
ALGORITHMS FOR POSITIVE BRAIDS

By ELSAYED A. ELRIFAI and H. R. MORTON

[Received 11 June 1991]

Introduction

THE emphasis in this paper is on the set of positive braids, those elements
of Artin's braid group Bn which can be written as a word in positive
powers of the usual generators, a1,..., a-n_x. We shall regard elements
of Bn as geometric braids, given up to isotopy by an arrangement of n
strings running monotonically from top to bottom between two parallel
discs. We study the braid group in terms of the set St of positive
permutation braids. These are denned to be positive braids in which each
pair of strings crosses at most once, and they are shown to be in 1-1
correspondence with the permutations in Sn. Two canonical forms for
positive braids as products of braids in S^ are given, a left and a right
handed form, along with a readily mechanised algorithm for writing every
braid in canonical form. This is a useful technique for handling braids, as
permutations can be dealt with very easily, and the algorithm is capable
of quick hand use in diagrammatic form for short braids.

The algorithm and related developments provide us with:
(1) An easily handled approach to Garside's solution of the word
problem in Bn.
(2) An improvement of Garside's solution of the conjugacy problem, by
reducing his study of the 'summit set' to that of a much smaller invariant
class under conjugation, the 'super summit set'.
(3) An algorithm to decide whether (An)* is a factor of a given positive
braid, where the fundamental braid An is the positive braid in Bn in which
each pair of strings crosses exactly once. This happens if and only if at
least k of the canonical factors of the braid are equal to An.
(4) An algorithm to decide whether a given positive braid is a factor of
(An)*. This happens if and only if its canonical form has at most k factors.

In the next section properties (3) and (4) are recast in the framework
of a natural partial order on Bn. Some features of Bn which become
obvious in this setting serve to clarify the organisation of (1) and (2).

Since a general braid can always be expressed as the product of a
positive braid and a, possibly negative, power of An our study extends
readily to the general case. The algorithms as given here were originally
described in [5]. The groundwork and key lemmas originate from Garside
[6] via Birman [2], while one very useful result from our point of view
comes from the appendix to Garside's thesis [7]. The presentation and

Quart. J. Math. Oxford (2), 45 (1994), 479-497 © 1994 Oxford University Press

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

480 ELSAYED A. ELRIFAI AND H. R. MORTON

emphasis has been considerably adapted here, and results in a much
shorter conjugacy algorithm. With very little change a more even-handed
view can be given, using both positive and negative braids with no special
preference for positive; such an approach has been recently described by
Thurston [10]. We note in Section 5 the minor modifications needed to
pass from one view to the other for a general non-positive braid.

The class of links which arise as the closure of positive braids is of
some independent geometric interest. All such links are fibred [9], and
they include as special cases the algebraic links, arising from isolated
singularities of polynomials in C2, and Lorenz links, which appear as
orbits of a certain dynamical system [3,4]. The algorithms presented here
can be used to tackle questions about special classes such as the Lorenz
links [5].

1. Artin's braid group

Artin's classical result [1] gives a presentation for the group Bn of
braids on n strings by generators au ..., an-lt where a, represents the
geometric braid in which strings i and i + 1 cross once only as indicated in
figure 1.

The relations in his presentation are
(1)
(2)

DEFINITION. A positive braid is an element of Bn which can be written
as a word in positive powers of the generators {a,}, without the use of the
inverse elements ajx.

DEFINITION. A positive braid word is an explicitly written word

NOTATION. Write B* for the set of positive braids in Bn.

Remark. The abelianisation map defines a natural homomorphism
wt: Bn —*Z, by wt (a-,) = 1, which coincides with the length of a positive
braid word on B$-

There is an automorphism T: Bn—*Bn, which can be thought of as
'turning over' a braid. It is defined by T(O-,) = o-n_,.

One other map suggested by symmetries of geometric braids is the

i 1+1

II X II

FIG. 1.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

ALGORITHMS FOR POSITIVE BRAIDS 481

'reversing' a/if/automorphism rev: Bn —* Bn, defined by rev (o-,) = (a,).
This has the effect on a geometric braid of turning it over from top to
bottom, when it will be read as the reverse word in the braid generators.

NOTATION. Write An e Bn for the 'fundamental braid', described as a
geometric n -braid by imagining the strings attached to a rod which is
given a positive half-twist. It can be defined inductively by

A n = An_i<T,,_iOrn_2 • • • O-j

starting with Ax = ax.
Although An is not immediately recognisable in Bn from a group-

theoretic point of view, its square generates the centre of Bn, while it is
readily shown that the automorphism T is conjugation by An.

Before giving details of our algorithms and their proofs we shall make
some further definitions to put our extension of Garside's conjugacy
algorithm into a natural context. We shall make considerable use of
comparisons between our given braid element and powers of An; our
algorithms will allow us to make these comparisons very explicitly.

We start by using the positive braids B* to define a partial order on
Bn.

NOTATION. For A, B e Bn write A « B when B = CXAC2 for some Cx,
C2 e B+

n.
We then have

B e 5
and

In what follows we shall write A for An unless there is any danger of
ambiguity.

PROPOSITION 1.1. Each generator a, satisfies e «<r, « A.

Proof. Immediate from the inductive definition of A.

PROPOSITION 1.2. If A « AJ then A' = DXA = AD2 for some Du D2 e B^.

Proof. Write A' = CXAC2 with Cu C2 e B^. Then

since A*C2 = f{C2)A'.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

482 ELSAYED A. ELRIFAI AND H. R. MORTON

Similarly,

PROPOSITION 1.3. IfAr*iA then A = EiAr = ArE2 for some E^, E2e B^.

Garside's original algorithms make considerable use of 'initial braids'
and 'final braids', which can be expressed in our terminology as braids B
with e^B^A, using Proposition 1.2. We shall show later how these
braids, which we call positive permutation braids, can be readily described
geometrically, and identified with permutations in Sn, which we exploit as
a ready means of referring to them without having to use explicit braid
words.

Propositions 1.2 and 1.3 give the immediate corollary:

PROPOSITION 1.4. / / Ar' « B ^ A " and A'5 =£ C =£ A'2 then

We may then place every braid somewhere between powers of A.

THEOREM 1.5. Every B satisfies Ar *sB =s A1 for some r . s s Z .

Proof. Write B as a word in {af'} and use proposition 1.4, and the fact
that e =£ a, =£ A and A"1 =s o-Jx =£ e.

NOTATION. Write [r, s] <= Bn for the subset {B e Bn: A
r =£ B « A'}.

We shall use the common group-theoretic notation for subsets of
groups, in which ST = {st (= G: s e S,t e 7} <= G where 5, T are subsets
of a group G. Then [r, s] = Ar[0, s — r], and we may study a braid by
looking at the 'braid intervals' in which it lies.

Clearly there will be a shortest braid interval [r, s] containing a given
braid B. ''•

DEFINITION. For B e Bn set inf B = max {r: A r « B} and sup B = min

{s: B =£ A1}. Call /(B) = sup B - inf B the canonical length of S.

It is a consequence of proposition 1.4 that l(AB)^l(A) + l(B).

Remark. In Garside's terminology, the power of B is exactly the same
as inf B, since we have r = inf B if and only if B = ArB' with e =£ fl' and
A^B'. This last condition is referred to by Garside as 'B' is coprime to
A'.

Although he did not introduce a counterpart of sup B, it may be noted
that — supi? = inf £" ' is the power of B~l in Garside's sense.

While the analogy with real intervals is useful, it is not close enough to
behave well under unions. However, Proposition 1.4 can be read as

2, s2] <= [r, + r2, s, + s2],

and we shall show later that this inclusion is an equality. Consequently

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

ALGORITHMS FOR POSITIVE BRAIDS 483

any B can be written as the product of Ar with l(B) braids in [0,1], where
r = inf B. This factorisation, which can be chosen uniquely under a
further hypothesis, forms the basis of the algorithm for the word
problem, and is essentially that given by Garside.

The conjugacy problem was solved by Garside by noting that there are
only finitely many braids B' of the same weight wtfl' with A r « 5 ' , so
that there is a maximum value of infB' among braids B' which are
conjugate to a given braid B, called the 'summit power' of B. There are
then finitely many conjugates of B having this summit power, and these
constitute the 'summit set' of B. Since two elements are conjugate if and
only if they have the same summit sets, the conjugacy algorithm is
completed by an algorithm to construct the summit set. This is done by
showing that there is a chain of conjugates leading from B to any element
of its summit set in which the power never decreases along the chain, and
successive elements are conjugate by some element of the finite set of
braids [0,1].

We show that the same result applied to the 'super summit set' of a
braid B, which is the subset of the summit set consisting of braids B' of
minimal canonical length l(B'). The resulting algorithm, in constructing a
smaller, more constrained set, is then quicker and more practical.

2. Positive braids

We can study a braid B 3= Ar by studying the positive braid A~rB so this
section will concentrate on the set B* of positive braids. Garside works
initially with positive words regarded as elements of the semigroup
generated by au ..., an-u with the Artin relations. This imposes an
equivalence relation, which he denotes by ", on the set of positive words.
While equivalent words are equal in Bn it is conceivable that the converse
does not hold. Garside proves an embedding theorem, to show that
words which are equal in Bn are also equal in the semigroup.

We shall make use of a key lemma of Garside, which can be proved
readily for the semigroup, but relies on his embedding theorem for its
application to Bn.

NOTATION. Write

LEMMA 2.1 (Garside). Let P = cr^ = (TjP2 with />,, P2^e. Then P33= e,
where P-(a,*aj)P3.

We shall look at factorisations of positive braids into positive factors,

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

484 ELSAYED A. ELRIFAI AND H. R. MORTON

drawing on this lemma to guarantee the uniqueness of our factorisation
under suitable conditions.

DEFINITION. The starting set, S(P) <= {I,..., n - 1}, for a positive braid
P s* e, is the set

Similarly the finishing set of P is

Clearly F(/>) = S(revP).

DEFINITION. A positive factorisation P = AB with A,B 2= e is a left-
weighted factorisation if S(B)^F(A), and is right-weighted if S(B)=>
F(A).

We want to factorise a given positive braid successively by left-
weighted factorisations P=AlPi, P\ = A2P2,... where the left-hand
factor A, lies in [0,1] in each case. Such a factorisation is the heart of
Garside's solution to the word problem.

PROPOSITION 2.2 Every P^e has a unique left-weighted factorisation
P = AXPX with A\ e [0,1]. Every other positive factorisation P = AB, with
A e [0,1], satisfies A} = AQ for some Q^e.

Before giving the proof we discuss the braids in [0,1] from a more
geometric viewpoint, so that their properties may be more:. easily
recognised, and the braids handled more readily.

For a positive geometric braid we can count the number of crossings,
which will always be in the same sense, between any chosen pair of
strings. This number is not altered by isotopy of the braid, and will not
depend on which explicit positive braid word is used to represent the
braid.

DEFINITION. A braid A s= e is called a positive permutation braid if it
can be drawn as a geometric braid in which every pair of strings crosses at
most once.

NOTATION. Write S+ for the set of positive permutation braids.
We shall shortly show that 5^ consists exactly of the set [0,1]. First we

show how 5^ corresponds bijectively to the set Sn of permutations.

LEMMA 2.3. If the braids Au A2e S* induce the same permutations on

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

ALGORITHMS FOR POSITIVE BRAIDS 485

their strings then Ax = A2. For each n e Sn there is a braid Ax e S* which
induces that permutation.

Proof. Number the strings of each braid 1 , . . . ,n according to the top
point of each string. Then strings i and / have at most one crossing point,
where string j passes in front of string i if i <j. Each braid can then be
drawn in a box in which string 1 lies in a vertical plane at the furthest
back level, with the other strings in a succession of vertical planes lying
further forward. Because Ax and A2 induce the same permutation on
their strings the ith string in each braid runs to the same point at the
bottom of the braid, and one braid can be moved to the other by isotopy
keeping each string in its vertical plane.

To construct A x it is enough to find a geometric braid with permutation
it in which pairs of strings cross at most once. Arrange n points at the top
and bottom of a rectangle, and draw lines in the plane joining point / at
the top to point n{i) at the bottom, so that pairs of lines cross at most
once, and only two lines cross at any one point. This is a familiar
diagrammatic way of visualising the permutation n. Convert this into a
braid diagram by separating the lines at every crossing to make a positive
crossing. This requires that the line from / crosses under the line from / if
i <j.

Examples of two such braids, Px with permutation (143) and P2 with
permutation (14), are shown in Figure 2. They can be written as explicit
braid words in several ways, for example P^ = a1a2a3a1 and P2 =
(Ticr3a2(T3(Ti. The great benefit of this lemma is however that it is quite
unnecessary to remember these braids as braid words; the permutation is
quite enough, and makes for much greater ease in comparing such braids.

It can be seen from a diagram, for example, exactly what the starting
set of a braid in S^ must be.

Proposition 2.4. For Ax e S% the following are equivalent:
(1) i e s(Ax),
(2) strings i and i + 1 cross in Ax,
(3) ff(i + l)<*(i) .

Proof. Clearly (2) and (3) are equivalent since strings cross at most
once. If AK = CT/A' with A' 3= e then (2) follows, since the strings cross in
<r,. If (2) holds then a diagram of the permutation can be drawn in which

P l

FIG. 2.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

486 ELSAYED A. ELRIFAI AND H. R. MORTON

this crossing is the first to take place. Construction of AK as a braid from
this diagram gives a braid word starting with tr,.

We can then see immediately that the two braids Px and P2 in Figure 2
have S(P,) = {1,2}, F(P1) = {1,3}, S(P2) = F(P2) = {1, 3}, using Proposi-
tion 2.4 applied to each braid and its reverse.

PROPOSITION 2.5. Let A e S+. Then a,A e S* if and only if i £ S(A).

Proof. Strings i and / + 1 in a, A cross once if i £ S(a) and twice
otherwise, while all other pairs cross at most once.

Remark. An extension of this proof shows that if i, j <t S(A) then
o-, * GjA e 5^, while application of Proposition 2.5 to rev A shows that
similar results hold for the finishing set. Calculations of the starting sets
for Ax can be made very quickly using the factorial coordinates described
in [8] when listing the permutations n e Sn.

THEOREM 2.6. The subsets [0, 1] and S% of Bn are identical.

Proof. Clearly A e S* as every pair of strings crosses once. It is also
immediate that if P = AB e S+ with A, B>e then any pair of strings in A
can cross at most once, since they have at most one crossing in the whole
braid P. Thus A, and equally B will also lie in S%. Now any A e [0,1]
satisfies AB = A for some B 3= e, so A e S*.

Conversely, suppose that A = Ax E 5*. Let 8 e Sn be the permutation
of A, namely 8(i) = n - i. Let p be the permutation with np = 8. Then
^4^4P is a positive braid with permutation np = 8 so it is enough to show
that it lies in 5^ to deduce that AKAP = AS = A and hence that
Ax e [0,1]. Now any pair of strings in AXAP can cross at most twice.
Since the resulting permutation is S each pair of strings crosses an odd
number of times, and hence each pair crosses exactly once.

The braid A satisfies 5(A) = F(A) = {1,... ,n- 1}, since we have
shown in 1.1 that a^A for each /. The converse holds, as shown in the
next lemma.

LEMMA 2.7. Let A e 5^ satisfy S(A) = { 1 , . . . , n - 1}. Then A = A.

Proof. Let A have permutation n. Then n(i) > n(i + 1) for each i,
since / e S(a). Thus n(i) > n(j) for each / <j, so that strings /' and j cross
in A for each i, j . Then A is the positive permutation braid in which every
pair of strings crosses, so A = A.

The same result follows with F(A) in place of S(A), by applying
Lemma 2.7 to rev A.

We now return to the proof of Proposition 2.2, using the identification
of the sets [0,1] and 5^, and the properties of 5^ which we have just
established.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

ALGORITHMS FOR POSITIVE BRAIDS 487

Proof of Proposition 2.2. We start by showing the existence of a
left-weighted factorisation P = AXPX with Ax E5B

+.
Consider all positive factorisations P = AB with A e 5*, and select one

in which wtA is maximal. If S(B) <£ F(A) then we can find i e 5(fl) with
i $ F(A). By Proposition 2.5 we have A' = Aat e S* and B = a,B' with
B'^e giving another positive factorisation P = A'B' with A' e S^ and
wtA'>wtA, so the selected factorisation must be left-weighted. Write
this factorisation as P = A1Pi.

We now show that every other positive factorisation P = AB with
A e. S^ is a subfactorisation, in the sense that v4i = AQ for some Q ^«-
Otherwise there exist factorisations P = CcriB' with C<T, e 5^ such that
C e S* is a subfactor of Ax but Co-, is not. Choose such a factorisation
with largest possible wtC, and write AX = CQ. Now wt/^! s= wt^cr, >
wt/1, by the maximality of wt/lj, so Q ^ e . We may then choose
; e S{Q). Then C(Tj^Ax and so C<7, e 5^. Write the resulting factorisa-
tion as P = Co-jB". Apply Garside's lemma to B = a,B' = crjB" to see that
P = C(at * (Tj)Bm for some Bm 3= e.

Now C(a, * o-j) e S^, by the remark following Proposition 2.5. This
yields a factorisation of P with a larger subfactor (at least containing Co-j)
in common with Ax while C(ai*<Tj) is not itself a subfactor of Ax.

If follows immediately that the left-weighted factorisation P = AXPX is
unique, for if P = AB is another such, then we can write Ax = AQ with
Q^e. Either Q = e and y4 = v4, as claimed, or we can find i e S(Q). Then
i $ F(A), since / lo - ,^^ , e S^. However £ = QPU so / e S(/>) and the
factorisation P = AB is not left-weighted.

COROLLARY 2.8. Let P=*e have left-weighted factorisation P = AXPX,
with Ax eS*. Then S(AX) = S(P).

Proof. Clearly 5 (^0 <=S(P).
Let / s 5(/3). Then P = o;B with fl 3= e, so by proposition 2.2 we have

A\ = o-,Q for Q^e, and hence i e S(y4j).
As a result we have the left-canonical form for positive braids as

follows:

THEOREM 2.9. 77zere is a unique expression for P 3= e as P =
AXA2- • • Ak with A, e [0,1], Ak # e and S(Ai+x) <= F(A,) for each i.

Proof. Take Ps = Ai+X • • • Ak, and Po = P. Then AtPi is the unique
left-weighted factorisation of Pt-X. This follows by downward induction
on i since then S(P,) = S(A,+X) from Corollary 2.8.

Remark. We can find inf P immediately from this expression for P, by
observing that P s= A if and only if Ax = A. For if P 3= A then /» = LQ for
C 3=e. Then S(P) = { 1 , . . . , n - 1} and so, by Corollary 2.8, 5(^4,) =
{ 1 , . . . , n - 1}. Then Lemma 2.7 ensures that Ax = A. Using Lemma 2.7

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

488 ELSAYED A. ELRIFAI AND H. R. MORTON

again we can see that if A, = A in the left-canonical form, then At = A for
all / < /, so that

inf P = max {/: At = A}.

An extension of this result will be used in identifying sup P.

PROPOSITION 2.10. Let P^e have left-weighted factorisation P - AXPX,
with Ai e [0,1]. IfB^e and BP^A then BA^A.

Proof. By induction on wt B. The result holds for B = e. Otherwise we
can write B = B'a, and P' = <r,P to get B'A[3= A, where A[e [0,1] is the
initial left-weighted factor of P' =A[P[. Now i e S(P') so i e S(A\), by
Corollary 2.8. Write A[= a;A\. Then A" e [0, 1], and P' = A"XPX. From
Proposition 2.2 we have Ax = A\Q for some Q s= e. Now £>i* = fl'/i; 3= A,
and hence B/lj = BA\Q > A.

THEOREM 2.11. Let Ps=e have left-canonical form P = A1A2- • • Ak.
Then sup P = k.

Proof. By induction on k.
Write s = sup P. Then s ^k, since P e [0, k] by Proposition 1.4. Now

s^l, unless P = e when there is nothing to prove. We can then find
B ? e with BP = A'. NowBA^ 3= A by Proposition 2.10, so that BA1 = AB1

with B^e. Then A J=BP = A51P1, where Pl=A2-Ak, so 5 ,^ ! =
A5"1, and Pl =e A*~\ By induction, sup P, = A: - 1, giving A: - 1 =Ss - 1 and
thus s = k.

For a general braid Ps=Ar we may write P ' = A~ rP^e and then
sup P = r + sup P' which can be calculated from the canonical form of the
positive braid P', as can inf P = r + inf P'.

Having identified inf P and sup P in terms of the left-canonical form of
a suitable positive braid we now give an explicit algorithm, based on the
factorisation criterion in Theorem 2.9, which will put a positive braid in
left-canonical form, and so implement Garside's solution of the word
problem.

Remark. We can also define the right-canonical form for a positive P,
by writing P = Al--Ak, with At e [0,1], Ax * e and S(Al+1) => F(A) for
each i, based on successive right-weighted factorisations of P. The
right-canonical factorisation is exactly the reverse (all factors and their
order reversed) of the left-canonical factorisation of rev P. It follows
immediately that inf P and sup P can be calculated in a similar way from
the right-canonical form, and in particular, the number of factors will be
the same in each case.

A similar analysis can be based on 5^ = [—1,0], the set of negative
permutation braids, to give negative canonical forms. The left-canonical

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

ALGORITHMS FOR POSITIVE BRAIDS 489

form of a positive braid P based on S* yields the right-canonical form of
P""1 based on S~.

3. The word algorithm

The aim is to start from a word P and write P = ArP' where P"5*e but
P' ^ A and give the left-canonical form of P' as a sequence of
permutations. Any other word Q = P will give the same r and sequences
of permutations, by the uniqueness in Theorem 2.9.

ALGORITHM. Suppose then that we have written P in some way as AT',
and P' is the product B1B2 • • • Bk of positive permutation braids. Find
the sets F(B,) and S(fl,). If S(Bl+1)<=F(Bi) for each i then, by Theorem
2.9, we have reached the left-canonical form for P', except possibly for
some final factors of e. Incorporate any initial factors of A in the initial
power of A; the remaining terms give the left-canonical form for P. The
output of the algorithm is the power of A and the sequence of
permutations defining the permutation braids.

Otherwise find the first i for which S(Bl+i)<^F(Bi) and select
j e S(BI+1) with j $ F(B,). Then C, = B,a-j and C,+1 = <rJxBl+l both lie in
S%. Use them to replace Bh Bl+l in the factorisation, and continue as
before. This completes the algorithm.

Proof. The replacement gives a higher weighted sequence, in diction-
ary order of weights, and there are a finite number of sequences of a fixed
total weight, so the process terminates.

To start the algorithm we must write the braid as the product of a
power of A, to take account of negative letters in the given braid word,
and a positive braid word. This can certainly be done by rewriting each
<jjx as A~'of with of E [0,1] and then collecting all the powers of A to
the left, although it is generally possible to handle consecutive negative
letters more efficiently. It remains to express the positive braid word as a
product of positive permutation braids. There is nothing to do, other than
to observe that each a-, lies in [0,1], but a more efficient start can be
made by reading the braid word from the left, and taking the longest
initial subword that lies in [0,1] as the first permutation braid, before
continuing.

Implementation. For an algebraic implementation the most useful
technique is to have a list of the elements of Sn with a table of products of
each n e Sn with the elementary transpositions T, = (/ i + 1), on the left
and on the right, and a means of checking whether n(J) > n(i + 1). Given
also the reverse map rev: Sn—*Sn for our listing we can then find
immediately the sets S(AX) and F(AX) for each positive permutation
braid. The test for the starting and finishing sets on adjacent

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

490 ELSAYED A. ELRIFAI AND H. R. MORTON

permutations in the sequence can then be carried out quickly. If the two
permutation braids have to be adjusted by moving a) from the right to
the left then the new permutations can be found readily from the left and
right multiplication information in Sn.

Practical storage of the information can be arranged by following the
'factorial coordinate' method, [8], for listing permutations g = 1,... ,n\
in terms of an expression g = l+gill+g22\ +• • •+gn-i(n-l)\ with
0 ^ gt *= '• The factorial coordinates g, count the number of crossings of
string / + 1 with lower numbered strings in the permutation g. When this
ordering for the permutations is used, a table for left multiplication of the
permutation g by t) can be readily constructed, and the product
permutation is greater than g if and only if the braid asAs is again a
positive permutation braid. This provides a ready check on the set S(Ag).'

The storage that is needed can then be limited to the left multiplication
table, an array of n\ X (n — 1) integers, and the reverse map, listing the
permutations revg for each g as a further array of n\ integers. These
allow for right multiplication and checking of F(Ag) by using left
multiplication on the reverse braids.

A geometric example. Where a positive braid is given geometrically, it
can be surprisingly easy to use the visual approach suggested by
Proposition 2.4 to arrive at its left-canonical form.

Let P = (Ti(T3a\cr3(T\(T3(T2(T2(T2- Working down this braid as in Figure 3
we can partition it into permutation braids by continuing until a pair of
strings are about to cross for the second time, and then starting a new
permutation braid. Then look at adjacent pairs of permutation braids,
and see if any adjacent pair of strings crosses in the lower but not the
upper braid. If so, move the crossing up and continue, otherwise stop.

The result in our example is a sequence of moves finishing with

P = (o-, aia2(Ti){a2(Tl cr3a2)(a2)(a2)

FIG. 3.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

ALGORITHMS FOR POSITIVE BRAIDS 491

from which we have inf P = 0 and sup P = 4 together with a description of
the left-canonical form by a sequence of four permutations.

4. The conjugacy algorithm

As outlined in Section 2, this depends on listing all the conjugates of
the given P in the interval [r, s] where r is as large as possible, and s is as
small as possible, given r. We have to show that a finite process of
conjugating with braids in [0,1] will yield the complete list. The following
'convexity theorem' provides the backing for the algorithm, and is an
adaptation of a result of Garside.

THEOREM 4.1. Let P, Q^Ar be conjugate. We may suppose that
A'1 PA = Q for some A^e. Then A\~xPAx^Lr where Ax e [0,1] is the
first factor in the left-canonical form of A.

Proof. The requirement that A > e can be made without loss of
generality, for if PB = BQ we can write B = A21A with A s* e and then
PA = AQ also.

It is enough to prove the theorem in the cases r = 0 and r = 1, for we
may consider P' = A"2;P and Q' = A~VQ, when A~XP'A = Q'.
Case 1. Given that AXPA = Q and P,Q^e we must show that
Pi=ATlPAi^e. Now &A;1 = Af e S+, so

A*XPA =A\AQ =A\AXAQ = AA'Q,

where A = AXA'. Then A*PA^A, and we can apply Proposition 2.10
with A*P in the role of B and A in the role of P to get A*PAX 5* A, and
hence />, = A"'y4fPAX 3= e.
Case 2. Now suppose that A~>PA = Q with P, (?3=A. Write P = /"A,
<2 = 6'A, and factorise A = AXA' as before. Then T(>4) = A " M A =
T(/4I)T(/4'), giving a left-weigh ted factorisation of r(A).

As above, A*PA= AfAA'Q so

and thus A*P'r(A) s* A. Apply 2.10 again to get A*P'x(Ax) s* A. Now

Hence P, 5* A also.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

492 ELSAYED A. ELR1FA1 AND H. R. MORTON

COROLLARY 4.2. Let P, Q e [r, s] be conjugate. Then there is a sequence
P = Po, Pu ..., Pk — Q of braids, all in [r, s], such that each element is
conjugate to the next by an element of [0,1].

Proof. Take A with A'1 PA = Q and write A in left-canonical form as
A = Ax- • • Ak. Set P, = A]~1Pi-iA,. The result follows by induction on k
once we show that Px e [r, s]. Now P, s» Ar by 4.1, so it remains to show

Now P'\ Q~l^A~' and A~lP'lA = Q'x so by 4.1 again we have
Pi1 = Ax

lP~rAx s* A~* and thus Px« A3.
The general algorithm then is a procedure to construct the super

summit set of the given braid P.

DEFINITION. The super summit set of a braid P is the set of conjugates'
P' of P with inf P' maximal, and sup P' minimal within these.

Although it is conceivable that no conjugate simultaneously achieves a
minimum for sup and a maximum for inf, we shall see from a subsidiary
algorithm that sup P' is in fact an overall minimum on the super summit
set, so that it could equally be defined as the set of conjugates of P which
have minimal canonical length.

ALGORITHM. The conjugacy problem can now be solved for P and Q by
determining the super summit set for P, finding one element of the super
summit set for Q and comparing them. All elements of the super summit
set of P can be found by conjugating repeatedly with elements of [0,1],
while discarding any elements for which inf decreases or sup increases.
Where P e [r, s] there are only finitely many conjugates of P within the
interval, and these will all be found by the algorithm, by Corollary 4.2. In
fact the required interval may well be contained strictly in [r, s]\ if one
conjugate in a subinterval is found, then all previous conjugates with
wider bounds may be discarded in the search, which stops when no
conjugates of elements on the list by elements of [0,1] produce any new
elements in the interval.

The next lemma allows us to give a quick algorithm to find the 'summit
power' of P, i.e. the maximum value of inf on its conjugacy class. It relies
on 'cycling' the left-canonical form of P to give a conjugate, as defined
below. If any conjugate of P has a higher power then one such will be
found by repeatedly cycling P, as shown in the next lemma.

DEFINITION. Let P = ArP,P2 • • • Pk where r = inf P and Px • • • Pk is the
left-canonical form of the positive braid A~rP. Then P, ¥^ A and we can
form the conjugate c(P) = ArP2 • • " Pkf(P\) which we say is given by
cycling P.

Notice that c(P) may not be given in left-canonical form directly, but

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

ALGORITHMS FOR POSITIVE BRAIDS 493

application of the word algorithm shows that inf c(P) 3= r = inf P and
sup c(P) =£ k + r = sup P.

In fact inf c(P)=s inf P + l and sup c(P) s* sup P - 1 since if P =
A ~ X Q A O T A Q A ' 1 w i t h A e [0 , 1] a n d Q e [r', s'] t h e n P e [r ' - 1, s ' + 1]
by Proposition 1.4.

LEMMA 4.3. Suppose that P is conjugate to Q with inf Q > inf P. Then
repeated cycling will produce c*(P) with inf c*(P) > inf P, for some j .

Proof. Let Q = APA~l with A > e, and let inf Q > r = inf P. The proof
is by induction on wt A.

We have AArP' = QA, where P = ArP' and Q = ArQ' with Q'^A.
Then T%4)P ' = Q'A > A, so by 2.10 T ^ P , > A, where ^ ^ A is the first
term in the left-canonical form of P'. Now Af(Px) 5* A, and we can write
Air(Pl) = A'A where A'^e. Since ^(PO^A we can write A = A"xr(Pl)
with >4"3=e. Then A=A'A" with wt.4' = vnA - w t /T< wtA by the
assumption that P^A. Now T^(PI)C(P) = Prr(/J

1) by definition of c(P),
and so

Since ^^(P,) = >1'A this gives QA'A = A'Ac(P). On extracting the factor
of A we get T{Q)T(A') = r(A')c(P) so that c(P) is conjugate to r(Q) by
the positive braid x{A') with smaller weight than A. Now infr((2) =
inf£>, so either inf c(P)> inf P or, by induction on the weight, some
further cycling of c(P) will lead to an increased value of inf.

COROLLARY 4.4. In every conjugacy class the maximum value of inf and
the minimum value of sup can be achieved simultaneously. Thus the super
summit set for a braid is the subset of its conjugacy class on which the
canonical length I is minimum.

Proof. Let P achieve the minimum value of sup and let Q be a
conjugate with the maximum value of inf. If inf P<inf Q then repeated
cycling of P will increase inf without increasing sup until both extreme
values are achieved.

Thus the process of repeated cycling of P will lead to the maximum
value of inf, recognised when cycling starts to repeat conjugates already
found. Notice that cycling a second time requires explicit calculation of
the canonical form for c(P) and cannot be done immediately from the
form for P. Thurston [10] claims that if inf P is not the maximum value,
then inf increases immediately, at the first cycling, c(P). This would give a
very quick test indeed to find the summit power, but unfortunately it is
not true, as the following example, due to Birman, shows.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

494 ELSAYED A. ELRIFAI AND H. R. MORTON

Example. Let P = at(rla3(Tial. Then the left canonical form can be
readily found from the word algorithm to be P = {o-xa2){cr2a3aia2){a2),
giving inf P = 0 and sup P = 3. We have

c(P) =

This is now in canonical form, and still inf c(P) = 0, although sup c(P) =
2. However one further cycling gives c2(P) = (a-2cr1)(cr2c7-3criO'2O'i) = A<r2,
so that inf c2(P) = 1 and sup c2(P) = 2. Thus the change in value of inf is
not realised after the first cycling.

The value of inf will not be altered by further cycling, which will
continue to give Acr2.

In general, the extreme values for inf and sup on the conjugacy class of
P can be found by cycling both P and P~x until no new conjugates arise,
recalling that sup P = -inf P~l.

It is helpful to note that cycling P"1 for this purpose can be replaced by
'reverse cycling' P, where the last factor in the left-canonical form is
moved to the beginning. Explicitly, let P = ArPiP2 • • • P* where r = inf P
and Pi • • • Pk is the left-canonical form of the positive braid A~rP, as
above, and define r(P) = AV(PA)P] • • • P t_ t .

PROPOSITION 4.5. We have (r(P))-1 = r(c(p-')).

Proof. We can write

where

This is actually the left canonical form for P"1. It is enough to check that
S(P/')<=F(P,+i) for each i. Now if AB = A with A,B^e we have
F(A) U S(B) = { 1 , . . . , n - 1} and F(A) D S(B) = <f>, since every pair of
strings in A crosses once and once only. Then

F(Pl)US(Tr+l(P'l)) = {l,...,n-l}

(P ; + 1)) U S(Pl+l) = { 1 , . . . , « - 1}

while F(P,) n 5(^+ '(p;)) = 4> = F(f+I(p\+X)) n s(pl+l).
Given that P is in left canonical form, we have S(P/+1)<=F(P,). It

foUows that 5(T r+ '(P;))cp(T '+ '(p;+1)), and so S(P',)<=F(P;+l).

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

ALGORITHMS FOR POSITIVE BRAIDS 495

Now we have c(P~1) = A"r"*P;_! • • • />;f+*(P*X and we can then
confirm, by multiplication, that r(P)z(c(P~1)) = e.

Then supr(f) = -inf T(C(P~1)) = -infc(P~l), and so sup rl{P) =
—inf c!(P~l). Since we can find the largest value of inf on conjugates of
P~l by considering only d{P~l) we will thus find the smallest value of sup
on all conjugates of P by considering only the successive reverse cycles
r'(P). We can thus identify at least one element of the super summit set
of P by cycling and reverse cycling, until repetition occurs, without
calculating the whole super summit set.

In applying the algorithm to compare two elements P and Q we need
only use cycling and reverse cycling on Q, having found the whole super
summit set for P. Unfortunately, cycling is not enough in general to
generate the whole super summit set, for example when P = ax the other
conjugates a, in the super summit set will not appear by cycling.
Restriction to consideration only of the super summit set, coupled with
the listing of elements by means of permutations does, however, give a
much more effective algorithm than Garside's original. It should be
practical to handle braids up to 6 strings at least by this method, and we
hope to make a computer implementation shortly.

5. Concluding remarks

We have shown in Proposition 1.4 that [ru Si][r2, s2] <= [^ + r2, st + s2].

PROPOSITION 5.1. We have [ru Si][r2, s2] = [n + r2, st + s2].

Proof. It is enough to prove when rx = r2 = 0. Let P E [0, S\ + s2] and
let P have left canonical form P = AtA2 • • • Ak. By Theorem 2.11
k = sup P =£ J, + s2, so we can factorise P = P'P" with P' = Ax • • • A,t e
[0,5,] and P" e [0, s2).

A special example of this occurs where P is a general braid, neither
positive or negative. Then P e [r, s] with r a 0, s ^ 0 and can be written
as a product P = P'P" of a negative and a positive braid, with P' E [r, 0]
and P" E [0, s]. Set k = s - r> —r>0, and suppose that r = inf P, s =
sup P. Then P = ArP}P2 • • • Pk, using the left-canonical form, and P' =
A 7 > , • •• P _ r *£ e w h i l e P " = P l _ r - - - P k . N o w P ' = Q X Q 2 - - Q - r w h e r e
Qi = Ti~r(A~iPl) and Qt e [-1,0] is a negative permutation braid. The
left-weighting condition for the original decomposition of P ensures that
the representation of P' is the right-canonical form based on negative
permutation braids, and also at the interface between P' and P" we have

Thurston notes this decomposition as a unique factorisation of P into a
product of a negative and a positive braid, in which no cancellation into

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

496 ELSAYED A. ELRIFAI AND H. R. MORTON

shorter braids can take place, for conversely any such factorisation, when
written in terms of the canonical forms for the two halves, can then
reproduce directly the left-canonical form for P. Similarly a unique
factorisation as a positive times a negative braid arises from the
right-canonical form of P.

We noted in Theorem 2.6 that braids in [0,1] had a nice geometric
characterisation in terms of string crossings. There is no corresponding
generalisation of this to [0, s\. Any P E [0, s] is a factor of A' in the sense
that PQ = A* for some Q 3= e. It follows that each pair of strings in P cross
at most s times. This is not, however, a sufficient condition for P to lie in
[0, s], when s > 1.

For example, neither a\a\ or <J\<JX(JI<J\ lies in [0,2] although each pair
of strings crosses no more than twice. A different combinatorial approach
by Casson shows however that if P 5= e and every pair of strings crosses
exactly twice then P = A2; this is the upper limit, as there are positive
braids other than A3 with exactly three crossings per pair of strings.

It was the attempt to explore the nature of the factors of AJ, in other
words the sets [0, s], from this geometric point of view of string crossings
which led us to the formulation based on positive permutation braids, and
eventually, through studying the details of Garside's thesis, to the
algorithms presented here. By repeated applications of Proposition 5.1
we can see that the positive factors of A5 are exactly the products of s
positive permutation braids.

Acknowledgment.

The first author was supported during this work by a scholarship from
the Egyptian Ministry of Education.

REFERENCES

1. E. Artin, 'Theory of braids'. Ann. Math. 48 (1947), 101-126.
2. J. S. Birman, Braids, links and mapping-class groups. Annals of Maths. Studies 82

(1974), Princeton University Press.
3. J. S. Birman, and R. F. Williams, 'Knotted periodic orbits in dynamical systems I:

Lorenz equations.' Topology 22 (1983), 47-82.
4. J. S. Birman, and R. F. Williams, 'Knotted periodic orbits in dynamical systems IT

Contemporary Mathematics 20 (1983), 1-60.
5. E. A. Elrifai, Positive braids and Lorenz links. PhD Thesis, Liverpool University, 1988.
6. F. A. Garside, 'The braid group and other groups,' Quart. J. Math. Oxford (2) 78

(1969), 235-254.
7. F. A. Garside, The theory of knots and associated problems. D. Phil. Thesis, Oxford

University, 1965.
8. H. R. Morton, and H. B. Short, 'Calculating the 2-variable polynomials of knots.'

Journal of Algorithms 11 (1990), 117-131.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

ALGORITHMS FOR POSITIVE BRAIDS 497

9. J. Stallings, 'Constructions of fibred knots and links'. Proc. Sympos. Pure Math. 32 part
2 (1978), 55-59.

10. W. Thurston, 'Finite state algorithms for the braid group,' Chapter 9 of 'Word
processing in groups,' D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S.
Patterson and W. P. Thurston. Jones and Bartlett, Boston and London 1992.

Dept. of Mathematics
Faculty of Education
King Saud University
Abha branch
ABHA, PO Box 157
SAUDI ARABIA

Dept. of Pure Mathematics
The University of Liverpool
Liverpool
L69 3BX
England

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/45/4/479/1535437 by Kresge Law
 Library user on 08 January 2024

