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A SURVEY OF THE TORELLI GROUP
DENNIS JOHNSON

In this survey I will discuss, in a very informal way, certain
aspects of the mapping class group of a (forever compact and oriented) surface.
Because of Thurston's work on it this subject has undergone some marked
changes in the past few years and is now a fast moving target. The aspects
which I aim at below are, however, not (yet) clearly related to Thurston's
results and tend'to be more algebraic in nature; but there is, I think,
bound to be a great deal of interesting geometry lurking about here.

To begin with, here is the definition-notation of the mapping class
group I will use:

a. Fg is a closed surface of genus g, Fg’* the same but with
distinguished base point *, and Fg,n is a surface of genus g with
n boundary circles.

b.  The corresponding mapping class groups Méé, J4§,* and ng’n
are the groups of orientation preserving diffeomorphisms of the surface
which fix the distinguished point and/or boundary points, modulo isotopies
which do the same, Actually, for surfaces with boundary I will only be using
Fg’1. With this in mind then, H1(F,Z) is in every case free abelian of
rank 2g. The notation for this group will frequently be abbreviated
to H1. It has an attached nonsingular antisymmetric intersection pairing,
that is, a "symplectic" inner product which we denote by a-b for
a,b e H1. The action of the mapping class group on homology then gives a
homomorphism _# - Sp(H1) where the target is the group of symplectic (i.e.,
intersection preserving) automorphisms of H1, and it was known classically
that this map is onto.

It is the kernel of this map that I am going to discuss. The
topologists had no name for it, but it has been known for a long time to the
analysts, so I will use their label: the Torelli Group. This group,
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166 DENNIS JOHNSON

which we denote in its various forms by ,JE, .jz % or _JE 1 according
to the nature of the surface F, is then that subgroup of _# which acts

trivially on the homology of  F.

The Torelli Group has only become of interest to topologists in the
past dozen years or so, and this interest was initiated principally through
the work of Joan Birman. Some of the early interest in it stemmed from the
fact that any homology 3-sphere can be created by cutting 53 along an
imbedded surface F and then regluing the two pieces by a map taken from
the Torelli group of F. It was originaly felt that a careful study of _#
might thus lead to a deeper understanding of homology spheres. While this
approach has not produced a great deal of fruit, it did indicate that 7
supports a lot of interesting algebraic topology. Most of the results to
date have been proved with a mixture of algebraic and topological methods,
with only a small amount of geometry and analysis. But some of the recent
aspects of # studied recall something of its beginnings in Riemann surface
theory: Moduli spaces, Jacobi varieties and period matrices, etc., and I
think that the interesting features of this group are much more numerous
than its original topological applications would have suggested.

GENERATORS FOR 7

The first problems of interest about _# were, as might be expected,
those concerning its generation and arise in Birman's paper [B]. This paper,
one of the earliest on _# by a topologist, is actually concerned with a
different problem and is entirely algebraic in nature. It produced a finite
presentation for the integral symplectic group Sp(g,Z) = Sp(H1Fg,Z)),
wherein the generators ti are the images (via the map ,ﬂb - Sp(H1Fg))
of Lickorisch's twist map generators Ti of Jﬂé. The relational words
rk(ti) of this presentation thus have distinguished lifts rk(Ti) in

, and the latter words are then not only in ;% but are in fact normal
generators for _#Z in Jﬁé. This was the first (infinite) set of gene-
rators known for _#.  Birman also raised in this paper the question of

whether _# is finitely generated.

The next result on generating _JE is by Powell in [P]. Beginning
with Birman's normal generators, he reinterpreted them geometrically and
showed that just three suffice to normally generate _jz when g > 3.

These generators are quite natural and useful; in fact they are pervasive in
much of the later work on the Torelli group. To describe them, we note first
the following useful fact: If TY is a Dehn twist on the simple closed
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A SURVEY OF THE TORELLI GROUP 167

curve vy c Fg, then the action of TY on H1F is completely determined
by the homology class ¢ of ~y (the formula is T&(x) = X+ (Cc - x)c

for x e H1). Thus in particular, if y 1is a bounding simple closed

curve ("BSCC") then T(x) = x for all x, 1i.e., TY e # Similarly,
suppose y,6 are a pair of non-bounding, disjoint, homologous SCC's such

as depicted below:

<

o)
O

o R™Y

Then T, and T, act the same on  H, and so T7T6-1 € 7 We
shall call such a pair (y,6) a bounding pair, or BP. If we further
define the genus of a BP to be the smaller of the genera of the two pieces
into which  y u 6 separates F (in the figure the genus is 1),

and likewise for the genus of a BSCC, then Powell's result may be stated

as follows:

For g >3, the set of all BP maps of genus 1 and all
BSCC maps of genus 1 and 2 generate _16. 7 is generated
by all twists on BSCC's (necessarily of genus 1).

Alternately, we might state the result by saying that ;% (g > 3)
is normally generated by just three elements: a single BP map of
genus 1 and single BSCC maps of genus 1 and 2.

The final result along these lines was my own: I showed in [J1]
how to write any BSCC map as a product of genus 1 BP maps, and hence
that:

For g >3, % is generated by all genus 1 BP maps,
i.e., 7 is normally generated in Aq by any genus 1 BP map.

This result is the starting point for several others, and the fact
that we no longer need consider the BSCC maps frequently simplifies
the arguments. But before forgetting these maps, I should point out that
they suggested a number of interesting problems themselves. Hence, we
define J%E C.Jg to be the subgroup generated by all twists on bounding
curves. Powell's theorem stimulated him and Birman to conjecture that
perhaps J%; was actually equal to _Jz, or at least that ,%15%
was finite. Then, in [C], Chillingworth showed that a genus 1 BP map
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of .ig cannot be in J%g, but this proof left open the possibility
The proof was via the construction of an

that their quotient is finite.
and he raised the problem of whether

obstruction to a map being in J%a,
this was the only such obstruction, thus attempting to characterize J%é

by a computable invariant.
So now we have two questions concerning J%é:
1. Is  glg finite?

2. Does Chillingworth's obstruction characterize ;%é?

We will return to these problems below.

The only immediate problem remaining concerning the generation
of _# and one which by 1979 had been asked by several people, was whether
it is finitely generated. Since .J% is normal and of infinite index in
A_, the general feeling was that finite generation was very improbable.

A lower bound existed (see [J2], Theorem 5) which stated that the number of

generators is not less than (4g3 - g)/3 and gave scant reinforcement to

this feeling (compare this with the minimal number of generators of Jfg,

which is < 4). There is, however, a result of Magnus (see [MKS],

p. 168-169) which made the finite generation of _# seem more likely:
says that if An is the automorphism group of a free group = On
is the (normal, infinite index) subgroup which
I is finitely generated. The relation

it
n

generators and h]c An

acts trivially on «/x', then
of this result to the problem at hand lies in the fact that, e.g., JIQ 1

may be viewed as that subgroup of AZg which leaves invariant a certain
word in = (namely, the standard commutator relation for a closed surface)
and _ﬁg , is the subgroup of Ay 1 acting trivially on  =/x'.

Nevertheless, it came as something of a surprise that ,}6 is indeed
finitely generated when g > 3 (see [J5]). The proof (which leaves open
the case g =2) uses our previous result that .J%>3 is normally gene-
rated in ¢4% by any genus 1 BP map, and proceeds as follows:

A certain set of BP maps of all genera from 1 to g-2 iscon-
structed and it is then shown that the subgroup of ,jg which they generate
is actually normal in ,J(g, and so by the above result it must be all |

of _#. Although the number of generators constructed is large (exponential
in g), the verification that the required conjugates remain in the gene-
rated subgroup boils down to a small number of topologically distinct cases.
As for the gap between the previously mentioned lower bound (493 -g)/3

and the exponential upper bound, I think one could probably use the methods of
the proof a bit more carefully to get the number of generators down to poly-
nomial order--in fact, I would guess polynomial of degree 3 or 4.
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AN ABELIAN QUOTIENT OF _#

In order to get more detailed information about _#, several
things now suggested themselves. The most obvious thing would be to find
some concrete representations of _#, and of these we might first look for
abelian ones; in other words, we seek abelian quotients of 7.

The first abelian quotient of _#Z is due to Sullivan [S], who showed
how to get a map from _?a onto a free abelian group of rank (g). The
method here was to construct a 3-manifold with the same homology as the
connected sum of g S1 x 52'5 by gluing together two copies of a genus
g handlebody along their common boundary F, using a gluing map taken
from the Torelli group of F, and then examining how the intersection ring
of this 3-manifold differs from that of a true g (S1 x 52). Coming from
a different direction (via a so-called Mangus representation of _# ) I found
in [J3] a homomorphism of .33’1 onto a free abelian group of rank (%g);
Sullivan's map is a quotient of this one. Explicitly, this homomorphism,
denoted <, maps _f; 1 to the 3rd exterior power of the homology of F,

i.e., =t :_]5 1 A3H1( 7). It is natural in the sense that it commutes

9 1’
with the standard actions of Jéé on the source and target: the action
on the latter is the obvious one, and on the former _# acts by conjuga-

g,1
tion. Because of the usefulness of this homomorphism, I will give several

different definitions of it.

First Definition: Perhaps the easiest way to define =+t and see

.most of its properties is via a certain nilpotent quotient of 11(Fg 1):

The latter is free on 2g generators and we put E = 11/[n1,n{ . It
stands to reason that, although _#Z acts trivially on H1 = n1/ni,
we may still learn something of use by examing how it acts on E. Note
that H1 is a quotient of E with kernel

i

N=E'= o7
11’ II1

and N is central in E. These facts imply that, if f e _#Z and we
define of(e) = f(e)e”' for e eE, then sf(e) isin N and

6f : E- N is a homomerphism factoring through H1, i.e., o&f : H1 - N.

Furthermore, it is not too hard to see that N is canonically isomorphic

to A.2H1 (the map is given by sending [e1, e2] e N to h1 A h2 € A?H1,
2

where hi is the image of & in H1) SO we may write 6f :Hj - A H1.
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In other words, o6f € H1Q§ A2H1, and a similar argument shows that

6 _3’ i H169 A.2H1 is a homomorphism. Now by applying the canonical iso-

morphlsm of H: with H1 given by the intersection pairing, we convert

the above map into amap :_79' 1~ H1® A2H1. But A3H1 sits inside

H1 ® AZH1 in a very natural way: send aAbAc to a®(bAc)
+b®(cna)+c®(anb), and it turns out that Imz ¢ A3H1. We may

now summarize the immediate properties of t as follows:

Z) is surjective.

THEOREM: a. <t:.#Z , ~ AH1(F

g,1’

b.  (Naturality): For he/(g1 and feJEH
we have r(hfh'T;—Q h(<(f)).

c. If ;%é q€ ;% 1 is the subgroup generated by
all twists on bounding simple closed curves,

then 1(96’1) =0, i.e., ;%6,1 c Ker t.

[ want to call particular attention to c). The facts that
Imt = A3H1 is infinite and _37 1 c Ker = immediately dispose of the first
of the two problems concerning ;%z and show that in fact _#/% 1is not
finite (actually, this only establishes that ,ﬁ5’1[26’1 is infinite,
but a technical variation shows the same for _351%6). As for the second
problem, it can be seen ([J3]), Theorem 2) that Chillingworth's obstruction
"factors through" the map t, and also that there exists f e,2§>3
with zero Chillingworth obstruction but such that < (f) # 0, and hence
that f ¢.%  thus answering the second problem in the negative also. The
obvious conjecture to make now is that :%§’1' is actually equal to Ker <.
Using the methods of the proof that _ﬁa is finitely generated, I was able
to prove this recently (see [J6]).

Second Definition: This is just a modification of the definition
of Sullivan's map. Let f e.JV y and let wf be the mapping torus of f,
i.e., Fg,1 x I with X x {O} glued to  f(x) x {1}. Then Wf is a
homology Fg’1 x 51, but it is not an intersection Fg’1 x S that is,
its intersection theory is difTerent from that of g 1 * S'. The triple
intersection of three classes 1n Hz(wf,Z) gives a map A szf
i.e., an element <(f) of A (sz Now H1Fg 1 is naturally
contained in H1wf, and an intersection argument in wf give a natural
isomorphism of this .subspace H1F c H1wf with (szf)*, SO we may
think of <t(f) as contained in 3H1F This definition is equivalent

to the first.
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In an attempt to see deeper into the structure of _#, we may gene-
ralize these two definitions as follows. In terms of the first definition,
if we put 7 =.ﬂ*0) and Ker = ;;¢(1) (=%#) then .Jﬁ(o) is the group
acting trivially on H1 = n/n' and .7’(1) is the group acting trivially
E=n/[r, n'] = u/n[z]. By examining the action of JV(1) on
n/n[3] = n/[x, [x, n']] we get a homomorphism defined on _}7(1), let us

call it Y which is analogous to t on ¥, but whereas the target

of t is the "rank 3 tensor" A3H1, the target of Ty is now

a rank 4 tensor space of the same type as the Riemann curvature tensor.

(In terms of "Young diagrams", A3H is represented by , and the
1

target of T is represented by ). The map T is no longer
surjective, and the precise specification of its image is lacking; it can

be shown, however, to be of finite index in the target--in other words,

(Int) ® Q = Hy(FQ).

Continuing in this way we get a sequence of groups .J"n) and homo-
morphisms ™ defined on ;7(") with the following properties:

1. _;1(") is the group acting trivially on u/n[n+1], and

is equal to  Ker t_ ,.

2. T is determined by the action of _#
and the target of is (contained in) the (n + 3)

n
of H,(F,Z). _
® g(n) _
3. n'lo] = {1}

(n) on n/u[n+2],

rd tensor power

4, .J’(n) contains the nth term J’[n] of the lower central
series of _7 (where ;ﬂ[o] =_7, ;¢[1] =g, etc.).

In terms of the second definition of t (via the mapping torus)

T, can be seen as Massey products. In fact, =+t itself can be redefined

in terms of the map A3H1(Nf,2) -7 givenby a«aABAy-aUBU«Yy €L
for ao,B,vy € H1(wf,Z). This map is an element <t(f) of (a H1wf)*
= A3H1wf, and it actually lies in the subspace A3H1F of A H1wf.

This is just a cohomology version of the second definition.  But now suppose
that < (f) = 0, that is, f 9,7(1). A littlé Poincare duality shows that
this implies o«uB =0 forall o, BE€ H1wf, and hence all triple Massey

products (s, B,+y) are defined and in Hz(wf,Z), so (a,B,y)Us
€ H3wf = Z. This function of @&, B, v, 6 1s quadrilinear on H1  and
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has certain symmetries defining thefeby an element of [# H1F. This
definition is the same as the previous one.

Concerning the above properties of 7 and t, we have

the following problems:

A) What is the image of ¢ in HO™(F7),  or essier,

what is (Imtn)qb Qc }fg(n+3)(F,Q)? (These images are necessarily invariant

under the action of the symplectic group Sp(H1F).)

(
B) _r~ ;;¢[1] is (as we will see below) of finite index in _J7‘1).

Is this true for all n?

MORE ON t;  THE HOMOLOGY OF #

The above problems were suggested by the first two definitions
of 1. There is still another definition, and this one relates to some
interesting homological problems about # . For our third definition,

recall that Fg » 1s a closed surface with distinguished base point  =*.

Third Definition: Let us define the Jacobi variety of Fg’* to
be the 2g-dimensional torus J = H1(F,R)/H1(F,Z). Note that H1(J,Z) is
canonically identifiable with H1(F,Z). Elementary K(=,1) theory tells
us that there is then a unique homotopy class of maps j : (F,*)~- (J,0)
such that j, 2‘11(F) - u1(J) = H1(J) is given by the quotient map
n1(F) - H1(F) = H1(J). Choose then a fixed such map j and consider the
composite jf for f e_}g;*. Since f, =1 on HF, (3f)s = Jx
and so jf is homotopic (rel *) to j.. But Im(jf) = Imj and thus
the homotopy between jf and j gives rise to a 3-cycle in J. Its
homology class does not depend on any of the choices we have made (e.g.,
j and the homotopy), so we have a well defined element <(f) of H3(J,Z).
Now - Hk of a torus is well known to be the kth exterior power of its
H1, and using the identification of H1J and H1F, we have
x(f% € H3J = A3H1J = A3H1F. We get thereby a homomorphism « :_ﬁa,*
- A H1(Fg’*,Z). To relate this to our previous definitiongkof t, which
were defined on _16’1 rather than “ﬁb,*’ let ¢ﬂ§’1 lla,]f’* be the ob-
vivus (surjective) homomorphism induced by the map Fg,1 L. Fg’* which
collapses the boundary of Fg’1 to-a point . The T:*ﬁb’1

»A3H1(Fg 1,Z) “factors through p", that is to say:
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T .3
Fo T Mg
p* o~ p* commutes.
v . 3 V
]{],* > A H1Fg’*

There is a variation of this definition which will be useful to us.

First of all, the complex analysts have a more refined definition of the map
j : (F,*) - (J,0). Topologically this was defined only up to homotopy, but
if we assume that F has a specific complex structure; i.e., is a Riemann
surface, then the analysts give a corresponding natural complex structure
to the Jacobi variety J and also produce a unique holomorphic map
j : (F,x) = (J3,0) in its homotopy class. This cleans things up a bit,
but we can do even better: We globalize this phenomenon by removing its
dependence on the particular complex structure given to F.  For this
purpose I need to introduce the Teichmuller space Ig’* of Fg,*. The
most convenient definition for us is the set of all equivalence classes
of complex structures on Fg’*, where  "equivalence" of two such structures
means that there is an isotopy of F, rel %, which carries one structure
into the other. This space is homeomorphic to R69'4. ., . acts on it
properly discontinuously (the quotient is the "moduli space” ’ﬂng x Of
punctured Riemann surfaces) and it is a classical result, essentially due
to Hurwitz, that _JV * acts freely. Hence the quotient manifold

g *Lj7 * = S x known as Torelli space, is a classifying space for

J%' 3 = B;V (;g'*,1). We note the quotient group g /7 &
Sp(H1F) acts on Sg e '
There is an obvious bundle of Riemann surfaces over fIg « Whose
fiber over o ¢ I is just Fg «~ With structure on F givenby o

(it is thus topologlcally trivial, tﬁough not holomorphically so). This
bundle, which we denote Fié,*, has a canonicai cross section given by =
in each fiber. .JV * acts on this bundle-with-section and gives thereby

a bundle-with- sectlon FS * of Riemann surfaces over 39,*.

Likewise, over I x o we have a bundle JIg’* of Jacobi varieties,
where the fiber over o etI * is the (holomorphic) Jacobi variety:of the
Riemann surface o. Again thls bundle is topologically trivial and Z .
acts on it, but note that here the action is trivial on the fiber, hence tﬁe
quotient is a bundle JS * over Sg x Wwhich remains topologically
trivial. We have then a smooth projection map from the total space to the

fiber 4.
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The analyst's version of the map j : (F,%) - (J,0) now globalizes
to a (holomorphic) map j : (FZ, %) - (JT,0); j  commutes with the action
of -’5 ., and so we get a quotient map J : FY - J§. Composing this
with thé projection map JJ - J gives us finally a map F3Q ...

Now here is the punch line. If « is a k-cycle in the Torelli
space 8, its full inverse image (via the bundle projection) in FJ
is a (k +2)-cycle, and we may project this to J by the map q. Thus
we obtain a map from Hk(sg’*) = Hk(Jg,*) to 3Hk+2(J) - Ak+2(H1F). For
k =1, the composition of this map H1;g’* - A|11F with the standard
quotient “ﬁb,* - H1_gl* gives still another definition of «.

This was a lot of effort to go for just another definition of =
The real point of ‘it is that it shows the existence of a rather natural
map from Hk(Jg;*) ; to Ak+2(H1Fg) for all 1<k <2g-2. Aswe
shall see later, A.H1F embodies all rational abelian information about
;z;* -- in other words, (#7')® Q = H,(#Q) = A3H1(F,Q). It is thus
reasonable to ask if a similar result holds for all k, i.e.,:

) Isthemap H (% Q) - Ak+2H1(F,Q) an isomorphism for

all k2

Related to this question and the fact that _ﬁa x» 1s finitely gene-
rated are the following:

E) Is 39 , the rational homotopy type of a finite 2g -2

b4
dimensional CW complex?

the homotopy type of a finite CW complex?

L QUOTIENTS OF 7

I've now finished discussing t and its ramifications, but I haven't

yet exhausted the subject of abelian quotients of 7 . One's first guess
might be that all such quotients factor through A3H1, i.e., that _7/#¢'
= A?H -- but this is not the case. The undetected part of _#/7' remain-

1
ing consists of 2-torsion and comes from a very different direction.

In [BC], Birman and Craggs produced a (finite) collection of homo-
morphisms from _Z onto Zz. These homomorphisms may be defined as
follows (compare [BC] and [J2]). Choose an imbedding h : Fg c*S3
identify Fg with its image. Given any f in the Torelli group of
F we may split 53 along F and reglue the two pieces by the map f.
Since f =1 on H1F, the resulting 3-manifold W(h,f) is a homology

and
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sphere, and its Rochlin invariant w(h,f) € Z, is defined.* Birman and
Craggs showed that for a fixed imbedding h and f ranging over _ﬂa,
u(h,f) defines a homomorphism e, of .Jz, onto  Z,. They also showed
that, although this homomorphism depends on the choice Qf the imbedding h,

it is not very sensitive to it, and in fact that only a finite number of dis-
tinct homomorphisms can arise from different choices of h.

The precise dependency on h was determined in [J2]. Any sur-
face Kc 53 has associated with it aibilinear Seifert linking form
L(«,8) defined for o, B € H1(K,Z), - ‘and if we use L coefficients
and restrict to o« =B we get the "mod 2 self-linking form", which is a
quadratic form defined on H1(K,22). Given an imbedding h : F - 53, we
identify F with its image, inducing thereby a self-linking form wh

on H1(F,Zz); Then we have

The Birman-Craggs homomorphisms of the imbeddings h,, h, are

equal iff h1 and h2 induce the same self-linking form w oOn H1(F,Zz).

Thus the homomorphism Ph :_Jg - 22 depends only on the quadradic
form w induced by h, and we may replace the notation Ph by the
notation e to more aptly exhibit this fact.

An easy generalization found in the same paper gives a corresponding
definition of surjective maps p_ :_Z 1~ Z2 for a surface with boundary,

w g,
and it is shown there that these maps do not factor through A3H1F, SO we
have here some new data about _#/z'. Some further questions concerning these

maps were obvious ones to ask:

a) How many distinct Birman-Craggs homomorphisms are there and are
they linearly independent? If not, then:

b) What is the dimension of the space of homomorphisms they span?

c) Give a "natural" representation of this space of homomorphisms
as a module over Sp(H1F). Here are the results (again from [J2]):

*The definition of the Rochlin invariant of a homology sphere W
is: Let W =208X where X is a simply connected parallelizable
4-manifold; such an X always exists, and the signature of X is always
divisible by 8.  Furthermore, (5155§39£9 mod 2) is independent of the choice
of X, so it is actually an invariant of W; this is the Rochlin invari-
ant.
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229

a) The number of Birman-Craggs homomorphisms ,ﬂb 1" Z2 is

b) They are not linearly independent, but span a 22 vector space

of dimension (%g) + (%?) + (23) + (%?)-

To describe the answer to c), I must construct from H1(F,22)
a certain Zz-algebra. This algebra B is commutative with unit 1 and
has a generator for each non-zero element a of H1(F,22). This generator
being denoted by &, we require the following relations to hold in B:

1. 3 -3 forall a#0 in HI(FL).

2. Ta+bj=a+b+a-b, where a-belZ cB Is the alge-
braic intersection of a and b. (This relation establishes the contact
between B and the set of quadratic forms on H1(F,ZZ), which are
by definition functions w : H1(F,22) -7 satisfying w(a + b)
= w(a) + w(b) +a - b).

Because of the form of the relations, the degree of an element of
B (thought of as a polynomial in the generators) is well defined, and we
put Bk equal to the vector space of all elements of B of degree < k.
Note that Sp(H1F), and hence also J¢§’1, acts naturally on B as
algebra isomorphisms and on Bk as linear isomorphisms.. The principal
theorem of [J2] is to show how all the Birman-Craggs homomorphisms can be

assembled simultaneously into a single surjective homomorphism ¢ ;_;5 1" B3
(the cubics of B). The properties of o may then be stated thus:

a. (Naturality): For h e¢46  and f e.Jg , We have
s(hfh™) = n(o(f)).

b. Each Birman-Craggs homomorphism ° P, factors through o

via a corresponding linear map A, B3 - 22.

*

c. The Birman-Craggs homomorphisms generate thereby B3 = Hom(B3,22).

In other words, we may identify the space of Birman-Craggs homo-
morphisms with B3. This is the method used to calculate the dimension

of the space of Birman-Craggs homomorphisms: For dim B§ = dim B3, and
the fact that the latter is Z?zo (??) follows from the defining relations

1 and 2 for B.

We now have two abelian quotients of ;Wg 1 namely:

29

T ;%,1 - A3H1(Fg’1,Z) : rank = ( 3) and
' 3
o f,1 ~ By . dimension = [  (29)
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As the common term (%f) in the ranks of the targets suggests, these two
maps are not independent. They can, however, be assembled via a fibered .
product construction to get an abelian quotient embodying them both.  That

this is the final word on abelian quotients of _Z is the result of [J7],
namely:

THEOREM:  a. ;ﬂé 1&7'9 1 Is isomorphic to the above fibered
product. In particular, Jﬁ’g 1 = Ker = n Ker o.

b. o¢: H1(;g’1,22) ~ B3 is an isomorphism.

c. The Birman-Craggs homomorphisms {pw} generate
Hom (45’1,22).

There is one final aspect of the Birman-Craggs homomorphisms on which
1 wish to harp. It is that their definition is rather mysterious. 1In
fact, if we take the point of view of Magnus and the combinatorial group
theorists, £ 1 could be defined (by a theorem of Nielsen) as the auto-

g,
morphisms of a free group which fix a certain word, and # as the

subgroup which acts trivially on the abelianization of thgsg%lee group. This
definition apparently removes all topology from the subject, and yet we

have no definition of the homomorphisms P, :.36’1 - L which does not
involve the (at least implicit) construction of a 4-manifold. It would be
interesting and perhaps enlightening to see the pw'S defined in a more
direct and fundamental way. By studying certain relations in _ﬁa,1, I was
able to produce a group-theoretic result of this kind (see [J4]). It suffices
to describe the (index 2) kernel of p,- Define &, to be the subgroup
of J€§,1 consisting of those diffeomorphisms which act on H1(Fg’1,22)

so as to preserve the quadratic form w. Since _?%,1 is normal in

_45’1, the commutator group 021,45;1] is contained in 7 ;.

THEOREM:  Ker Py = [ ,45'1].

w

This is suggestive, but I still find it curiously unsatisfying, be-
cause in spite of the fact that Dfatjﬂ is of index only two in _#, the
process or deciding whether a given f ¢ # is in [6ZLjﬂ or not remains
very devious and indirect. It would be more interesting to know whether
pw(f) can be calculated directly from, say, the action of f on n1(F).
(The word "directly" is vague but essential here; in principal at least,
everything can be computed from the action of f on u1.) This desire
is not completely arbitrary. For example, it might shed light on the question
of whether the Rochlin invariant of a homology sphere is predictable from
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its fundamental group (this is not known even in the simply connected case!). [Mk

A more precisely stated problem is:

F) Can o, (f) be computed from the action of f on some CF
nilpotent quotient of n1(F)? If so, it should suffice to look at n/n[4]
or n/u[s] I have shown by an unenlightening brute force calculation,
however, that one cannot quite find p (f) from the action of f on
n/x[3] (n[3] =[x, x,x'1]). The mean?ng of "not quite" is more precisely
this: The cubic "polynomial" o (f) € B3 can be computed modulo its
constant term by means of the action of f on u/n[3]. This constant
term is not, however, oredictable from the action, and unfortunately knowledge

of the constant term is necessary to compute pw(f).

Since t(f) can also be computed from the action of f on
n/u[3] (in fact, from its action on E = n/n[z]) we see that this action

gives all abelian information about _15 1 except for a single missing 22.
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