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1. INTRODUCTION 

THE purpose of this paper is to show that the genus 2 Torelli group is free on infinitely many 
Dehn twists on separating curves. Moreover, the set of free generators can be identified with 
the set of splittings of the homology of a genus 2 surface into two subspaces mutually 
orthogonal and unimodular with respect to the intersection pairing. In addition, it is shown 
that the third integer homology of the genus 3 Torelli group naturally contains an infinitely 
generated free abelian group. This is a permutation module for the symplectic modular 
group. The method used is a study of the period mapping to Siegel space. 

In Sections 2 and 3 we review some background material. Section 4 shows that the genus 
2 Torelli group is free. Section 5 contains additional background material and the result on 
the third homology. Section 6 gives a homological application. 

2. TEICHMijLLER AND TORELLI SPACES 

Let C be a closed Riemann surface of genus g. A canonical homology basis is a 2g-tuple 

(A,, . . . , A,, Bl,. . . Bg) of elements of Hi(C, Z) such that (Ai, Aj) = (Bi, Bj) = 0, 
(Ai, Bj) = 6ij, where (,) denotes the intersection pairing. We assume g 2 1. The space of 
holomorphic differential forms on C has dimension g and a basis (@i, . . . ,&I,) such that 
SAi ~j = 6ij. Let Xij = jBj Ai. Let [C] E H,(C, Z) be the fundamental class. Then the diagonal 
A: H,(C, Z) -+ H2(C x C, Z) is given by A[C]=i,*[C]+i2*[C]+CS,IAiXBi 
- Bi x Ai, where il, iz: C + C x C are the inclusions of the first and second factors and x is 

the exterior homology product. Riemann’s first bilinear relation follows: for any two 
holomorphic l-forms (6, $ (or l-forms representing any two cohomology classes with 
cupproduct equal to zero) 

0 = 
s 

$J A II/ = i 4(Ai)$(Bi) - $(Ai)+(Bi) 
C i=l 

and in particular nij = rtji. If (b is a nonzero holomorphic l-form, i4 A 6 is a nonnegative 
integrand so isc 4 A 4 > 0. Riemann’s second bilinear relation follows: the imaginary part 
of the period matrix {nij} is positive definite. The Siegel space ZT9 is the space of all 
symmetric g x g complex matrices with positive definite imaginary part. An abelian variety is 
a complex torus which admits a projective embedding. Such an embedding i: A + PN 

determines a cohomology class i*(H)E H*(A, Z) where HEH*(P~, Z) is the generator 
which satisfies (H, P’} = 1 where P’ has its orientation given by the complex structure. 
Let g = dimcA; then the cup power i*(H)g = d.g![A] where [A] EH*~(A, Z) is the funda- 
mental class. d is a positive integer, and d. g! is the degree of i(A). H “‘(A, C) is the subspace 
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of H2(A, C) represented by forms which can be locally expressed as sums of terms of the 

formf(z)dzi A dzj. A polarization of A is a cohomology class x in H’(A, Z) u Ii” ‘(A, C) 

which is positive and satisfies xg # 0, then xg = d’g![A] for some positive integer d. x is 

positive if its representing (1, 1)-form X satisfies X(0, Ju) > 0, where u is a tangent vector and 

J is the almost complex structure on A. x is a principal polarization if d = 1 or equivalently 

the symplectic form which x defines on Hr(A, Z) is unimodular. Suppose (A, x) is a princi- 

pally polarized abelian variety. Choose a homology basis AI, . . . , A,, B1, . . . , B, for 

Hr(A, Z) such that X(Ai, Aj) = x(Bi, Bj) = 0, x(Ai, Bj) = 6ij. Then there is a basis 

(@r, ,4,) of holomorphic differentials such that jAi 4j = dij. Define the period matrix 

n = {rtij) by xii = Ss,@j. Then fle9,, and conversely for each n E zt”,, there is a unique 

triple (up to biholomorphisms preserving the additional structures x, (A,, , II,)) such 

that (A, x) is a principal polarization of A and (A 1, . . . , B,) is a homology basis such that 

X(Ai, Aj) = x(B~, Bj) = 0, x(/ii, Bj) = 1. The symplectic group Sp(g, Z) c GL,,Z acts on 

20s by T. (A, x, (A 1, . . . , B,)) = (A, x, (TA, , . . . , 73,)). Explicitly, if T = (6 “,), 

TI’I = (DIJ - C)( - BII + A)-‘. (Cf. [46], p. 173. See pp. 174-175 of [46] for an explana- 

tion of the different formula given on p. 23 of [S].) Observe that the stabilizer of a point 

p E 2Tg is a finite group containing - 1 E Sp(g, Z) and this is the group of isomorphisms of 

the corresponding abelian variety which preserve the polarization and fix the identity 

OE A(p) of the group structure. 0’ denotes the sheaf of holomorphic l-differentials. 

Given C, the map j: Hr(C, Z) -+ H”(C, a’)* defined byj(A)(4) = $(A) = IA, 4 (where A’is 

any l-manifold on C representing the class A) embeds Hr(C, Z) as a discrete lattice. 

Using the dual basis to 41,. . . , bg, jH,(C, Z) is generated by the 2g columns of the 

gx2g matrix (l,, II) where II = nij* The Jacobian of C is the complex torus 

H”(C, Q’)*/jH,(C, Z) = J(C). Given any basepoint P,EC, there is a natural map 

Y: C + J(C) given by Y(P)(4) = l& 4 + jH,(C, Z) where any path from PO to P may be 

chosen. Y defines an isomorphism Y*: H2(J(C), Z)(E A 2 H’(J(C), Z)) -+ A 2 H’(C, Z). 

The fundamental class Ice H2(M, Z) defines, by Poincare duality, an element of 

Hom( A 2 H1 (C, Z), Z) and so an element xc E A 2 H1 (C, Z). Note that the cup product can 

be regarded as a linear map u : A 2 H1 (C, Z) + H2(C, Z), and u(x,-) = g. lc. Y determines 

an element [0] of H’(J(C), Z) such that Y*[O] = xc. This is a purely topological 

definition, but [0] has an analytic interpretation. Given JI E Tg, Riemann’s theta function 

0: Cg + C is defined by 

O(z, II) = C exp(rcim’IIm + 2niz’m) 
meZB 

0: Cg + C is holomorphic and the zero set Z(0) of 0 is invariant under translations by 

(l,, II). Z2g. So the divisor Z(0) determines a holomorphic line bundle on Cg/(lg, FI). Z2g, 

of which 0 is a section. From the equations 

O(z + m, II) = O(z, II) 

O(z + IIm, IT) = exp( - nim’IIm - 2rrim’z)O(z, II) 

it follows that the Chern class of the line bundle is CT= 1 Ai u Bi, where A;, B;(l I i I g) are 

the elements of the dual basis to (A,, . . . , Bg). So [O] is a principal polarization. We call 

Z(0) the theta divisor. Recall that Teichmiiller space q is a complex manifold of dimension 

3g - 3 such that given a surface F of genus g, G is in bijection with the set of isotopy classes 

of complex structures. q is diffeomorphic to R 6g-6 Each genus 2 surface is hyperelliptic, i.e. . 

is a double branched cover of P’, with 6 branch points uniquely determined up to 

a fractional linear transformation. So for each point in M = {(a, B, y) E (C - (0, 1) )3 : CI # 

fi # y # a} there is a corresponding Riemann surface y2 = x(x - 1)(x - a)(~ - fi)(x - Y). 
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Forgetting /?, y gives a fibering M + C - 10, l} with fiber Mi; M1 fibers over a 4-times 

punctured sphere with fiber a 5-times punctured sphere. Thus the universal cover G of M is 

a complex manifold diffeomorphic to R6. (“Fibering” is being used here in the C” and not 

in the holomorphic sense.) In fact a = T,. 
The mapping class group Ts acts properly discontinuously on G [l]. By the Lefschetz 

fixed point formula, if 4: C -+ C is biholomorphic and C has genus g > 1 then 

2 - trace(Hi 4) 2 0, so Hi $J is nontrivial. The kernel of the natural map Ts + Sp(g, Z) is 

called the Torelli group I,. Since the stabilizer in Ts of a point p E q is the biholomorphism 

group of the corresponding complex structure F, of F, I, is the deck group of a covering 

Tg + &/I,; in particular I, is torsion free. (As is well known rQ also has finite index torsion 

free subgroups, e.g. the kernel of the map Ts + Sp(g, Z) --f Sp(g, Z,) for any II > 2.) The 

quotient space T,/I, is the Torelli space. The Teichmiiller curve 5 1 Tg is a proper 

submersion from I$, a complex manifold of dimension 3g - 2, to G such that the fiber 

F, over p E T, is a Riemann surface of genus g with the complex structure of F, up to isotopy. 

(The Teichmiiller curve is topologically trivial by Teichmiiller’s theorem [l] so the complex 

structure is well defined up to isotopy.) The quotient U, = l$/Z, is the Torelli curve; it is the 

universal family of genus g surfaces with prescribed canonical homology basis. The period 

or Torelli map T,/I, -!, T”g is defined by t(C, (A,, . . . . , B,)) = {nijj E 2Tg. t is holomorphic: 

tangent vectors to T, can be represented by Beltrami differentials, and given a Beltrami 

differential p on the fiber K ‘q of rc: U, + T,/I,, Rauch’s variational formula [lSJ states 

that 

dnij(CPl) = s P4i 4j 
n- ‘q 

where [p] is the tangent vector determined by p. 

For more information on Teichmiiller theory, theta functions, Jacobians etc., I have 

found the following references useful: [ 1, 2, 5, 20, 19, 21, 22, 23, 24, 38, 46, 471. The Torelli 

group was previously investigated by Birman [ll], Powell [48], Chillingworth [14], 

Wagoner [54], Birman and Craggs [13], Schiller [SO], Johnson [30, 31, 32, 34, 33, 35, 361 

and McCullough and Miller [43]. In particular, Birman showed that I2 is the normal 

closure in F2 of a Dehn twist on a separating curve, Johnson [33] showed that I, is finitely 

generated if g 2 3, and McCullough and Miller showed that Zz is not finitely generated. 

3. JACOBIANS OF GENUS TWO CURVES 

Most of the material in this section is well known. Let J be a principally polarized 

abelian variety of dimension 2. 

PROPOSITION 1. Either the theta divisor C of J is a nonsingular curve C of genus 2 or 
J = E, x E2 for two elliptic curves El, Ez as a product of polarized abelian varieties in which 

case C = E, x {q) + (p} x E, where p, q are the theta divisors of El, Ez respectively. 

Proof: Suppose C is irreducible. Since J is a group variety, the canonical divisor K is 

trivial. By the genus formula (see e.g. I.15 in [8]) 

2g(C)-2=C.C+C.K 

where g(C) = H’(C, 0,). Since J is principally polarized, g(C) = 2. (We remark that if 
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C was known to be smooth, this would simplify to the argument that C * C = 2 and 

0 --* TC + TJ Ic + NC -+ 0 is exact, where TC and NC are the tangent and normal bundles 

of C, and TJlc is the restriction of the tangent bundle of J to C. Since C and J are complex 

manifolds, this is an exact sequence of complex vector bundles, so C * C = 2 implies 

ci(NC)([C]) = 2 implies c,(TC)([C]) = - 2.) Following I.16 in [8], letf: N + C be the 

normalization of C and define a sheaf 6 on C by the exact sequence 

6 is supported at the singular points of C, so H’(C, 6) = 0. Because C is irreducible, 

H’(C, 0,) = H”(C,f*ON) = C, and the induced map is an isomorphism. So the long exact 

cohomology sequence reduces to 

0 --+ HO(C, 6) + H’(C, 0c) + H’(C,f*O,) --+ 0. 

Now we will show that H’(C,f, 0,) g H’(N, 0). Let {U, V> be a cover of C by two affine 

open subsets, and let U’ =f - ’ U, P” =f- ’ I/. Then we have exact Mayer-Vietoris 

sequences: 

0 + HO(U u VJ-*OhJ) -+ HO(U,f*W 0 HO(Kf*W 

+HO(Un V,f*0,)-+H’(Un V,f*cO,)+O 

O+H”(U’u V’,ON)-‘Ho(U’,ON)OHo(V’,ON)-*Ho(U’n V’,ON)+H’(N,ON)-+O. 

By definition, H’(U,f,O,) = H’(U’, 0,) and similarly for V and U n I/. So there is an 

isomorphism Hr(C,f,@,) g H’(N, 0,). So, writing dim 6 for dim H’(C, 6), 

g(N) = 2 - dims. (The argument that H’(C,f,Lo,) z H’(N, 0) is a special case of exercise 

111.8.1 in [25]. I thank Donu Arapura for explaining this to me.) More generally if C is 

reducible we have x(0,) = - 1, ~(0~) = x(0,) + dim& and g(N) = k - dim6 - x(0,) = 

k + 1 - dim 6 where k is the number of components of N. Since J is an abelian variety, each 

component of C has genus at least one. So either C is an irreducible curve with dim 6 = 0 

and g(N) = 2, or dim 6 = 1 and N is a union of curves of genus 1. 6 is a skyscraper sheaf 

concentrated at the singular points of C. If 6 = 0 then C is normal and therefore smooth. 

Suppose N is a union of curves Ci of genus 1. A map Ci + J is a group homomorphism 

followed by a translation. So two elliptic curves in J are either translates of each other or 

else transverse. Each point of transverse intersection contributes 1 to dim 6, and g(N) = k. 
So dim 6 = 1. So C contains 2 elliptic curves El E2 meeting transversely in 1 point. Any 

curve in J meets either El or E2, so k = 2 and C = El x {q} + {p} x E,. 
Here is an alternative proof in a more topological style. Given a singular curve C on 

a surface S, let p E C be a singular point. Blow up p. Let c, 6, E be the total transform of C, 

the strict transform, and the exceptional curve. Let k be the multiplicity of C at p. Let K and 

E = R*K + E be canonical divisors on S and on the blown up surface s^ respectively. (For 

simplicity choose K disjoint from p.) Let n = C. C. Then n = c* c = c - d + 2kd - E - k2, 
so c^. c^ + i * c^ = n + K * C - (k’ - k). So after a finite sequence of blow ups at points 

where the strict transforms have multiplicities ki which resolves the singularities of C, the 

strict transform C’ of C satisfies 

-x(C’)=(C*C+K-C)-2T “; 
0 

where x(C’) is the topological Euler characteristic, equal to 2x(0,,) for a non-singular curve 

C’. It follows as before that either g(C) = 2 and C is nonsingular or C is a union of two 

elliptic curves meeting transversely in a point. 
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PROPOSITION 2. If J is a principally polarized Jacobian of dimension 2 and the O-divisor 
C is a nonsingular curve then J = J(C) as a principally polarized abelian variety. In particular 

inclusion defines an isomorphism H1(C, Z) g H1(J, Z). 

Proof: By the universal property of the Jacobian there is a map 7~: J(C) + J such that 
7~ 0 I(/ = i where $: C -+ J(C) is the inclusion determined by a base point and i: C -+ J is the 
inclusion. Since C lies in no subvariety of J, 7~ is a (necessarily abelian) covering. C lifts from 
J to J(C) so any deck transformation g satisfies g. C n C = 0. But g is a translation, so 
this contradicts C * C = 2. 

PROPOSITION 3. The period map t: G/I2 + zoz is a holomorphic injection. Furthermore, 

the complement is a disjoint union of properly embedded copies of U x U where U is the upper 
half plane. 

Proof: t is holomorphic by Rauch’s formula. Given {nij} = p E 9*, let C be the theta 
divisor of J = C’/(h T :;; $; ) * Z4. First suppose that J is not a product. Identify x1 J with 
the free abelian group H1(C, Z) by Proposition 2, and also with the subgroup 

( d y :;; ;;;)*.Z4 of C’. Let (A,, AZ, B1, B2) be the homology basis of C such that &AI = (A), 

&AZ = (p), i,B1 = (g;;), i,Bz = (z;;). This is in fact a canonical homology basis because 
(i) [O](Ai x Aj) = [O](Bi x Bj) = 0, [O](Ai x Bj) = 6ij and (ii) the restriction of [0] to 
C is the fundamental class because n [0]: H’(C, Z) -+ H1(C, Z) defines an isomorphism 
by (i). We have exhibited an inverse to t. Now consider the case that J is a product: 
J=EIxE2 and the O-divisor is El x q up x Ez. Then as in Proposition 2, 
i,: H1(E1, Z) 0 H1(E2, Z) + H1(J, Z) is an isomorphism, and i,H1(E1, Z), i,H1(E2, Z) 
are orthogonal subspaces with respect to the symplectic form determined by [O]. 

We introduce a definition. 

Definition 1. Given a free abelian group L with a symplectic unimodular form ( ,) 
a homology splitting is an unordered pair {U, V} of subgroups of L such that L = U @ V 

and U and F’ are orthogonal with respect to (, ). 

Evidently the homology splittings of H1(J, Z) are in natural bijection with Sp(2,Z)/(e) 
IX (SL, Z x SL1 Z) where D< denotes semidirect product, e is the order 2 matrix 

0 1 0 0 
1 0 0 0 

( :i 

0 0 0 1 
0 0 1 0 

and the two copies of SL2 Z are embedded as matrices such that the submatrix correspond- 
ing to the indices 1,3 (respectively 2,4) is the identity matrix and the ij entries are zero when 
i is 1 or 3 and j is 2 or 4 or vice versa. Let X = {gi> be coset representatives for 
(e) rx(SL2Z x SL2Z). Then there is a map t’: X x U x U + 5Y02 defined by (gi, zl, r2) 
H gi*(; P,). Given (nl’ ff12 - Rz, & - p, if J is a product there is a unique x E X such that c takes the 
homology splitting {(A,, B,), (AZ,&)} to {HIE,, H1E2). Then p = x-(2 P,) for some 
TV, t2 in U. So t’ is a bijection onto the complement of the image t( T,/Z,) of t. In particular 
the image of t’ is closed. 

COROLLARY 1. As a module over Sp(2, Z), H,(12, Z) is isomorphic to Z[Sp(2,Z)/ 

(<e> wW52Z x SL2Z))l. 
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broom Observe that each em~dding of U x U in bz is proper. So Alexander duality 
applies. 

We observe that the weaker result r,/[r,, I,] z Z is implicit in earlier work. From 
Igusa’s result [29] J@“,:= T2/fZ = C”/(ZjSZ) it follows that Hz(T1, Q) = 0. On the other 
hand H,(Sp(2, Z); Z) = Z. This follows from the presentations of Sp(2, Z) obtained in [28] 
and [ISS]. By the five term exact sequence in group homology and the fact due to Birman 
[ll] that I2 is the normal closure in r - 2 of a single Dehn twist, I&r,, 1J = Z. 

I point out that Propositions I,2 and 3 are well known to algebraic geometers. (I have 
not however been able to find a suitable reference.) Classically the complement of the image 
of the period map was known as the set of Humbert matrices. Here I have given a self- 
contained presentation of these results. The application to the Torelli group is new. 

4. MORSE THEORY IN THE TORELLI SPACE 

The argument of this section is a simple example of embedded Morse theory. Indeed, 
given a manifold, a submanifold, and a Morse function whose restriction to the submanifold 
is also a Morse function, we can obtain not only handlebody decompositions of the 
manifold and submanifold, but also a handlebody decomposition for the complement of the 
submanifold in the manifold. A general discussion is given in [Sl], pp. 65-71. In our case the 
Morse function has only one critical point on the manifold and only one critica point on 
each component of the submanifold. 

PROPOSITION 4. The Tore& space T,/f, has a handle decomposition with a single O-handle 

and a set of I-handles in one-to-one correspondence with the homology splittings. The Tore& 

group I, is a free group freely generated by a set of Dehn twists on separating curves which 
form a set of representatives for the homology splittings. 

Pro05 Fix a point PE t(T,/I,) c 5Y2. We will consider Zz as a symmetric space. See e.g. 
[26). Let f (x) = d’(x, p) where d( ,): S2 x bF2 + [O, co) is the distance function. Then f is 

proper and strictly convex along every geodesic. See e.g. p. 27 of [44] or p. 4 of [7]. Now 
each component of t’(X x U x U) is totally geodesic in Zz because it is the set of fixed points 
of some involution. To see this it suffices to consider the component 
U x u = ((3 n”,): I m x1, Im 712 > Oj of t’(X x U x U), which is fixed by the involution 

[i -i i _ij=i. .i*(zli ::I)=( “vz, :I:‘). 

So for each of the components x*(V x U) of Tifz - t(T,/I,), f Ix-(U x U) is a proper 
Morse function with no critical points except for a unique minimum. Consider the balls 
B, = {x: f (x) I t>. If [tl, tz] is an interval such that none of the critical values of 

fl tSC~ X u x “) is in [tl, t2], then the pairs (&, Bti n t’(X x U x U))(i = 1,2) are diffeomor- 
phic, because the normal vector field to B, can be homotoped in a neighborhood of 
B, n t’(X x U x U) to a vector field Y such that Y is nowhere zero and Ylt,(x. uX U) is the 
gradient offIrs(x X u X U1 and so is tangent to t’(X x U x U). For simplicity we assume (using 
Baire category) that p is not equidistant to any pair of components of t’(X x U x U). 

Suppose t # 0 is a critical value off; attained at q E x * U x U, x E X. Then in a neighborhood 
of q it is possible to introduce coordinates f; x1, x2, x3, x4, x5 such that x* U x U is 
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defined by the conditions x5 = 0, f = x: + xt + x32 + x4. Then BP+, - t’(X x U x U) is 
diffeomorphic to BP - t’(X x U x U) union (a tubular neighborhood of the core 
(f= E’ - x52, x1 = x2 = x3 = x4 = 0} of a l-handle). This establishes the first statement of 
the proposition. From the handlebody description it follows that It is freely generated by 
a set of elements e,, x E X such that e, is conjugate in Z2 to the monodromy of the restriction 
U, Is: of the Torelli curve to a loop S,’ bounding a disc 0,” transverse to t’( (x) x U x U). We 
may assume that the disc 0,’ is a complex submanifold. It remains to show that this is 
a Dehn twist. First I will give an indirect argument. By the uniformization theorem, the 
open punctured disc int 0,’ - {p} carries a complete hyperbolic metric compatible with the 
complex structure, which coincides with the Kobayashi metric. The conjugacy class of 
e, can be represented by arbitrarily short geodesics in the hyperbolic metric on the 
punctured disc int 0,’ - {p} where p = 0,’ n {x} x U x U. Since the Teichmiiller and 
Kobayashi metrics on G are equal [49], [22] and all holomorphic maps are distance 
decreasing in the Kobayashi metric, the displacement functionf: & + R,f(q) = d,(q, e,q) 
has infimum zero. (dr denotes the Teichmiiller metric.) Since e, has infinite order the 
infimum is not attained. So e, is parabolic in Bers’s version [lo] of the Nielsen-Thur- 
ston-Bers classification of mapping classes. Since e, is parabolic and in Z2, e, must be 
a product of Dehn twists on disjoint separating curves. Since g = 2, e, is z: for some n and 
a Dehn twist rx. If Jnl > 1, we would have a contradiction: Z2/[r2, Zz] = Z with generator 
TV (by Birman’s result [l l] together with the Corollary to Proposition 3) but conjugates of 
e, generate the subgroup nZ of Z,/[r,, Z,]. Now let hex be the homology splitting 
defined by the curve upon which z, is a Dehn twist. Then h: X + X is Sp(2,Z)-equivariant. 
h must be the identity by the following lemma: 

LEMMA 1. Suppose h: G/S + G/S is a G-equivariant map on a transitive G-set G/S. Then if 
S is its own normalizer, h is the identity 

Proof: Let h(S) = as. Then h(sS) = saS = as, so a - ‘sa E S. So if S is its own normalizer 
h(S) = S and then h(gS) = gS. 

It is easy to see that (e) rx(SL2Z x SL2Z) is self-normalizing. 
For a more geometric proof, consider the point q = (5 8) E 5Yz and the transverse disc 

D = {qA = (f ?): \A( < E} where E is small enough that D meets t’(X x U x U) only in q. 
Consider the family D x C’/(z;; i;; ) * Z4 of Jacobians (here we identify A with q1 E D) and the 
family U, = {[(z,, z2, ql)]: O(z Ir z2, ql) = 0}, where [a] denotes the equivalence class of 
a under the action of Z4. O(q,, zl, z2) is invariant under the reflection j (zl, z2) = 
(1 + i + A - zl, 1 + i + AZ,) (that is (: :) is an even half period (cf. pp. 285-286 in [ 191)). 
Introduce z,! = Zi - (1 + i + ;1)/2(i = 1,2). Then for 1 sufficiently small, O(z, , z2, q,J has 
nonzero differential except at (A, z;, z;) = (0, 0,O). 

We will show that O(zi, z2, qn) = cl 1 + c2z;z; + (higher order terms), where 
cl, c2 # 0. It will follow that the monodromy of the punctured disc D,, is generated by 
a Dehn twist. 

First, 

@(zr, z2, qO) = t%, z1)9(i, z2) 

where fZ(r, z) = x,,zexp(nin2z + 2knz) is Jacobi’s theta function. Let z = (1 + t)/2 + z’. 

0(r, z) = C exp[k(n2t + n(1 + r) + 2nz’)] 
?lEZ 

exp nlr 
[ ( 

n + 1/2)2] exp [ - k/41(- l)“exp(2nk) 
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ae 
z =‘=O 

= nFz exp[C(n + l/2)‘] exp [ - rcir/4]( - 1)“2nin 

= nzO exp[rcir(n + 1/2)2] exp [ - r&/4] (- 1)“2rci(2n 

A 6.24799i, for r = i. 

z~.22)=((l+i)/2,(l+i)/2) = c2 = ’ - 39.0373 # 0. Since 

ao ao 

-I I 
=- zzr 

az; zi=o az; zi=o 0, for 4=qo, 

,((l + z1 + 1)/2,(1 + r2 + IJ/2) 
>I A=0 

,(U + ~,)/2,(1 + ~2)/2) I=o 

+ 1) 

= fj n ~z{ew174nI(n + 1/212 + ~~~~ + l/2)2)1. 

exp[- (ni/4)(z1 + r2)]exp[ni(m + n)]exp [27timnA])lAZo 

= n Lz2siexp[- rr(n2 + n + m2 + m)].(- l)m+nmn 

(setting r1 = r2 = i) 

= 1 2rciexp[-n(n2 + n + m2 + m)] (- 1)“+“(2m + 1)(2n + 1) 
fl,WIZO 

= 2ni 
( 

c exp [- rr(n2 + n)](- 1)“(2n + 1) 
fl?O ) 

2 

A 6.2129%. 

So in a neighborhood of ((1 + i)/2, (1 + i)/2, qo) the family of O-divisors is topologically 
equivalent to the family of curves CA where C;, is defined by zw = A. The neighborhood may 
be taken to be N = { (zr, z2, qn): j AI,1 z; ),I z; ( < E} where E is sufficiently small that outside 

N projection of any CA along the fibers of a tubular neighborhood gives a diffeomorphism 
with Co - (Co n N). 

LEMMA 2. In the 3-sphere L = {Iz\ = 1, Iw( < E} n {Izwl = E} u {lzl SE, (w( = l> c N, 
the copy of T2 x I given by jzwl = E is Jibered by annuli A0 = {zw = &eie>, 0 I 8 -C 2~. If 
4: A0 --) A0 is a representative diffeomorphismfor the monodromy of thisfibration which is the 
identity on aAo, 4 is a Dehn twist. 

Proof. Define an action of R on L by FB((z, w)) = (e ia(lrl)flZ ei(l - a(lzl)oW) where (j E R, 

a(lzl) = 0 if (zj = 1, a(lzl) = 0 if /zI I E, and a is a continuous’increasing function of 1~1. 
Then F@(zw = F} = { zw = eeiB} and F2={zw = E, Iz~E[E, 11) = {zw = E,Z = Izle2nia(lz0, 

\z\E[E, l]}. So 4 = F2n is a Dehn twist. 

Lemma 2 is well known. The homological monodromy was known to Picard. The proof 
of Proposition 4 is completed by the observation that the curve IzI = I WI on the surface 
CL realizes the homology splitting of CA into the summands 

((i)(i)) and (@)(~))~ 
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Without showing that a@/aA # 0 at the singular point, we could have concluded that 
the monodromy of a meridional loop was a power of a Dehn twist and deduced that the 
monodromy was a Dehn twist for homological reasons as in the argument using Bers’s 
theorem. 

The l-skeleton which Proposition 4 yields is neither explicit nor canonical. There is no 
l-dimensional complex embedded in t(Tz/12) as a deformation retract which is equivariant 
with respect to Sp(2, Z). Indeed, a l-complex which lies in a manifold as a retract is 
necessarily locally finite. The preimage of the l-complex in Teichmiiller space would give 
a tree on which I2 would act, with finite stabilizers by proper discontinuity. Such an action 
cannot exist, because IZ has virtual cohomological dimension 3 and so is not the funda- 
mental group of a graph of finite groups. It seems to be difficult to prescribe, on a genus 
2 surface, a set of Dehn twists which freely generate IZ. That any such choice of generators 
must be complicated is suggested by the fact that IZ is far from being a semidirect product 
of Sp(2, Z) and I*; in fact the virtual cohomological dimension of Sp(2, Z) is 4 which is 
greater than 3, the virtual cohomological dimension 12. Possibly the set of Dehn twists 

G-(~), XE X where C(x) is the shortest curve (in a fixed hyperbolic metric) realizing the 
homology splitting x, is a set of free generators. Schiller [SO] considered the subgroup F of 
IZ centralizing an involutionj which can be realized by a genus 2 surface which is the double 
branched cover of a genus 1 surface. He remarks without proof (pp. 112-113) that F is 
a free group. [SO] contains other interesting results on the centralizer of j in 12, using the 
embedding into .Z*. 

5. THE THIRD HOMOLOGY OF THE GENUS THREE TORELLI GROUP 

When g = 3, Teichmiiller space T3 has dimension 3g - 3 and Siegel’s space LF’~ has 
dimension g(g + 1)/2 = 3, while for g > 3t(T,/Z,) has positive codimension in L?Zn3 and is 
hard to describe topologically. (See [9] and references therein for recent progress in 
obtaining an analytic description of the closure of the image of the period map.) So one may 
hope to generalize the argument in Section 3 to the case g = 3. This was done by Johnson 
and Millson. 

We will be using the sharp version of Torelli’s theorem. 

TORELLIS THEOREM 1. (a) Suppose the closed Riemann surfaces C, C’ have period ma- 

trices {7Tij}, (7T;j)f or some pair of choices of canonical homology basis, and (.rrij}, {rtij} differ by 

the action of an element a E Sp(g, Z) where g 2 1 is the genus of C and C’. Then C and C’ are 
isomorphic Riemann surfaces. 

(b) A Riemann surface is determined up to isomorphism by its polarized Jacobian 

(J(C), [O]). Equivalently the map f: A, + z”,/Sp(g, Z) induced by the period map t (where 
A9 = T,/T,) is injective. 

(c) Suppose C, C’ have the same polarized Jacobian (J(C), CO]). Let Y: C -+ J(C), 
9”: C’ + J(C) be the natural embeddings, which are determined up to translation in J(C). Then 
Y(C’) = p + Y(C) or Y(C’) = p - Y(C)f or some p E J(C). Equivalently every automorphism 
of (J(C), [@])fixing the identity OE J(C) of the group J(C) is of the form a or - Zoa where 
- I: J(C) + J(C) is the reflection - Z(x) = - x, and a is the automorphism ofJ(C) induced 

by some automorphism A of C. 
(d) The map t: T,/Z, + 9’g is a double branched cover of its image, and the branch locus 

B c q/Z, is the set of points corresponding to hyperelliptic curves. t: B + t(B) is injective. 

(a) is the original statement of Torelli’s theorem and (b) a reformulation which has the 
advantage of making sense over any algebraically closed field. (d) is a reformulation of(c). 
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for Sp(3,Z)/Sp(l, Z) x Sp(2, Z) and 

U x 5?z is the subspace 

of T3. By Theorem 2, p. 419 of [27], the image in %?3/Sp(3, Z) of t(T3/13) u Y*(U x 3,) is 

Zariski closed in the quasiprojective variety z3/Sp(3, Z). So t(&/Z,) = T3 - Y*(U x 22). 

(Quasiprojectivity was proven by Bailey [6].) Since t: Z/Z3 + ET3 is open, Y.(U x 3,) is 

closed. If y, -(U x LE’~) meets y, *(U x E?‘2), then the intersection is of the form 

g*(U x U x U)for some gESp(3, Z) and a third subspace y3 .(U x 3,) satisfies y3 *(U x 5?‘2) 

ny,~(U~Z,)=y,~(Uxd,)ny,~(Ux~~)=y,~(Ux~~)ny~~(Ux~~). The map 

i,: H:(U x U x U) -+ H,*(U x 5fY2) defined by extension by 0 from a tubular neighborhood 

of U x U x U in U x fZ2 is 0, so using Mayer-Vietoris we obtain 

H$(Y.(U x T2), Z) = 0 if k # 8, H$(Y.(U x 5?‘2), Z) = ZY, 

the free abelian group on Y. By Alexander-Lefschetz duality, H3(T3 - Ye (U x a,), Z) E 
Hfpt(Y*(U x 572), Z) = ZY, and Hi(5?‘3 - Y.(U x %2), Z) = 0 for i # 0,3. Let p: Hi(aj03 - 

Y*(U x S,), Z) --$ Hi(T3/13, Z) satisfy p*p*x = 2x, p*p*x = x + T,x where T: T3/13 -+ 

T3/13 is the covering involution. 

Given XEH~(Z~, Z), 2x = (x - T,x) + (x + T,x) = (x - T,x) + p*p*x so if x = T*x, 

2x E A where A is the image of p*. 
H3(t(T3/Z3), Z) is generated by spherical classes. H3(Z3, Z) contains no nonzero spheri- 

cal classes; we will find representatives for the elements of A. 

Suppose P E fZ3 - t(T3/Z3) and suppose the corresponding abelian variety is not a prod- 

uct (as a polarized variety) of 3 elliptic curves. Then P is the Siegel point of the Jacobian of 

a stable curve E 1 u C where C has genus 2 and E 1 n C = u E C. Moreover for each v E C 

there is stable curve (obtained by joining El to C at v) with the same Jacobian. The nodes of 

these stable curves can be replaced by annuli, and we obtain a map of the unit tangent 

bundle of C into the Torelli space T3/Z3. First we give a hyperbolic description. Consider the 

family of once punctured genus 2 curves X: C x C - A + C, n(x, y) = y, where 

A = {(v, v): v E C} is the diagonal. There is a smooth metric on C x C - A which restricts to 

a conformal hyperbolic metric on each fiber p- ’ {v} = C{,}. On each C - {v> there is 

a horocircle H, of length E about the cusp v. From the family C x C - A remove the outside 

of each horocircle H,, obtaining a family u vsv CL of hyperbolic surfaces of genus 2 with 

boundary. Now take a fixed oriented hyperbolic surface E' of genus 1 with a single 

boundary geodesic of length E. Fix a point e E dE'. The subset U vec H, can be identified with 

the unit tangent bundle UT(C) of C. For each point w E u vcc H,, form a Riemann surface 

by isometrically identifying LIE' with H,, identifying e with w. This gives a family 

C” + UT(c) of Riemann surfaces such that the monodromy acts trivially on the homology 

of the fiber. 

Alternatively we could choose H, so that in the hyperbolic metric in which H, was 

geodesic, H, would have length E; then the gluing would give a nonsingular hyperbolic 

metric. 

To discuss the period map we need a holomorphic description following [41] and [21]. 

The family will be homotopy equivalent but not identical to the previously described family. 

Given pi C let U be a neighborhood of p and for each qE U let z,: U let 

zq: U + D2 = {zEC: IzI -c 2) be a chart such that z,&) = zp(r) - zP(q) and for each q z,(U) 
contains D = {zGC: IzI < l}. Choose Beltrami differentials vl, v2, v3 in C and vq in E, with 

supports disjoint from U, V such that vi, v2, v3, v4 generate the tangent space to the 
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Teichmiiller space T,(C) x T1 of C u E, . On the elliptic curve E, fix a chart w: V-r D. Now 

for (t, q) E D x U form a Riemann surface Xf,q by removing the discs (0 I 1 zql I ) t I} and 

(0 I (WI I Itl} f rom U and E and identify s1 E U with s2 E V provided zq(sl)wq(sZ) = t. (If 

t = 0, Xo,q is a stable curve rather than a Riemann surface.) Now given z = (zl, TV, TV, z4) in 

a sufficiently small neighborhood of 0 E C3, let ~(5) = cf= 1 ~~~~ and let X4,1,r be the Riemann 

surface such that there is a quasiconformal homeomorphism wfi(*): Xq,t + X,,,,, with Belt- 

rami coefficient w$+)/w:(~) = P(Z). Then by [41] there is a complex manifold X of dimension 

7 and a proper holomorphic submersion 7~: X + U x D x Wsuch that the fiber over q, t, z is 
X q,i,r. As q varies over the surface C, the families patch together to form a family 

7~: X + N x W where N is a neighborhood of the diagonal in C x C. To see this, consider the 

complex surface zw = t in C3; let y = (z - w)/2, x = (z + w)/2 so the surface is given by 

y2 = x2 - t. So the annulus given by zyw = t c U n V(where U - (0 I lzql I t} has been 

identified with V- (0 5 [WI I t>) is the double branched cover of the disc U, with 

branching over z; ’ ( + t ‘j2). 

Now [21] shows that on K’(N x {w>) there are 3 holomorphic 2-forms U1, U2, 

U3 such that the residue Ui,q,t,w of Ui on XB,f,w is a holomorphic l-form with periods 6, on 

Aj where (A,, AZ, A3, B1, B2, B3) is the canonical homology basis such that P has period 
matrix 

z 0 0 

( 1 

o n22 x23 

0 7132 7c33 

with respect to (A,, AZ, A3, B1, B2, B3). Let Zij(q, t, W) = sBj~i,q,f,W. Furthermore [57], 

p. 129 shows that (if i = 1,2 I j I 3) 

7cij(q, t, 0) = nij(4,0,0) - toi(O)uj(q) + o(t2) 

where ul, u2, u3 is a basis for the holomorphic differentials on E, II C such that Jai vj = 6ij, 

and Oi(O), ui(q) are the values of the holomorphic functions such that u1 = u,(z)dz, 

Uj = Uj(W)dW in the regions U, V respectively; while for all other (i, j) with i I j, 

nij(q, t, 0) = nij(q, 0,O) + 0(t2). (This formula was earlier derived by Fay [21] but with an 

incorrect multiplicative constant. Yamada [57] also obtains all the terms of higher order in 

t. Cf. [52].) Together with nij(q, 0, Z) = nij(q, 0,O) + J ~uE~Uiuj + 0(lt12) this shows that the 

period map P: N x W + ~2’~ defined by t(q, t, 5) = [Xij(q, t, r)] is holomorphic. (Alternat- 

ively, Masur shows the existence of holomorphic 2-forms A,, A2, A3 on X.) Write 

TpZ3 = C4 @ C2, where the summands correspond to the variables (zll, ~~~~ ~23, 233) and 

CT125 ~~3). Then dP: Lo,o) N + TPZ3 is onto the first factor. So X contains a holomorphic 

subfamily 7t: X + N,, such that No is biholomorphic to a neighborhood of the diagonal AC 

in C x C, and (thereby identifying C with a Riemann surface in N,,) n,(C) = P. Furthermore, 

the map (t, q) + (t/4)(u,(q), u2(q)) has rank 2 unless q is a Weierstrass point of C. So 

P’: No -+ C2 defined by t”(q, c, t) = (~c~~(X~,~,~), ~z~~(X,&) is holomorphic and open. Blow 

up the origin of C2. We may assume that Vi(O) = 1, and then the Yamada-Fay formula 

1 shows that P’ lifts to P”: No -+ c2 where e2 is C2 with blown up origin. Furthermore, 

P”: N,, + P’ c e2 is the canonical map, so it is a double branched cover branched over 

6 points. For any q the derivative of P restricted to a fiber {q} x D x (w} is nonzero. So 

t’: F + C2 has nonzero derivative where F is any curve in No transverse to C. So P: No + C2 

has degree 2 and is branched over the union of 6 smooth curves. SO if S3(e) c c2 is 

a sufficiently small sphere, P: t-’ S3(&) -+ S3(&) expresses the unit tangent bundle of C as 

a double branched cover of S”(E); the branch locus B, c S3(c) is 6 distinct curves of the Hopf 

fibration up to isotopy; and, because t is differentiable, as E + 0, E-I B, converges to 6 Hopf 
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circles HI,. . . , H6 which are preimages by the Hopf map of the 6 branch points of the 
canonical image of the genus 2 curve C. Note that the derivative defines a lift of the 
hyperelliptic involution to a free involution on the unit tangent bundle; the composite of 
this free involution and a rotation of 71 on each fiber is an involution which fixes 6 circles and 
has the 3-sphere as quotient space. 

To clarify the geometric reason for the branching, we observe that the elliptic curve 
El has an involution i1 inducing - Id on H 1 (E, Z) and fixing 0 E E. Take the neighborhood 
V of OE El to be i,-invariant and choose the chart w: V-+ D so w(ils) = - w(s). Suppose 
4 E C is a Weierstrass point, and let iz be the hyperelliptic involution on C. Then i, and iz 
together define a hyperelliptic involution i on the curve X,,,. So the corresponding point in 
Torelli space is fixed by 1,*/Z,. Finally we show that (N - AC) x W is canonically isomor- 
phic to an open subset of &/I,. For any peN x W, the inclusion H1(z-lp, Z) + H,(X, Z) 
defines a canonical isomorphism with HI (E u C, Z). So there is a basis (A,, . . , B3) on 
each Hl(n-lp, Z) and therefore a natural map, the Kodaira-Spencer map 
KS: (N - AC)x W-+ T3/Z3, p H (z-‘p,(A,,. . . , B3)). KS is holomorphic (see pp. 
373-388 in [47].) Since P: N x W H 9+3 has degree 2 in a neighborhood of AC and 
P = to KS where t: T3/13 + 93 is the Torelli map, and t has degree 2, KS is a local 
biholomorphism. We summarize the discussion: 

PROPOSITION 6. For each sphere S3(&) representing a generator of H3(t(G/13), Z), 
p*([S3(e)]) is represented by an embedding of the unit tangent bundle UT(C) of a genus 
2 surface in T3 /13. If the radius E of the sphere S3(&) (lying in a complex plane perpendicular to 

a component of Ye (U x a,)), then S3(~) meets the set of period matrices of hyperelliptic curves 

in B,, a link of 6 circles, and UT(C) is the branched cover of S3 over B,. As E -+ 0, ~-l B, c S3 
approaches a union of 6 Hopf circles, say 4-l {zl, . . , z6} (where 4: S3 -+ P’ is the Hopf map 

and the center of the sphere S3(e) represents the stable Jacobian E x J(C) where C is the genus 
2 Riemann surface branched over {zl,. . . , z6}. 

6. A HOMOLOGICAL APPLICATION 

We will now give a homological application of Proposition 5 and Corollary 1 of 
Proposition 3, and a result on the cohomological dimension of quotient groups. Consider 
the Lyndon-Hochschild-Serre spectral sequence for the group extension 
Z2 4 r2 + Sp(2, Z). Since Z2 is free there are only two nonzero lines in the E2 term and dz is 
the only differential. Furthermore H,(Sp(2, Z), Hl(lz, Z)) z H,(Sp(2, Z), Z[Sp(2,Z)/((e) 
D< (SL2 Z x SL2 Z))]) z Hk( (e) [x (SL2 Z x SL1 Z), Z), where the second isomorphism is by 
Shapiro’s lemma. So the spectral sequence degenerates to an exact sequence . . . + 

HL(~z, Z) -, Hk(Sp(2, Z), Z) -+ Hk-l((e)w(SL2Z x S&Z), Z) -+ Hk-l(r2, Z) +. . . 
H, (Sp(2, Z), Z) + Z + H1(Sp(2, Z), Z). In particular Hk(r2, Q) = 0 except for k = O(by 
Igusa’s theorem) yielding Hk(Sp(2, Z), Q) = 0 for k > 0. This exact sequence could be used 
to calculate H,(Sp(2, Z), Z) using the complete calculation of H,(Tz, Z) by F. R. Cohen 
[17]. Now consider the extension 1; -+ r3 + PSp(3, Z) where PSp(3, Z) = Sp(3,Z)/( f I). 
By Proposition 5, H3(13*, Z[1/2]) 2 Z[Sp(3,Z)/Sp(l, Z) x Sp(2, Z)], and H&J*, Z[1/2]) 
= 0 for k # 0,3. Z [ l/2] may be replaced by any ring in which 2 is invertible. Again there are 
only 2 lines in the E2 term of the spectral sequence, and d, is the only nontrivial differential. 
In particular, with rational coefficients we have: 

PROPOSITION 7. The spectral sequence in rational homology for the extension 13 + r3 + 
PSp(3, Z) degenerates to give (a) H,(PSp(3, Z), Q) g 0 for k > 7, (b) H7(r3, Q) z 
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H, (PSp(3, Z), Q) (c) There are exact sequences 

0) 0 --f Hd-3, Q) -+ H,U’Sp(3, Z), Q) 2 Q -+ H~(PSP(~, Z), Q) --f 0. 

and 

(ii) 0 -, H4(r3, Q) -, Hb(PSp(3, Z), Q) d4 -Q-H3(rj,Q)‘H3(PSp(3, Z), Q)-0. 

Proof. For (a) use H,(Sp(2, Z), Q) = 0 except for k = 0,2. In (c) (i), d4 takes values in 

Hz(PSp(3, Z), H3(13*, Q)) % H~((sp(l, Z) x Sp(2,Z))/< k I>, Q) in (i) and, in (c) (ii), in 
H,(PSp(3, Z), H,U:, Q)) z ff,(S~(l, Z) x SP(~, Z)/<+ I>, Q). 

Similar results hold in cohomology. Suppose given a group extension F + G -+ Q where 

the kernel F is free on Q/A for some subgroup A of Q. One example is that Q is a torsion-free 

1 -relator group, and A = 1; another is G = r2, F = I*, A = Z/2 LX (SL2Z x SL2 Z). We may 

ask for a bound for the cohomological dimension of Q. 

PROPOSITION 8. With F, G, Q, A as above cd,Q I max(cd,G, cd,A + 2) where cd, is 
cohomological dimension over R. 

Proof Let M be a Q-module. Then M can be considered as a G-module. Consider the 

Ez term of the spectral sequence of the group extension: Eok = Hk(Q, M), 

Elk = Hk(Q, H ‘(F, M)) z Hk(Q, Hom,(RQ/A, M)) 

= Hk(Q, Coind$M) r Hk(A, M). 

So if Hk(Q, M) # 0 and k > cdRA + 2, Hk(G, M) g Hk(Q, M) # 0. To apply Proposition 

7 to Sp(2, Z), use R = Q or else pass to a finite index subgroup and generalize to the case 

that F is free on the union of finitely many sets Q/A,, to obtain cdQSp(2, Z) I 5, 
vcd Sp(2, Z) I 5. (In fact vcd Sp(2, Z) = 4.) It would be interesting to have more examples to 

which Proposition 8 is applied. 
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