an f in the kernel of K -> K', the

 isotopy of f to 1 which fixes d will rotate the frame v at d a certain integral

 number of times n (counterclockwise rotation = positive n). In particular, for the

 boundary curve 8, the boundary twist map T. E K is connected to 1 by a single
 clockwise rotation of D. But then f T.' clearly can be connected to 1 by an
 isotopy which leaves D pointwise fixed; that is, fTY' = 1 in K. Hence the kernel

 of K -- K' is generated by T. and is obviously isomorphic to the integers Z.
 By throwing away the framing, the map Ap: K Tr passes to the quotient

 map A': K' -- 7 = 71(M, d). The projection map Tr 7 also has kernel Z with
 generator given by the "fiber class" z obtained by rotating the frame at d

 counterclockwise one turn; hence 9p(T8) = z n. We have then a commutative
 diagram

 o -Z K K' 0

 o Z - Tz ->* 7T -* 0

 and the first vertical map is an isomorphism. But p' is also well known and easily
 seen to be an isomorphism (see [B], Theorem 1.7, p. 17 or [G], Prop. 1, p. 55).

 This implies that 9p is an isomorphism too. Q.E.D.

 Since h E 9.g, nfixes D pointwise, it acts on ?- = ?T1(UM, (d, v)). ?1,g nalso
 acts on its normal subgroup K by conjugation. That 9p preserves this action is
 given by:

 LEMMA 4. For h E ?Tgno fe K, we have )(hfh'-) = h(p(f)); that is,
 9p(h * f) = h(9(f))

 Proof: Let f connect f to 1 in M; then hfth1 connects hf h' to 1.
 Restricting to D and noting that h = 1 on D we see that cp(h * f) is given by the

 framed path defined by h o f on D, which is just h(99(f)).
 We return to the case of primary interest to us, namely surfaces M = Mg1

 with a single boundary component. We are now in a position to produce

 generators and relations in K by doing the same for ,fr. One convenient way of
 representing elements of Tr is by means of smooth curves beginning at d and

 tangent to v there, the framing being given by the tangent vector (this tangent
 vector may point either forwards or backwards along the curve, but is

 determined throughout by continuity once it starts at v). As an added computa-
 tional convenience we shall permit the use of curves which are smooth every-

 where excepting a finite and even number of cusps. The framing is uniquely
 defined by the conditions that it begin at v, is continuous, and is tangential at a
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 432 DENNIS JOHNSON

 smooth point. We distinguish two kinds of framed cusps:

 Positive cusp Negative cusp

 FIGURE 7a

 The arrows indicate the direction in which the curve is traversed; the

 direction of the tangent vector is irrelevant. Figure 7b shows some basic

 homotopies in UM between framed curves with cusps:

 rel. rels.
 - ends ends

 FIGuRE 7b

 Note also that cusps and loops can be moved freely along the curve, and hence

 two positive cusps anywhere on the curve can be replaced by smooth arcs and an

 extra z factor.

 We apply these ideas to produce generators of K. Starting with our standard

 straight 2g-chain of M we form its 2g + 1 maximal odd subchain maps W1 =

 [234... 2g + 1], W2 = [134... 2g + 1], W3 = [1245... 2g + 1],...,

 W2g+i = [1234... 2g] and we put qq(Wi) =wi E- 4. Since W2g+ Iis given by
 Figure 8a,

 + twist

 - wist dv)

 (a) (b) (c)

 FIGURE 8

 we see that w2g+ 1 is the tangentially framed curve shown in Figure 8b.
 Conjugating W2g+i by C2-g gives C2-g * W2g+i = W2g, so W2g = C2-gl(W2g +) is
 as in Figure 8c. Likewise we get the other w1's as in Figure 9:

 FIGuRE 9

 LEMMA 5. K is generated by the maximal odd subchain maps W1,..., W2g
 and B * W1.
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 STRUCTURE OF THE TORELLI GROUP, I 433

 Proof We are asked to show that 1r is generated by the 2g + 1 elements

 WD,..., W2g and B(wl). Now the images of w1 through W2g in '7 = vl(M, d)
 certainly generate there (for example, it is easy to see that the complement of

 these curves is a disc so that any curve in M can be homotoped into their union).

 Thus if x E Tr has image x E 'n, there is a word in w,,.. ., W2g which projects to

 x and so is of the form x z n i ; our problem reduces then to the generation of

 z. The curve W4W3- W2 is shown in Figure lOa and has two positive cusps (the
 cusp on the back looks negative because of orientation reversal):

 (a) (b)

 FIGURE 10

 It is thus z times the curve of Figure 1Ob, which is easily seen to be B(wl). In
 other words, B(wl) z = W4W3- 1w2 Q.E.D.

 COROLLARY. B * Wi = W4W3( 1W2Ta in

 LEMMA 6. For genus 2, K is generated by the 5 chain maps W1, W2,..., W5.

 Proof If we compute W5w;'1W3W - W1 we get the curve of Figure 11, with
 4 positive cusps:

 w - z2* - z2 . , - 1 = z

 FIGuRE 1 1

 The result follows as in the preceding lemma.

 COROLLARY. W5W4- 1W3W2 1W1 = T' 1 in Y2 1

 It is not true that w ,..., W2g + generate 'fr for g ? 3 (in fact, it can be
 shown that the smallest positive power of z in the generated group is z g 1). We
 have, however, the following useful lemma, which will be a basic tool in proving
 the main theorem.

 LEMMA 7. The group generated by W1,..., W2g+l is normalized by the

 twist maps C1, C2,.. ., C2 9

 Proof. We are asked to prove that the subgroup of or generated by

 W1n W2,.. . W2g+ 1 is invariant under the action of the C1's; that is, C.+ l(w,) is in

This content downloaded from 128.135.12.127 on Tue, 16 Aug 2016 21:57:18 UTC
All use subject to http://about.jstor.org/terms



 434 DENNIS JOHNSON

 this subgroup for all i, j. If we examine Figure 9, however, it is clear that C.

 leaves wi invariant unless j = i or i - 1 and further that Ci(wi) = wi+1 and
 Ci' (wi) = wi - 1; so we must show only that Ci'- (wi) and Ci - 1(wi) are in the
 group. Note that ci and ci - 1 intersect wi transversely in a single point. If we put
 c-ci or ci - 1 and C = Tc, we can draw the following schematic representation
 of the action of C:

 C

 Wi K~.' and we see that C(Qwi) )W = + (the second cusp is at the base

 C(Wd)

 point d). Likewise we get C - (wi)w.-= o . But note that in the picture

 for C(wi) wi 1, we may move the cusp along the curve so as to get: +

 Comparing this with the picture for C - '(wi)wi- 1, we get: (C(wi)wi- 1) - 1 =
 C - '(wi)wi- 1. Now we have already seen that one of the paths C + '(wi) is a wj
 and so is in the group generated by all the wi's. The above equation shows that
 the other path is also in the group. This finishes the proof.

 We can now extend Humphries' theorem to Mg 1.

 THEOREM 1. Ci (1 < i < 2g) and B generate 9%g 1

 Proof We have an exact sequence 0 -* K -*> 1 g 0 and
 Humphries' theorem tells us that the above maps generate 9hg0 ; so we only
 need show that in <Tg1 they generate K also. But it suffices to show that the

 chain map W2g+l = [123... 2g] is so generated, since from it we can produce
 consecutive conjugates by C2L 1, C2-L1 ..., CT 1 and Bto get V2g, W2g_,...,
 W1 and B * W1, which generate K by Lemma 5. Now W2g?1 = TJTx7 where
 x, x' are the curves shown in Figure 8a. Recall that B = Tb where b is as shown

 in Figure 5. The key to Humphries' proof is to show that in the M3 2 of Figure
 12, the curve y1 can be moved to /3' via a sequence of twists using only the
 curves A, 72, , Yea

 FIGuRE 12

 In this way, starting with yi = ci, /8 = b, Humphries acquires successively the
 curves d, e,..., x of Figure 13 using only the generating twists C1,..., C2gand
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 STRUCTURE OF THE TORELLI GROUP, I 435

 B, and concludes that Td, Te,..., T, are also in the generated group. These moves
 are clearly all carried on our Mg1 and thus Tx is also in the generated subgroup of

 b d e ,, x

 FIGURE 13

 Consider next the sequence of moves depicted in Figure 14:

 c C1 C2 03 - 47 jC4 C3.C2-1 Q

 b'

 FIGURE 14

 Applying Humphries' moves to b' gives the curve x', and so Tx, is in the
 generated group as well. Hence TxTxT 1 = W2g? 1 is also, Q.E.D.

 4. Proof of the main theorem

 Before we begin the proof of the theorem, we shall need a generalization of
 Lemma 7.

 LEMMA 8. Let F = ch(cl, c2... ., c,) be a chain of M, and for k ? 2 let G
 be the subgroup of 4 = generated by all (2k - I)-subchain maps of F; then

 G is normalized in 9T by the twist maps Ci = Thi The same then holds for the
 group generated by all odd subchain maps of F.

 Proof Let p = ch(i1i2... i2k) be any (2k - I)-subchain, [p] its chain map

 and C1 any of the basic twist maps. Recall again that C1 commutes with [p] unless

 exactly one of the j or j + 1 is an index of p. In this case we can enlarge p to
 include both j and j + 1, thereby getting a subchain q of length 2k. Note that

 a) the regular neighborhood of q is an Mk,
 b) c1 is a basic circle of q, and

 c) p is a maximal odd subchain of q.

 Hence by Lemma 7, Cj' 1 * [p] is a product of maximal subehain maps of q. But
 all maximal subchains of q are (2k - I)-subchains of F and so C * [p] is also in
 G. Q.E.D.

 We now begin the proof of the main theorem in the following form:

 THEOREM 2. For g ? 2 the subgroup Jg of 4 1 generated by all odd subchain
 maps of the standard chains ch(12 3... 2g + 1) and ch(,/5 6... 2g + 1) is
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 436 DENNIS JOHNSON

 normal in 6)1g i. (As previously pointed out, the theorem that 4 is f.g. is a
 corollary of this one: in fact, 4 = Jg.)

 Proof For g = 2 the above maps are just W1,..., W5 which generate the

 normal subgroup K = Ker(DX2D1 (X2 DX2'2) by Lemma 6. We assume hence that
 g > 3 and inductively that the theorem is true for Jg_ 1 If we think of Mg_ to

 be imbedded in Mg, 1 as shown in Figure 15,

 (2g2 C2g

 FIGURE 15

 we see that among our generators for Jg are found the generators for Jg_ 1, namely

 all subchain maps of ch(1 23... 2g - 1) and ch(p 5... 2g - 1) (the latter is
 empty for g = 3); by hypothesis this group Jg 1 is normalized by C1,..., C2g- 2
 and B, and in particular by B and C1 through C4 since g ? 3. (Note: We are

 implicitly assuming here that Jg- 1 C Jg. More precisely, Jg- 1 c 9g- 1, 1 and
 Jg c DZg 1 and generators of Jg 1 can be identified with some of those of Jg by
 extending the map on Mg- 11 by the identity to Mg 1. The homomorphism

 Jg- 1 Jg thus produced is not clearly injective (although this is true), but it is
 clear that any diffeomorphism of Mg 1 which is carried by Mg_ 1 1 (that is, is the

 identity on its complement) and which when restricted to Mg_ 1 i is in Jg- 1 is

 itself a map in Jg. The reader will encounter below loose statements such as
 "f E Jg- 1, so f E Jg," or even "f c Jg -1 C Jg;" these stand as abbreviations for
 the more precise statement given above.)

 Part 1. Jg is normalized by C1, C2 and Ck for k > 5.

 Proof C1, C2 commute with 3-chain maps and normalize the group of

 straight chain maps by Lemma 8; so they normalize Jg. For k 2 5, Ck is a basic
 circle of both ch(1 23... 2g + 1) and ch(, 5... 2g + 1) so that Ck normalizes

 both their subchain groups, again by Lemma 8, and thus also normalizes Jg.
 It remains to prove that C3, C4 and B normalize Jg. At this point we need a

 certain relation between our chain maps. We begin with a relation between twist

 maps on an M04 which was exploited in [J2]; for the curves a, /,B Y. ei shown in
 -Figure 16:

 FIGURE 16
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 STRUCTURE OF THE TORELLI GROUP, I 437

 we have the following relation in Ah0 4:

 TT =TTT ft T/ a ~1T?1T?2ITN ?

 We call this equation "the MO 4 relation" and apply it to prove:

 LEMMA 9. [2345]-1[45... 2g + 1]-1[/5... 2g + 1]B*[2345] =

 [234... 2g + 1]-'B*[234... 2g + 1].

 Proof Consider the curves a, /3, y, 8, e of Figure 17:

 FIGURE 17

 The curves C2, c4, 8, e bound an MO 4 and a, fi, y lie in it in the pattern of the
 M04 relation. We get thereby:

 TyTlTa = C2C4T8T?1

 Now reflect Figure 17 in the plane of the paper, reversing orientation and front
 and back parts of the surface. If the transforms of a, fi, etc. are denoted by a', /3',

 etc., then right twists transform into left ones and the above relation transforms

 into

 Ty ,l a' = C2 4 8 ?'

 Multiplying these two relations together, we then put TyTy 1 = f. Noting that

 T/3TAX 7=[456. ... 2g + 1], TaTa7 '= [2345],

 T83T37= [6 7 ... 2g + 1], TeTe = [2 3 4 ... 2g + 1],
 and also that twists on disjoint curves commute, we get

 f[45...2g+ 1][2345] = [67...2g+ 1][23...2g+ 1].

 Now we conjugate the above relation by B; since B commutes with both f and
 [6 7... 2g + 1], we get

 f [,5. ... 2g + 1]B * [2345] = [67... 2g + 1]B * [23... 2g + 1].

 Finally we invert both sides of the previous relation and multiply it on the right

 by the above; the result is the desired relation.

 COROLLARY 1. The normal subgroup K = Ker(1XgZ 1 ---> 6h0) is contained
 in Jg.

 Proof Since [2 3 4 5] e Jg - 1, B * [2 3 4 5] is also in Jg and so in Jg. The
 relation then tells us that B * [234... 2g + 1] is also in Jg; in the notation of
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 Lemma 5, this is the map B * W1. But Jg contains all the maximal straight chain
 maps W1, W2,..., W2g as well, so contains K by Lemma 5.

 COROLLARY 2. jg containsB'1 * [45... 2g + 1] and also X *[5... 2g + 1]
 for X to be any of C3+1, C4?1 or B+1.

 Proof B-1 * [f5.. .2g + 1] = [45 ...2g + 1] and B * [45.. .2g + 1]=

 [.35... 2g + 1] are certainly in Jg. Applying B' to the relation of the lemma
 gives

 B *[2345] '1B *[45.. .2g + 1] 1[45...2g + 1][2345]

 = B-1 * [234 ...2g + 1] 1[23... 2g + 1].

 But B- *[2345] - 1 is in jg _ 1 C Jg and the right side is in K C Jg by Corollary
 1. Hence B -1 * [45.. .2g + 1] E Jg as well. Showing that B * [/5... 2g + 1] is
 in Jg is entirely analogous. If X = C+ 1 or C4+ 1 and we apply X to the relation
 then the right side is still in K C jg, and the left side is

 X*[2345]-'X*[45...2g + 1] 'X*[f5...2g + 1](XB)*[2345].

 Again, the first and last factors are in Jg- 1and the second is in Jg since X
 normalizes the group of straight chains. Thus X *[/35... 2g + 1] E Jg also,

 Q.E.D.

 We now return to the problem of showing that C3, C4 and B normalize jg*
 We can use the following "reduction" process to simplify our work: Let X be any

 of C3- 1, C4- 1 or B -+1 and suppose that h E Dlgi commutes with X and is known

 to normalize Jg. Then for f E Jg, the question of whether X * f is in Ig is
 equivalent to the question of whether h *(X * f) = X *(h * f) is in Jg. By
 choosing h carefully we can reduce h * f to a small number of cases. We will use

 this reduction procedure repeatedly in the following arguments.

 Part II. C3 normalizes Jg.

 Proof C3 normalizes the group of straight chains, so we need only examine

 C3+ * [/*[i,... ]. Since all Ck with k > 5 commute with C3 and also normalize Jg
 we may choose an h involving only the Ck?5 such that h *ch(,/i . ... ) is a
 consecutive chain ch(fB5 6... ). As an example, consider ch(,B 7 8 10); applying

 the rules of Lemma If, we get

 C6 ~~C5 C7 C6

 (,B 7 8 10) -6 (,868 10) (,B5 8 10) (,B 5 7 10) (,B5 6 10)
 C9 CC7

 -> (/3569) 4 (/3568) (,/56 7).

 Hence we need only show that C3-' *[,B5... 2k + 1] E Jg. If k < g,
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 [/35... 2k + 1] is in Jg-1 and we are done by the induction hypothesis. But
 C3- * [,. 5... 2g + 1] E Jg by Corollary 2 to the previous lemma, Q.E.D.

 Part III. C4 normalizes Jg-

 Proof. C4 normalizes the group of straight chains. Furthermore C4 commutes

 with 3-chain maps [pib,... ] for which il > 6: for the circle (i.e., 1-chain) (y 6)
 shown in Figure 6 is disjoint from C4, and similarly for (pi), any i > 6. As for
 C4- 1* [,/5 i2... ], we may "reduce" ch(5 i2... ) to a consecutive chain by means
 of a word h in C6, C7,..., C2g+l, since such an h commutes with C4 and
 normalizes Jg. We now proceed as in Part II: It suffices to look only at

 C4- 1 * [13 5... 2k + 1] and in fact only at the case k = g since smaller chains live

 in J9 _ 1 But C4- 1 * [15... 2g + 1] is in Jg as well, again by Corollary 2.

 Part IV. B normalizes Jg.

 Proof Since C5, C6, . . . all commute with B. the expression B - * [18il...
 may be reduced to B ? 1 * [consecutive 1-chain] and again we need only consider

 B-' *[135... 2g + 1] which is, as before, in 1g, Let us look then at B - 1 acting
 on a straight chain (i,. . . i2k); we may assume that i, < 4 and i2k ? 5. Let n be

 such that in1< 4 and in+1 2 5; C15 C2 and C3 also normalize Jg and commute
 with B. and by using all the twists Ck, k A 4, we may reduce the chain to a
 consecutive straight chain whose n-th index is 4. For example, reduce the chain

 (1367) as follows:

 Cf' ~Ci' C5C
 (1367) -( (1467) - (2467) -- (3467) -5 (3457) c6 (3456).

 Thus we need only consider chains beginning with 1, 2, 3 or 4, and among them

 only those whose last index is 2g or 2g + 1, since otherwise we may apply the

 induction hypothesis. But in this case, if the chain begins with 1 or 2 then

 the map in question is a maximal odd chain map and hence is in K c Jg. Also, if
 the chain begins with 4 then Corollary 2 tells us that B ? 1 * [4 5. .'. 2g + 1] E Jg.
 Thus only one case remains to be considered, namely B ?1 * [3 4... 2g]. To show
 that this is in 'g we need another geometric relation, again derived from the M04

 relation; we state this in the form of:

 LEMMA 10.

 [1234] [1256... 2g]B * [345... 2g] = [56... 2g][123... 2g].

 Proof We start with the chain maps

 [1234] = TaTa, 1 [1256... 2g] = TbTbT 1, [345... 2g] = TCTc,-1

 [56... 2g] = TeTeT1, [123...2g] = TfTf7.1
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 and B * [345 ... 2g]= TdT,7

 where the curves are as shown in Figure 18.

 a

 a,

 FicuRE 18

 Note that c1, c3, e and f bound a surface S of type MO 4 (shaded in the
 figure) and similarly cl, C3, e', f' bound S' in the lower part of the figure. The
 curves a, b, d all lie in S and are so placed there that we may apply the MO4
 relation. To see this, note that the 3 curves a, P, y of the MO4 relation, as
 pictured in Figure 16, are the respective boundaries of regular neighborhoods of

 El U x U c25 E2 U y U E3 and e3 U z U El, where x, y, z are the arcs shown in
 Figure 19.

 FicuRE 19

 These arcs separate the MO 4 into an annulus and a disc. If we give the
 boundary of the disc its standard orientation (i.e., so that the disc is on the left),

 then as we go around it, it traverses the arcs in the cyclic order z, y, x. In the

 relation TyT Ta = Iel~e2T3Te4 Iwe see then that the twists TyTpTa must occur in the
 same cyclic order as their corresponding arcs z, y, x are traversed.

 We apply this now to the surface S. Let x, y, z be the arcs shown in Figure

 20.

 "

 Cl 3

 FicuRE 20

 The orientation acquired from the disc component (shaded) is shown and the

 neighborhood boundaries of c3 U x U C1, C1 U y U e, e U z U c3 are a, b, d,

 respectively. The MO4 relation then reads: (S): TaTbTd = ClC3TeTf.
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 Likewise, in S' we consider the arcs x', y', z' of Figure 21:

 C C

 FicuRE 21

 We see that they become oriented as shown and that the neighborhood boundaries

 of c U x' U c3, e' U y' U cl, c3 U z' U e' are a', b', c', respectively. Thus the

 relation here reads: TcTb TaT = ClC3Te Tfj, or, if we invert both sides:
 Tao 'TbT 1 = C; 'C3 'TeY 'Ty'. Multiplying the latter relation with the rela-
 tion (S) and noting that primed and unprimed maps commute, we get:

 (TaTa7')(TbTb' l)(TdTcT 1') = (TeTe7' l)(TfTf) 1,) i.e.,

 [1234][1256...2g]B*[345...2g] = [56...2g][123...2g],

 Q.E.D.

 The above relation shows immediately that B * [345... 2g] E Jg. To see
 that B-1 *[345... 2g] E Jgh apply B - 1 to the relation and get

 B-1 * [1234]B-1 * [1256... 2g][345... 2g]

 = [56... 2g]B-'*[123... 2g].

 ButB-1*[1234] isinh_1 andB-1*[12... 2g] isinK,soB-'*[1256... 2g]
 is in Jg. We now conjugate B-1 * [1 2 5 6... 2g] successively by
 C2- C- 1 C1 q- 1, and, noting that these commute with B and normalize Jg
 get successively that B *[1356... 2g], B *[1456... 2g], B *[2456...

 2g] and finally B - 1 * [3456... 2g] are all in Jg. This finishes the proof of Part
 IV and Theorem 2. We remark that our proof leaves completely open the

 question of whether 42 is f.g.

 5. Minimal generating sets

 The set of generators we have given is by no means minimal; in fact,

 relations we have already developed would allow us to eliminate certain genera-

 tors immediately. Consider g = 3 for example. By Lemma 5, W7 = [1 23456] is

 awordin W1=[234567], W2 = [134567],..., W6 = [123457]andB*W1.

 But since B * [2345] E J2 and the latter is generated by straight 3-chains (see
 Lemma 6), we see that the relation of Lemma 9 may be written in the form

 B * W1 = W1 * [2345] -1[4567] - 1[/ 3567] * (a word in straight 3-chains).

 Hence W7 may be expressed in terms of W1 through W6 and the 3-chain

 generators, and we may eliminate W7 from our generating set. In higher genera

 this type of argument would allow us to eliminate a number of generators.
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 Returning to genus 3, we note that the number of straight 3-chain genera-

 tors is (2 1 ) 7 35; using these and the 7 generators for Ker(3

 53,o) alows us (by Lemma 9 again) to generate [35 6 7], and hence all of 43 1
 This gives 42 generators for 531 consisting of 35 straight 3-chain maps and 7
 5-chain maps; the latter die in 53 and -thus the 35 3-chain maps alone generate
 it. Now in [J3] it is shown that lower bounds for the number of generators of 5g o

 and 4g are (2) + (g) and (2g), respectively. For g = 3 this gives 35
 9, l 3 ) (2 ) id

 and 42, respectively, and thus we have proved:

 THEOREM 3. 53 1 and 53 0 are generated by 42 and 35 elements, respectively,
 and these numbers are the smallest possible.

 We might ask if this result can be extended to higher genera. To begin with,

 Lemma 5 gives us 2g + 1 = (2g) + (2) generators of Ker(Jg1 5 g, 0), so the
 problem reduces to the following:

 Question. Can g0 be generated by (hg) + (2g) elements for g > 4?

 UNIVERSITY OF CALIFORNIA, Los ANGELES
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