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THE TORELLI GROUPS FOR GENUS 2 AND 3 SURFACES

GEOFFREY MESs

(Received 22 February 1990; in revised form 7 October 1991)

1. INTRODUCTION

THE purpose of this paper is to show that the genus 2 Torelli group is free on infinitely many
Dehn twists on separating curves. Moreover, the set of free generators can be identified with
the set of splittings of the homology of a genus 2 surface into two subspaces mutually
orthogonal and unimodular with respect to the intersection pairing. In addition, it is shown
that the third integer homology of the genus 3 Torelli group naturally contains an infinitely
generated free abelian group. This is a permutation module for the symplectic modular
group. The method used is a study of the period mapping to Siegel space.

In Sections 2 and 3 we review some background material. Section 4 shows that the genus
2 Torell group is free. Section 5 contains additional background material and the result on
the third homology. Section 6 gives a homological application.

2. TEICHMULLER AND TORELLI SPACES

Let C be a closed Riemann surface of genus g. A canonical homology basis is a 2g-tuple
(Ay,..., A, By,...By) of elements of H,(C,Z) such that (A4;, A;)=(B;, B;) =0,
(A;, B;) = d;;, where (,) denotes the intersection pairing. We assume g > 1. The space of
holomorphic differential forms on C has dimension g and a basis (¢,,. . ., ¢,) such that
fa.9j= 0. Letm; = [, A;. Let [C] e H(C, Z) be the fundamental class. Then the diagonal
A:Hy(C,Z) > H,(CxC,Z) is given by A[C]=1i,[C]+ i, [CI+>7 , A;xB;
— B;x A;,where iy, i,: C —» C x C are the inclusions of the first and second factors and x is
the exterior homology product. Riemann’s first bilinear relation follows: for any two
holomorphic 1-forms ¢, ¥ (or 1-forms representing any two cohomology classes with
cupproduct equal to zero)

0= L¢ AY = Z (AW (B:) — y(A)¢(B))

and in particular n;; = ;. If ¢ is a nonzero holomorphic 1-form, i) A ¢ is a nonnegative
integrand so ijc ¢ A ¢ > 0. Riemann’s second bilinear relation follows: the imaginary part
of the period matrix {m;} is positive definite. The Siegel space Z, is the space of all
symmetric g x g complex matrices with positive definite imaginary part. An abelian variety is
a complex torus which admits a projective embedding. Such an embedding i: 4 —» PV
determines a cohomology class i*(H)e H*(A, Z) where He H%(P", Z) is the generator
which satisfies (H, P'» = 1 where P! has its orientation given by the complex structure.
Let g = dim¢A; then the cup power i*(H)? = d-g![A] where [A] e H?9(A, Z) is the funda-
mental class. d is a positive integer, and d - ¢! is the degree of i(4). H*-* (A, C) is the subspace
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of H*(A, C) represented by forms which can be locally expressed as sums of terms of the
form f(z)dz; A dz;. A polarization of 4 is a cohomology class x in H*(4, Zyw H' (4, C)
which is positive and satisfies x? s£ 0; then x? = d-g![A] for some positive integer d. x is
positive if its representing (1, 1)-form X satisfies X (v, Jv) > 0, where v is a tangent vector and
J is the almost complex structure on A. x is a principal polarization if d = 1 or equivalently
the symplectic form which x defines on H{(A4, Z) is unimodular. Suppose (4, x) is a princi-
pally polarized abelian variety. Choose a homology basis A4,,...,4,, B;,...,B, for
H,{(A,Z) such that x(A4;, A;) = x(B;, B;) =0, x(4;, B;)=4;;. Then there is a basis
(¢, .., ¢,) of holomorphic differentials such that j 4,9 = 9;;. Define the period matrix
[I={m;} by n;; = 5, ¢,. Then [[e Z,, and conversely for each [] e Z,, there is a unique
triple (up to biholomorphisms preserving the additional structures x, (4, .. ., B,)) such
that (4, x) is a principal polarization of 4 and (4,,. . ., B,) is a homology basis such that
x{A;, A;) = x(B;, B;) = 0, x(4;, B;) = 1. The symplectic group Spig, Z) = GL;,Z acts on
Z, by T4 x(Ay,...,B))=(4,x(TA;,...,TB,). Explicitly, if T=(¢3}),
T = (DI1 — C)(— BII + A)~ 1. (Cf. [46], p. 173. See pp. 174—175 of [46] for an explana-
tion of the different formula given on p. 23 of [5].) Observe that the stabilizer of a point
peZ,is a finite group containing — 1eS8p(g, Z) and this is the group of isomorphisms of
the corresponding abelian variety which preserve the polarization and fix the identity
Oe A(p) of the group structure. Q! denotes the sheaf of holomorphic 1-differentials.
Given C, the map j: H(C, Z) - H°(C, Q')* defined by j(4)(¢) = ¢(4) = [+ ¢ (where A" is
any l-manifold on C representing the class 4) embeds H,(C, Z) as a discrete lattice.
Using the dual basis to ¢,,. .., ¢,, jH;(C,Z) is generated by the 2g columns of the
gx2g matrix (1,,II) where IT =m;. The Jacobian of C is the complex torus
H°(C,QY*/jH,(C,Z) = J(C). Given any basepoint P,eC, there is a natural map
¥: C — J(C) given by ¥(P)(¢) = [, ¢ + jH,(C, Z) where any path from P, to P may be
chosen. ¥ defines an isomorphism W*: H2(J(C), Z)(= A2H'(J(C), Z)) » A*H'(C, Z).
The fundamental class 1.e H*(M,Z) defines, by Poincaré duality, an element of
Hom(A?H,(C,Z), Z) and so an element xce A2 H(C, Z). Note that the cup product can
be regarded as a linear map | J: A2H'(C, Z) - H*(C, Z),and { J(xc) = g~ 1¢c. ¥ determines
an element [@] of H?(J(C), Z) such that ¥*[@] = x. This is a purely topological
definition, but [@] has an analytic interpretation. Given ITe Z,, Riemann’s theta function
©: C? - C is defined by

Oz, )= Y exp(rim'IIm + 27iz'm)
meZ’
©: C? - C is holomorphic and the zero set Z(®) of © is invariant under translations by
(1,, ) Z. So the divisor Z(®) determines a holomorphic line bundle on C¥/(1,, I)- Z*9,
of which © is a section. From the equations

Oz + m, I1) = O(z, IT)
O(z + IIm, IT) = exp(— mim'I[Im — 27im‘z)O(z, IT)

it follows that the Chern class of the line bundleis } {_, A; U Bj, where 4}, Bi(1 <i < g)are
the elements of the dual basis to (4,,. . ., B,). So [®] is a principal polarization. We call
Z(©) the theta divisor. Recall that Teichmiiller space T} is a complex manifold of dimension
3g — 3 such that given a surface F of genus g, T, is in bijection with the set of isotopy classes
of complex structures. 7, is diffeomorphic to R ~°. Each genus 2 surface is hyperelliptic, i.e.
is a double branched cover of P!, with 6 branch points uniquely determined up to
a fractional linear transformation. So for each point in M = {(x, ,7)e(C — {0, 1})*: a0 #
B # 7y # a} there is a corresponding Riemann surface y* = x(x — 1)(x — 2)(x — )(x — 7).
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Forgetting f8, y gives a fibering M — C — {0, 1} with fiber M,; M, fibers over a 4-times
punctured sphere with fiber a 5-times punctured sphere. Thus the universal cover M of M is
a complex manifold diffeomorphic to R®. (“Fibering” is being used here in the C* and not
in the holomorphic sense.) In fact M=T,.

The mapping class group I', acts properly discontinuously on 7, [1]. By the Lefschetz
fixed point formula, if ¢:C— C is biholomorphic and C has genus g > 1 then
2 — trace(H,;¢) > 0, so H, ¢ is nontrivial. The kernel of the natural map I';, - Sp(g, Z) is
called the Torelli group I,. Since the stabilizer in I'; of a point pe T, is the biholomorphism
group of the corresponding complex structure F, of F, I, is the deck group of a covering
1, — 1,/1,; in particular I, is torsion free. (As is well known I, also has finite index torsion
free subgroups, e.g. the kernel of the map I'y - Sp(g, Z) — Sp(y, Z,,) for any n > 2.) The

quotient space T,/I, is the Torelli space. The Teichmiiller curve I(,’,—ﬁ T, is a proper

submersion from ¥, a complex manifold of dimension 3g — 2, to 7, such that the fiber
F,over pe T, is a Riemann surface of genus g with the complex structure of F, up to isotopy.
(The Teichmiiller curve is topologically trivial by Teichmiiiler’s theorem [1] so the complex
structure is well defined up to isotopy.) The quotient U, = ¥, /I, is the Torelli curve; it is the
universal family of genus g surfaces with prescribed canonical homology basis. The period

or Torelli map T,/1, 5 Z, is defined by t(C, (4,, ... ., B,)) = {n;;} € Z,. t is holomorphic:

tangent vectors to 7, can be represented by Beltrami differentials, and given a Beltrami
differential u on the fiber 7~ 'q of n: U, > T,/I,, Rauch’s variational formula [18] states
that

dni([p]) = J

n

1 #¢i¢j

where [ u] is the tangent vector determined by .

For more information on Teichmiiller theory, theta functions, Jacobians etc., I have
found the following references useful: [1, 2, 5, 20, 19, 21, 22, 23, 24, 38, 46, 47]. The Torelli
group was previously investigated by Birman [11], Powell [48], Chillingworth [14],
Wagoner [54], Birman and Craggs [13], Schiller [50], Johnson [30, 31, 32, 34, 33, 35, 36]
and McCullough and Miller [43]. In particular, Birman showed that I, is the normal
closure in ', of a Dehn twist on a separating curve, Johnson [33] showed that I, is finitely
generated if g > 3, and McCullough and Miller showed that I, is not finitely generated.

3. JACOBIANS OF GENUS TWO CURVES

Most of the material in this section is well known. Let J be a principally polarized
abelian variety of dimension 2.

ProproSITION 1. Either the theta divisor C of J is a nonsingular curve C of genus 2 or
J = E;| x E, for two elliptic curves E,, E, as a product of polarized abelian varieties in which
case C = E, x {q} + {p} x E;, where p, q are the theta divisors of E, E, respectively.

Proof. Suppose C is irreducible. Since J is a group variety, the canonical divisor K is
trivial. By the genus formula (see e.g. 1.15 in [8])
29(C)—-2=C-C+C-K

where g(C) = H'(C, Oc¢). Since J is principally polarized, g(C) = 2. (We remark that if
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C was known to be smooth, this would simplify to the argument that C+C =2 and
0> TC - TJ|c—> NC — 0is exact, where TC and NC are the tangent and normal bundles
of C, and TJ|¢ is the restriction of the tangent bundle of J to C. Since C and J are complex
manifolds, this is an exact sequence of complex vector bundles, so C-C =2 implies
c1(NC)([CT) = 2 implies ¢, (TC)([C]) = — 2.) Following 1.16 in [8], let f: N — C be the
normalization of C and define a sheaf § on C by the exact sequence

0> 0c—f,0n—> 60

é is supported at the singular points of C, so HY(C, §) = 0. Because C is irreducible,
H°(C, 0¢) = H°(C, f,,Oy) = C, and the induced map is an isomorphism. So the long exact
cohomology sequence reduces to

O_’HO(Cs(s)_}Hl(Cs @C)—’Hl(C,f*@N)‘*O

Now we will show that H*(C, f,,Oy) = H'(N, 0). Let {U, V'} be a cover of C by two affine
open subsets, and let U’ =f"*U, V' =f"'V. Then we have exact Mayer-Vietoris
sequences:

0> HY U UV, f,0x) = H°(U,f,03) @ H°(V, £, Oy)
S HO(UNV,f,O8) > H (U NV, f,04) >0
0o HYU U V', Ox) > HOU', Oy) ® HO(V', Oy) = HO(U' A V', Oy) = H'(N, Oy) > 0.

By definition, H°(U, f,,Oy) = H°(U', ©y) and similarly for ¥ and U n V. So there is an
isomorphism  H(C,f,Oy) = H'(N,Oy). So, writing dimd for dimH%C, ),
g(N) =2 — dim . (The argument that H(C, f,Oy) = H'(N, O} is a special case of exercise
II1.8.1 in [25]. T thank Donu Arapura for explaining this to me.) More generally if C is
reducible we have y(Oc) = — 1, x(Oy) = x(Oc) + dimd, and g(N) = k — dim o — y(O¢) =
k + 1 — dim J where k is the number of components of N. Since J is an abelian variety, each
component of C has genus at least one. So either C is an irreducible curve with dimé =0
and g(N) =2, or dimé = 1 and N is a union of curves of genus 1. § is a skyscraper sheaf
concentrated at the singular points of C. If 6 = 0 then C is normal and therefore smooth.
Suppose N is a union of curves C; of genus 1. A map C; —» J is a group homomorphism
followed by a translation. So two elliptic curves in J are either translates of each other or
else transverse. Each point of transverse intersection contributes 1 to dim é, and g(N) = k.
So dim é = 1. So C contains 2 elliptic curves E; E, meeting transversely in 1 point. Any
curve in J meets either E, or E;, s0 k=2 and C = E, x {q} + {p} X E;.

Here is an alternative proof in a more topological style. Given a singular curve C on
a surface S, let pe C be a singular point. Blow up p. Let C, C, E be the total transform of C,
the strict transform, and the exceptional curve. Let k be the multiplicity of C at p. Let K and
K = n*K + E be canonical divisors on S and on the blown up. surface S respectlvely (For
51mp1101ty choose K disjoint from p.) Let n = C+C. Then n = C-C=C-C+2C-E—k?
0 C-C+K-C=n+ K-C—~ (k* — k). So after a finite sequence of blow ups at points
where the strict transforms have multiplicities k; which resolves the singularities of C, the
strict transform C’ of C satisfies

—X(C')=(C-C+K-C)—2Z<';‘)

where ¥(C’) is the topological Euler characteristic, equal to 2y(0¢ ) for a non-singular curve
C'. It follows as before that either g(C) = 2 and C is nonsingular or C is a union of two
elliptic curves meeting transversely in a point.
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ProrosiTion 2. If J is a principally polarized Jacobian of dimension 2 and the ©-divisor
C is a nonsingular curve then J = J(C) as a principally polarized abelian variety. In particular
inclusion defines an isomorphism H(C,Z) ~ H,(J, Z).

Proof. By the universal property of the Jacobian there is a map n: J(C) — J such that
noy = i where y: C — J(C) is the inclusion determined by a base point and i: C — J is the
inclusion. Since C lies in no subvariety of J, 7 is a (necessarily abelian) covering. C lifts from
J to J(C) so any deck transformation g satisfies g+ C n C = . But g is a translation, so
this contradicts C*C = 2.

ProposSITION 3. The period map t: T, /1, - &, is a holomorphic injection. Furthermore,
the complement is a disjoint union of properly embedded copies of U x U where U is the upper
half plane.

Proof. t is holomorphic by Rauch’s formula. Given {rn;;} = pe %, let C be the theta
divisor of J = C%/(§ § ™! m2)- Z* First suppose that J is not a product. Identify r;J with
the free abelian group H,(C,Z) by Proposition 2, and also with the subgroup
(8 9 mrm2y. 74 0fC2, Let(A,, A,, By, B,) be the homology basis of C such that i, 4, = (}),

1 721 m22
iyAz = (), i, By = (5, i, B, = (2}). This is in fact a canonical homology basis because
(i) [O@1(A4;x Aj) = [O](B; x B;) =0, [@](A; x B;) = §;; and (ii) the restriction of [@] to
C is the fundamental class because ~ [@]: H!(C, Z) —» H,(C, Z) defines an isomorphism
by (i). We have exhibited an inverse to t. Now consider the case that J is a product:
J=E;xE, and the ©O-divisor is E;xqupxE,. Then as in Proposition 2,
iy Hi(E\,Z)® H\(E;,Z)—~ H\(J, Z) is an isomorphism, and i, H,(E,,Z), i, H,(E,,Z)
are orthogonal subspaces with respect to the symplectic form determined by [@].

We introduce a definition.

Definition 1. Given a free abelian group L with a symplectic unimodular form {,)
a homology splitting is an unordered pair {U, V'} of subgroups of Lsuchthat L=U @ V
and U and V are orthogonal with respect to ¢, ).

Evidently the homology splittings of H(J, Z) are in natural bijection with Sp(2, Z)/{e)>
< (SL,Z x SL,Z) where < denotes semidirect product, e is the order 2 matrix

- o o O

01 0
1 0 0
00 1
(U 0

and the two copies of SL,Z are embedded as matrices such that the submatrix correspond-
ing to the indices 1,3 (respectively 2,4) is the identity matrix and the ij entries are zero when
iis 1 or 3 and jis 2 or 4 or vice versa. Let X = {g;} be coset representatives for
(e>p<(SL;ZxSL,Z). Then there is a map t": X xUxU — Z, defined by (g;, 71, 72)
> g;i* (3 2). Given (7! ™2) = p,if J is a product there is a unique x € X such that ¢ takes the
homology splitting {(4,, B,), (42, B,)} to {H,E,, H{E,}. Then p = x-(% 2) for some
71, 72 in U. So t’ is a bijection onto the complement of the image t(73/I,) of ¢. In particular
the image of ¢’ is closed.

CoRroLLARY 1. As a module over Sp(2,Z), H,(I,, Z) is isomorphic to Z[Sp(2,Z)/
((e>e<(SL,Z xSL,Z))].
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Proof. Observe that each embedding of U x U in %, is proper. So Alexander duality
applies.

We observe that the weaker result 1,/[T,, I,] = Z is implicit in earlier work. From
Igusa’s result [29] .#,:= T,/I, = C3/(Z/5Z) it follows that H,(I",, Q) = 0. On the other
hand H,{Sp(2, Z);, Z) = Z. This follows from the presentations of Sp(2, Z) obtained in [28]
and [55]. By the five term exact sequence in group homology and the fact due to Birman
[11] that I, is the normal closure in I" — 2 of a single Dehn twist, I,/[T,,I,] = Z.

I point out that Propositions 1, 2 and 3 are well known to algebraic geometers. (I have
not however been able to find a suitable reference.) Classically the complement of the image
of the period map was known as the set of Humbert matrices. Here I have given a self-
contained presentation of these results. The application to the Torelli group is new.

4. MORSE THEORY IN THE TORELLI SPACE

The argument of this section is a simple example of embedded Morse theory. Indeed,
given a manifold, a submanifold, and a Morse function whose restriction to the submanifold
is also a Morse function, we can obtain not only handlebody decompositions of the
manifold and submanifold, but also a handlebody decomposition for the complement of the
submanifold in the manifold. A general discussion is given in {51], pp. 65-71. In our case the
Morse function has only one critical point on the manifold and only one critical point on
each component of the submanifold.

ProrosimioN 4. The Torelli space T, /1, has a handle decomposition with a single 0-handle
and a set of 1-handles in one-to-one correspondence with the homology splittings. The Torelli
group I, is a free group freely generated by a set of Dehn twists on separating curves which
form a set of representatives for the homology splittings.

Proof. Fixapoint pet(Ty/I,) = &,. We will consider &', as a symmetric space. See e.g.
[26]. Let f(x) = d*(x, p) where d(,): &, x %, — [0, ) is the distance function. Then f is
proper and strictly convex along every geodesic. See e.g. p. 27 of [44] or p. 4 of [7]. Now
each component of t'(X x U x U) is totally geodesic in &, because it is the set of fixed points
of some involution. To see this it suffices to consider the component
UxU={(% 2)Imny, Imn, >0} of t'(X x Ux U), which is fixed by the involution

¢ m

1 0 0 0

0 -1 0 0f_. T Tz T — T2
o o 1 ol™  I\a, — My M )

0 0 0 -1

So for each of the components x+(U x U) of &5 — t(T3/1,), f1x+(U x U} is a proper
Morse function with no critical points except for a unique minimum. Consider the balls
B, = {x:f(x) <t}. If [t;,t,] is an interval such that none of the critical values of
flex xuxuy is in [ty 2,], then the pairs (B, B, nt'(X x U x U))(i = 1,2) are diffeomor-
phic, because the normal vector field to B, can be homotoped in a neighborhood of
B,nt'(X x U x U) to a vector field Y such that Y is nowhere zero and Y|, xxvxv) is the
gradient of f|,(x x u x v) and so is tangent to ¢'(X x U x U). For simplicity we assume (using
Baire category) that p is not equidistant to any pair of components of ¢'(X x U x U).
Suppose t # O is a critical value of f, attained at ge x - U x U, x€ X. Then in a neighborhood
of ¢ it is possible to introduce coordinates f, x,, Xz, X3, X4, X5 such that x-Ux U is
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defined by the conditions x5 =0, f= x? + x? + x3 + x2. Then BY,, — t'(X xUx U) is
diffeomorphic to B — t'(X x U xU) union (a tubular neighborhood of the core
{f=¢>—x3,x; = x; = x3 = x4 = 0} of a 1-handle). This establishes the first statement of
the proposition. From the handlebody description it follows that I, is freely generated by
a set of elements e,, x € X such that e, is conjugate in I, to the monodromy of the restriction
U,|;: of the Torelli curve to a loop 5! bounding a disc D7 transverse to t'({x} x U x U). We
may assume that the disc D2 is a complex submanifold. It remains to show that this is
a Dehn twist. First I will give an indirect argument. By the uniformization theorem, the
open punctured disc intD? — { p} carries a complete hyperbolic metric compatible with the
complex structure, which coincides with the Kobayashi metric. The conjugacy class of
e, can be represented by arbitrarily short geodesics in the hyperbolic metric on the
punctured disc intD? — {p} where p =D} {x}xUxU. Since the Teichmiiller and
Kobayashi metrics on T, are equal [49], [22] and all holomorphic maps are distance
decreasing in the Kobayashi metric, the displacement function f: T, — R, f(q) = dr(q, e.9)
has infimum zero. (dr denotes the Teichmiiller metric.) Since e, has infinite order the
infimum is not attained. So e, is parabolic in Bers’s version [10] of the Nielsen—Thur-
ston-Bers classification of mapping classes. Since e, is parabolic and in I, e, must be
a product of Dehn twists on disjoint separating curves. Since g = 2, ¢, is 7 for some n and
a Dehn twist ... If {n| > 1, we would have a contradiction: /,/[T",, I,] = Z with generator
7, (by Birman’s result [ 11] together with the Corollary to Proposition 3), but conjugates of
e, generate the subgroup nZ of I,/[I";,1,]. Now let h(x)e X be the homology splitting
defined by the curve upon which t, is a Dehn twist. Then h: X — X is Sp(2, Z)-equivariant.
h must be the identity by the following lemma:

Lemma 1. Suppose h: G/S — G/S is a G-equivariant map on a transitive G-set G/S. Then if
S is its own normalizer, h is the identity

Proof. Let h(S) = aS. Then h(sS) = saS = aS, so a”'saeS. So if § is its own normalizer
h(S) = S and then h(gS) = ¢S.

It is easy to see that {e><(SL,Z x SL,Z) is self-normalizing.

For a more geometric proof, consider the point g = (§ 9)e Z, and the transverse disc
D ={q; = (i $):14] < ¢} where ¢ is small enough that D meets ¢'(X x U x U) only in g.
Consider the family D x C2/(%! m2)- Z* of Jacobians (here we identify 1 with g, e D) and the
family U, = {[(z1, 22, 41)]: ©O(z1, z2, 1) = 0}, where [a] denotes the equivalence class of
a under the action of Z* @(q,,z,,z;) is invariant under the reflection j(z;,z,) =
(1+i+A—1z,1+i+4,)(thatis (} })is an even half period (cf. pp. 285-286 in [19])).
Introduce z; = z; — (1 + i + A)/2(i = 1, 2). Then for J sufficiently small, ®(z,, z,, g;) has
nonzero differential except at (4, z}, z5) = (0, 0, 0).

We will show that ©(zy,z,,q;) =c; A+ cyzi25 + (higher order terms), where
¢y, ¢z # 0. It will follow that the monodromy of the punctured disc D,, is generated by
a Dehn twist.

First,

G)(le 22, (Io) = B(ls zl)e(i’ ZZ)
where 0(t,z) = Y ¢ Zex_p(ninzr + 2mninz) is Jacobi’s theta function. Let z = (1 + 7)/2 + Z'.

0(t, z) = Zz exp[mi(n®t + n(l + 1) + 2nz’)]

= Y exp[nit(n + 1/2)*Jexp [ — mit/4](— 1)"exp(2nniz)
nelZ
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SO

o Y. explnit(n + 1/2)*]exp [ — mit/4]1(— 1)"2nin

0z z’=0 neZ

i

ao

Y. explrit(n + 1/2)*Jexp [ — mit/4](— 1)"27i(2n + 1)

n=0

= 6.24799i, for 1 =1

I

2
So PR (21522, 40) |z, 20y = (1 + )72, (1 +iy2) = €2 = — 39.0373 # 0. Since
Z1VZ2

@1 _® 0 forae
0z |21=0 B 025 |z3=0 - or4="4o
0 T1 A o
237(9((,% 1_2>,((1 +1+ 42,1+ 15+ A)/Z)) e
6@ Ty )., .
- —57<<;_ TZ)A(I + T2+ Tz)/2)>
é

=3 Zl{exp[ni(nl(n + 1/2)2 + 1,(m + 1/2)*)]

exp[— (ni/4)(ty + t2)]exp [mi(m + n)]exp [2nimnil}li~o
= Y 2miexp[—n(n® +n+m* +m](— )" "mn

n,meZl
(setting 1, = 1, = i)

= Y 2miexp[—n(*+n+m?*+m](—1)"""Q2m+ )2 + 1)

nmz0

2
= 2m‘< Y. exp[— n(n® +n)](— 1)"2n + 1)) = 6.21298i.
n=0

So in a neighborhood of ((1 + i)/2, (1 + i)/2, o) the family of ®-divisors is topologically
equivalent to the family of curves C; where C; is defined by zw = 4. The neighborhood may
be taken to be N = {(zy, 25, ¢3): A, |21], 1z3| < &} where & is sufficiently small that outside
N projection of any C; along the fibers of a tubular neighborhood gives a diffeomorphism
with Cy — (Con N).

LEMMA 2. In the 3-sphere L = {|z| = 1,|w| < e} n{lzw| =g} u{|z| <& |w|=1} = N,
the copy of T?x1 given by |zw| = ¢ is fibered by annuli Ay = {zw = ¢e®}, 0 < 0 < 2. If
¢: Ao — Ag is a representative diffeomorphism for the monodromy of this fibration which is the
identity on 0A,, ¢ is a Dehn twist.

Proof. Define an action of R on L by Fy((z, w)) = (€712, ¢/l =@=)%y) where f€R,
a(lz])=01if |z] = 1, a(Jz]) = 0 if |z| < &, and a is a continuous increasing function of |z|.
Then Fo{zw =&} = {zw =€} and Fa.{zw=¢|z]le[e, 1]} ={zw=1¢2z= | z| e2maliz),
|zle[e, 11}. So ¢ = F,, is a Dehn twist.

Lemma 2 is well known. The homological monodromy was known to Picard. The proof
of Proposition 4 is completed by the observation that the curve |z| = |w| on the surface
C, realizes the homology splitting of C; into the summands

()G = QMG
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Without showing that 80®/d4 # 0 at the singular point, we could have concluded that
the monodromy of a meridional loop was a power of a Dehn twist and deduced that the
monodromy was a Dehn twist for homological reasons as in the argument using Bers’s
theorem.

The 1-skeleton which Proposition 4 yields is neither explicit nor canonical. There is no
1-dimensional complex embedded in t(73/I,) as a deformation retract which is equivariant
with respect to Sp(2, Z). Indeed, a 1-complex which lies in a manifold as a retract is
necessarily locally finite. The preimage of the 1-complex in Teichmiiller space would give
a tree on which I'; would act, with finite stabilizers by proper discontinuity. Such an action
cannot exist, because I', has virtual cohomological dimension 3 and so is not the funda-
mental group of a graph of finite groups. It seems to be difficult to prescribe, on a genus
2 surface, a set of Dehn twists which freely generate I,. That any such choice of generators
must be complicated is suggested by the fact that I', is far from being a semidirect product
of Sp(2,Z) and I,; in fact the virtual cohomological dimension of Sp(2, Z) is 4 which is
greater than 3, the virtual cohomological dimension I';. Possibly the set of Dehn twists
Tew» X€X where C(x) is the shortest curve (in a fixed hyperbolic metric) realizing the
homology splitting x, is a set of free generators. Schiller [50] considered the subgroup 7 of
I, centralizing an involution j which can be realized by a genus 2 surface which is the double
branched cover of a genus 1 surface. He remarks without proof (pp. 112-113) that 7 is
a free group. [50] contains other interesting results on the centralizer of j in I',, using the
embedding into Z,.

5. THE THIRD HOMOLOGY OF THE GENUS THREE TORELLI GROUP

When g = 3, Teichmiiller space T3 has dimension 3g — 3 and Siegel’s space Z'; has
dimension g(g + 1)/2 = 3, while for g > 3t(T3/I5) has positive codimension in & ; and is
hard to describe topologically. (See [9] and references therein for recent progress in
obtaining an analytic description of the closure of the image of the period map.) So one may
hope to generalize the argument in Section 3 to the case g = 3. This was done by Johnson
and Millson.

We will be using the sharp version of Torelli’s theorem.

ToreLLrs THEOREM L. (a) Suppose the closed Riemann surfaces C, C' have period ma-
trices {n;;}, {ni;} for some pair of choices of canonical homology basis, and {n;;}, {n;;} differ by
the action of an element ae Sp(g, Z) where g > 1 is the genus of C and C'. Then C and C’ are
isomorphic Riemann surfaces.

(b} A Riemann surface is determined up to isomorphism by its polarized Jacobian
(J(C), [@®)). Equivalently the map t: M ,— % ,/Sp(g, Z) induced by the period map t (where
My = T,/T,) is injective.

(c) Suppose C, C' have the same polarized Jacobian (J(C),[@]). Let ¥:C — J(C),
W' C' — J(C) be the natural embeddings, which are determined up to translation in J(C). Then
Y(C')=p+ Y(C)or¥(C') = p — ¥(C) for some pe J(C). Equivalently every automorphism
of (J(C), [@]) fixing the identity 0€ J(C) of the group J(C) is of the form a or — I °a where
— 1I: J(C)— J(C) is the reflection — I(x) = — x, and a is the automorphism of J(C) induced
by some automorphism A of C.

(d) The map t: T,/I, > %, is a double branched cover of its image, and the branch locus
B < T, /1, is the set of points corresponding to hyperelliptic curves. t: B — t(B) is injective.

(a) is the original statement of Torelli’s theorem and (b) a reformulation which has the
advantage of making sense over any algebraically closed field. (d) is a reformulation of (c).
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(See e.g. [18]) (c) does not follow directly from (a), (b). From (a) or (b) it follows that if
q=tpet(T/l) = ¥, then t ' {p} = {a-q:aeStabp = Z,}. Observe that — IeStabp
for any be Z,. So the cardinality # {t~'{p}} = # {Stabp/Auta} (where Aut q is identified
with a subgroup of Sp(g, Z)).

Let I} be the preimage in I, of {+ Id} = Sp(g, Z); then (a), (b) show that the period map
t*: T/1f — Z,is injective on Q = {qe T,/I}: Stabt(q) = {Id, — Id}}. In fact Q is open and
dense in T,/I}. First 1(7,/1F) lies in no proper geodesic subspace % = Fixag<
Z4(aeSp(g, Z)), because then ¥ would be invariant under the image Sp(g, Z)/{ + Id} of
I'; and therefore also invariant under the real Zariski closure Sp(g, R) of Sp{g, Z). But
Z, contains no proper invariant subspaces. Second, the union of the subspaces
Fixa(a # IdeSp(g, Z)) is closed in Z,. Now if g = 3, t*(T;/I}) is an open subset of C°.
Since t* is holomorphic with finite fibers, t* is open with positive local degree at each point
of T,/I*, so t* is injective everywhere; thus we recover the sharp forms (¢), (d) of Torelli’s
theorem.

Torelli’s original proof [53] actually yields (c). Matsusaka [42] gave a more rigorous
version of Torelli’s proof, valid in abstract algebraic geometry. The second proof of Torelli’s
theorem was by Comessatti [16] and also gives the sharp version (c). Ciliberto [15] gives
a modern and rigorous presentation of Comessatti’s proof. A third proof is due to
Andreotti, first over C [3] and then in general in papers of Weil [56] and Andreotti [4].
A fourth proof is due to Martens [40]. It is a short proof of the sharp version. For more
recent proofs see pp. 261-269 in [5]. Torelli’s theorem is often (¢.g. in [45, 24, 5]) stated in
the weaker form (a), (b). Andreotti’s proof only yields (a), (b) in general. However when
¢ = 3, Andreotti’s proof (given in [24, 5]) actually identifies C as the branch locus of the
Gauss map 7: @ —» P2 which maps pe © to the tangent plane at p translated to the origin of
J(C), and therefore gives the strong versions (c), (d). (If C is hyperelliptic then C is an
irreducible component of the branch locus.)

Recall that a stable curve C is a complex analytic space such that (i) C is compact and
connected (ii) each point pe C has a neighborhood biholomorphic to {ze C:|z| < &} or to
{(z, w)e C?:zw = 0, |z, [w| < ¢} and in the latter case p is called a node, (iii) C — {nodes of
C} is a union of Riemann surfaces of negative Euler characteristic. The genus g(C) of C is
the number such that 2 — 2g(C) = x(C) — d where y(C) is the topological Euler character-
istic of C and d is the number of nodes. Given a stable curve C construct a graph G(C) with
one vertex i for each component C; of C — {nodes(C)} and, for each node p, an edge from
i to j where C;, C; are the two components which meet a neighborhood of p. Possibly i = j.
We call C a finite stable curve if G(C) is a tree. Hoyt [27] showed that the closure in 2, of
the image 1(7;/1,) consists of the Jacobians of finite stable curves, where the Jacobian J(C)
of a finite stable curve is the products of the Jacobians of the components C; of the
normalization of C. C;is obtained from C; by filling each puncture.

D. Johnson and J. Millson [37] generalized Proposition 3 as follows.

ProrosITION 5. There is a free abelian subgroup A < Hs(13, Z) of infinite rank. I /15 acts
trivially on A, and given xe H"(I5,Z) = (ye H3(I3,Z): T,y = y} where 1%/13 ={1,T},
2xe A. As a Sp(3, Z)-module, A = Z[Sp(3, Z)/Sp(1, Z) x Sp(2, Z)].

Proof. By Hoyt’s theorem, the frontier in 2’5 of t(T3/I3) consists of the period matrices
of products E, x J where E, is a genus 1 curve and J is the Jacobian of a finite stable genus
2 curve (so J = J(C)for a genus 2 curve C orelse J = E, x E; for two elliptic curves E,, E3).
Explicitly the frontier is the union U yer V(U x Z,) where Y is a set of coset representatives
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for Sp(3, Z)/Sp(1, Z) x Sp(2, Z) and

t 0 0
U x &, is the subspace 0 7y 73 ):teU, Il = (n” n23> ez,
0 73y T T3z 733
of Z5. By Theorem 2, p. 419 of [27], the image in &3/Sp(3, Z) of t(T3/I3)w Y+ (U x Z,) is
Zariski closed in the quasiprojective variety &3/Sp(3, Z). So t(T3/13) = &3 — Y- (U X Z,).
(Quasiprojectivity was proven by Bailey [6].) Since t: T3/13 > %5 is open, Y+ (U x &,) is
closed. If y,-(UxZ,) meets y,*(Ux%Z,), then the intersection is of the form
g+ (U x U x U)for some g e Sp(3, Z) and a third subspace y; (U x & ,) satisfies y; (U x Z5)
Ny (UxZy) =y (UxZ3)ny, (UxZ5) =y, (UxZ3)ny; (UxZ,). The map
i H¥(Ux UxU)— H¥(U x & ,) defined by extension by 0 from a tubular neighborhood
of UxUxU in Ux Z, is 0, so using Mayer—Vietoris we obtain

HL (Y- (UxZ,),2)=0 if k#8 HY (Y- (UxZ,),Z)=1Y,

the free abelian group on Y. By Alexander—Lefschetz duality, H3(%3; — Y- (UXx Z,), Z) =
H3 (Y- (UxZ,),Zy=2Y,and H(Z3 — Y- (UxZ,),Z)=0fori #0,3. Let p: H(Z 3 —
Y- (UxZ,), Z)— H{(T;/15, Z) satisfy p,p*x = 2x, p*p,x = x + T, x where T: T3/I; -
T3 /15 is the covering involution.

Given xe H3(I3,Z), 2x = (x — T, x) + (x + T, x) = (x — T, x) + p*p,x so if x = T, x,
2xe A where A is the image of p*.

H;(t(T3/13), Z) is generated by spherical classes. H3(I3, Z) contains no nonzero spheri-
cal classes; we will find representatives for the elements of A4.

Suppose Pe & 3 — t(T3/I3) and suppose the corresponding abelian variety is not a prod-
uct (as a polarized variety) of 3 elliptic curves. Then P is the Siegel point of the Jacobian of
a stable curve E, U C where C has genus 2 and E; n C = ue C. Moreover for each ve C
there is stable curve (obtained by joining E; to C at v) with the same Jacobian. The nodes of
these stable curves can be replaced by annuli, and we obtain a map of the unit tangent
bundle of C into the Torelli space 73/I5. First we give a hyperbolic description. Consider the
family of once punctured genus 2 curves m:CxC—A->C, n(x,y)=y, where
A = {(v, v): ve C} is the diagonal. There is a smooth metric on C x C — A which restricts to
a conformal hyperbolic metric on each fiber p~'{v} = C(,;. On each C — {v} there is
a horocircle H, of length & about the cusp v. From the family C x C — A remove the outside
of each horocircle H,, obtaining a family Uvey C, of hyperbolic surfaces of genus 2 with
boundary. Now take a fixed oriented hyperbolic surface E’ of genus 1 with a single
boundary geodesic of length . Fix a point ee dE’. The subset | | ,.c H, can be identified with
the unit tangent bundle UT(C) of C. For each point we U‘,Ec H,, form a Riemann surface
by isometrically identifying JE’ with H,, identifying e with w. This gives a family
C” — UT(c) of Riemann surfaces such that the monodromy acts trivially on the homology
of the fiber.

Alternatively we could choose H, so that in the hyperbolic metric in which H, was
geodesic, H, would have length ¢; then the gluing would give a nonsingular hyperbolic
metric.

To discuss the period map we need a holomorphic description following [41] and [21].
The family will be homotopy equivalent but not identical to the previously described family.
Given peC let U be a neighborhood of p and for each qeU let z,: U let
2,2 U > D, = {zeC: |z| < 2} be a chart such that z,(r) = z,(r) — z,(q) and for each g z,(U)
contains D = {ze C:|z| < 1}. Choose Beltrami differentials v,, v, v5 in C and v, in E; with
supports disjoint from U, V such that v, v,, v3, v, generate the tangent space to the
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Teichmiiller space T,(C) x T; of C] | E;. On the elliptic curve E; fix a chart w: ¥ — D. Now
for (t,g9)e D x U form a Riemann surface X, , by removing the discs {0 < |z,| < |¢|} and
{0 <|w| <[t|} from U and E and identify s, € U with s, € V" provided z,(s,)w,(s;) = t. (If
t =0, X, ,is a stable curve rather than a Riemann surface.) Now given 1 = (1, 1, 73, T4} in
a sufficiently small neighborhood of 0 C?, let u(t) = ¥ %, 7;v; and let X, , , be the Riemann
surface such that there is a quasiconformal homeomorphism w*®: X, , > X, , with Belt-
rami coefficient w¥®/w#® = u(t). Then by [41] there is a complex manifold X of dimension
7 and a proper holomorphic submersion 7: X — U x D x W such that the fiber over g, ¢t, t is
X, As g varies over the surface C, the families patch together to form a family
n: X = N x Wwhere N is a neighborhood of the diagonal in C x C. To see this, consider the
complex surface zw = ¢ in C?; let y = (z — w)/2, x = (z + w)/2 so the surface is given by
y* = x* — 1. So the annulus given by z,w =t < U n V (where U — {0 < |z,| < t} has been
identified with V' — {0 <|w| <t}) is the double branched cover of the disc U, with
branching over z; !(+ ¢'/?).

Now [21] shows that on n~!(N x {w}) there are 3 holomorphic 2-forms U,, U,,
U such that the residue v; , ,,,, of U; on X, ,, is a holomorphic 1-form with periods d;; on
Aj; where (4,, A,, A3, By, B,, B3) is the canonical homology basis such that P has period
matrix

Tt 0 0
0 7y 7y
0 m3, mas

with respect to (4,, A;, A3, By, B;, B3). Let 7;;(g, t, w) = j,,j Vi, q.0,w- Furthermore [57],
p. 129 shows that (if i=1,2 <j < 3)

m(g, £, 0) = 7;5(g, 0, 0) — tv,(0)v;(q) + O(t?)

where vy, v,, v3 is a basis for the holomorphic differentials on E, II C such that j 4.V = 0ij,
and v;(0), v;(q) are the values of the holomorphic functions such that v, = v,(z)dz,
v; = vj(w)dw in the regions U, V respectively; while for all other (i,j) with i <j,
(g, £, 0) = 7;;(q, 0, 0) + O(¢?). (This formula was earlier derived by Fay [21] but with an
incorrect multiplicative constant. Yamada [57] also obtains all the terms of higher order in
t. Cf. [52].) Together with n;;(g, 0, ) = 7;;(q, 0, 0) + Icu £T0;0; + O(]¢|?) this shows that the
period map P: N x W — %, defined by t(q, t, ) = [7;;(g, t, ©)] is holomorphic. (Alternat-
ively, Masur shows the existence of holomorphic 2-forms A,, 4, A; on X.) Write
T, %3 = C* @ C?, where the summands correspond to the variables (111, 152, 723, T33) and
(T12, T13). Then dP: Ti; o,0)N = Tp % 5 is onto the first factor. So X contains a holomorphic
subfamily n: X — N, such that N, is biholomorphic to a neighborhood of the diagonal AC
in C x C, and (thereby identifying C with a Riemann surface in Np) 7, (C) = P. Furthermore,
the map (¢, q) — (t/4)(v,(q), v2(q)) has rank 2 unless g is a Weierstrass point of C. So
P': Ny - C? defined by t"(q, t, ) = (m12(X g.1.¢)» ®13(X,.1..)) is holomorphic and open. Blow
up the origin of C2. We may assume that v;(0) = 1, and then the Yamada—Fay formula
1 shows that P’ lifts to P”: N, - C? where C? is C? with blown up origin. Furthermore,
P": Ny » P! < C? is the canonical map, so it is a double branched cover branched over
6 points. For any q the derivative of P restricted to a fiber {q} x D x {w} is nonzero. So
t': F — C? has nonzero derivative where F is any curve in N, transverse to C. So P: N, — C?
has degree 2 and is branched over the union of 6 smooth curves. So if S3(¢) = C?is
a sufficiently small sphere, P:t~'S3() — S3(¢) expresses the unit tangent bundle of C as
a double branched cover of S3(¢); the branch locus B, = S$3(g) is 6 distinct curves of the Hopf
fibration up to isotopy; and, because t is differentiable, as ¢ — 0, ¢! B, converges to 6 Hopf
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circles H,, . .., Hg which are preimages by the Hopf map of the 6 branch points of the
canonical image of the genus 2 curve C. Note that the derivative defines a lift of the
hyperelliptic involution to a free involution on the unit tangent bundle; the composite of
this free involution and a rotation of = on each fiber is an involution which fixes 6 circles and
has the 3-sphere as quotient space.

To clarify the geometric reason for the branching, we observe that the elliptic curve
E, has an involution i, inducing — Id on H,(E, Z) and fixing O € E. Take the neighborhood
V of 0e E, to be i;-invariant and choose the chart w: V' — D so w(i;s) = — w(s). Suppose
g e C is a Weierstrass point, and let i, be the hyperelliptic involution on C. Then i; and i,
together define a hyperelliptic involution i on the curve X, ,. So the corresponding point in
Torelli space is fixed by I¥/I,. Finally we show that (N — AC) x W is canonically isomor-
phic to an open subset of T3/I5. For any pe N x W, the inclusion H, (=" 1p, Z) - H,(X, Z)
defines a canonical isomorphism with H,(E v C, Z). So there is a basis (4,,..., B3) on
each H,(n"'p,Z) and therefore a natural map, the Kodaira-Spencer map
KS:(N - AC)x W T /I;, p— (n™'p,(41,...,B3)). KS is holomorphic (see pp.
373-388 in [47].) Since P: N x Wi &5 has degree 2 in a neighborhood of AC and
P =t°KS where t: T3/I; - %5 is the Torelli map, and ¢t has degree 2, KS is a local
biholomorphism. We summarize the discussion:

ProvosiTion 6. For each sphere S3(¢) representing a generator of Hy(t(T3/I5), Z),
p*([S3(e)]) is represented by an embedding of the unit tangent bundle UT(C) of a genus
2 surface in Ty/15. If the radius ¢ of the sphere S*(g) (lying in a complex plane perpendicular to
a component of Y+ (U x & ,)), then S3(c) meets the set of period matrices of hyperelliptic curves
in B,, a link of 6 circles, and UT(C) is the branched cover of S over B,. As¢ - 0,¢ !B, < §3

approaches a union of 6 Hopf circles, say ¢~ '{z,,. .., z¢} (where ¢: S> — P' is the Hopf map
and the center of the sphere S (g) represents the stable Jacobian E x J(C) where C is the genus
2 Riemann surface branched over {z,,. .., z¢}.

6. A HOMOLOGICAL APPLICATION

We will now give a homological application of Proposition 5 and Corollary 1 of
Proposition 3, and a result on the cohomological dimension of quotient groups. Consider
the Lyndon-Hochschild—Serre spectral sequence for the group extension
I, o T'; - Sp(2, Z). Since I, is free there are only two nonzero lines in the E, term and d, is
the only differential. Furthermore H,(Sp(2, Z), H,(I,, Z)) = H,(Sp(2, Z), Z[Sp(2, Z) /(&)
><(SL,Z xSL,Z))]) = H\({e>r<(SL;,Z x SL,Z), Z), where the second isomorphism is by
Shapiro’s lemma. So the spectral sequence degenerates to an exact sequence - - —
H(T'2,Z) > Hi(Sp(2,Z), Z) > Hy- ({ep<(SL,Zx SL,Z),Z) > H,(T'3, Z) — - - -
H, (Sp(2,Z),Z) - Z - H(Sp(2, Z), Z). In particular H,(I",, Q) = 0 except for k = 0(by
Igusa’s theorem) yielding H,(Sp(2, Z), Q) = 0 for k > 0. This exact sequence could be used
to calculate H,(Sp(2, Z), Z) using the complete calculation of H,(T',, Z) by F. R. Cohen
[17]. Now consider the extension I¥ — I'y —» PSp(3, Z) where PSp(3,Z) = Sp(3, Z)/{ £ I ).
By Proposition 5, Hs(I$,Z[1/2]) = Z[Sp(3, Z)/Sp(1, Z) x Sp(2, Z)], and H,(I%¥, Z[1/2])
= 0for k # 0, 3. Z[1/2] may be replaced by any ring in which 2 is invertible. Again there are
only 2 lines in the E, term of the spectral sequence, and d, is the only nontrivial differential.
In particular, with rational coefficients we have:

ProrosITiON 7. The spectral sequence in rational homology for the extension I — '3 —
PSp(3,Z) degenerates to give (a) H(PSp(3,Z),Q)=0 for k> 17, (b) H;(['3,Q) =
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H,(PSp(3, Z), Q) (c) There are exact sequences
(i) 0> He(l's. Q) = Ho(PSp(3, Z), Q) — Q — Hs(PSp(3, Z), Q) — 0.
and

(i) 0 Ha(Ts, Q) > Hy(PSp(3, Z), Q) —— Q — Hy(T's, Q) — Ha(PSp(3, Z), Q) — .

Proof. For (a) use H,(Sp(2, Z), Q) = 0 except for k = 0,2. In (¢) (i), 4, takes values in
Hy(PSp(3, Z), Hy(I3, Q)) = Ha((Sp(1, Z) x Sp(2,Z2))/<£ I}, Q) in (i) and, in (¢} (i}, in
Ho(PSp(3,Z), H3(1%, Q) = Ho(Sp(1, Z) x Sp(2, Z)/{ £ I}, Q).

Similar results hold in cohomology. Suppose given a group extension F — G — Q where
the kernel F is free on Q/A for some subgroup 4 of Q. One example is that Q is a torsion-free
I-relator group,and 4 = 1;anotheris G =T, F =1,, A = Z/20<(SL,Z x SL,Z). We may
ask for a bound for the cohomological dimension of Q.

ProposiTION 8. With F, G, Q, A as above cdgQ < max(cdgG, cdg A + 2) where cdg is
cohomological dimension over R.

Proof. Let M be a @-module. Then M can be considered as a G-module. Consider the
E, term of the spectral sequence of the group extension: E% = H*(Q, M),

E'% = H¥Q, H'(F, M)) ~ H*(Q, Homg(RQ/A, M))
= H*(Q, Coind9M) =~ H"(A4, M).

So if H*(Q, M) # 0 and k > edg A + 2, H¥(G, M) = H*(Q, M) # 0. To apply Proposition
7 to Sp(2, Z)), use R = Q or else pass to a finite index subgroup and generalize to the case
that F is free on the union of finitely many sets Q/A;, to obtain cdoSp(2,Z) <5,
ved Sp(2, Z) < 5. (In fact ved Sp(2, Z) = 4.) It would be interesting to have more examples to
which Proposition 8 is applied.
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