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THE braid group Bn+1 was first defined by Artin in a paper published
in 1926 (1). The word problem for the group was solved by Artin (1,2),
and the centre was given by Chow (3). The present paper incorporates
the results of my D.Phil. Thesis (Oxford, November 1965), under the
supervision of Professor G. Higman, whose help and advice I acknow-
ledge with gratitude. The primary concern will be to give the solution
of the conjugacy problem in Bn+1. A new solution of the word problem
is also given, and a new method of finding the centre. In the last section
a connection is traced between the braid groups and the truncated
octahedron and higher dimensional polytopes. Examples are given of
further groups connected with other even-faced Archimedean solids and
polytopes, which can be dealt with in the same manner as that developed
for the braid groups.

1. Positive words

1.1. Definitions and notation

The Braid Group Bn+1. We define Bn+1 as the group generated by
04, a?,..., an subjeot to the relations

°ia<+i°< = °<+iaiat+i (1 < i < n—l)\
(|t-fc| > 2) '"

Words. If A, B are words in the generators and their inverses, then
A = B will mean that A can be transformed into B by the use of the
defining relations, A = B will mean the two words are identical letter
by letter, A ~ B will mean A is conjugate to B. A word consisting of
an ordered sequence of the generators only, in which no inverse of any
generator occurs will be called a positive word. We shall denote by L{ W)
the word-length of a word W.

Positively equal. Two positive words A, B will be said to be positively
equal, if (a) they are identically equal, or (b) they are transformable into
each other through a sequence of positive words, such that each word
of the sequence is obtained from the preceding one by a single direct
application of the refining relations (1.1), so that at no stage of the
transformation does the inverse of any one of the generators occur.
Quart. J. Math. Oxford (2), 30 (1969), 235-54.
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236 F. A. GARSIDE

If A is positively equal to B we shall write
A = B,

and such a statement will imply that A and B are both positive.
ISA = B, then L(A) = L(B).
If A is transformed positively into B by a sequence of t single applica-

tions of the defining relations (1.1), then the whole transformation will
be said to be of chain-length t.

Reverse. If P = x1zs...xt be any word, where each xi is a generator
or its inverse, the xt being not necessarily distinct, then by the reverse
of P we shall mean the word xt...xix1. We shall write the reverse of P
as rev P, and note that rev PQ = rev Q rev P. It is easily seen that if
P = Q, then rev P = rev Q.

1.2. THEOREM H. In Bn+1, for i, k = 1, 2,..., n, given atX — akY, it
follows that

(i) ifk = i, then X = 7,
(ii) t/ |A—i\ > 2, <Aen X = akZ, Y = a^^or some Z,

(iii) t/ |i—1| = 1, then X = a^^Z, Y == aiakZ,for some Z.
The theorem for words X, Y of word-length s will be referred to as Ha.

For s = 0, 1 the theorem takes the simpler forms which follow trivially
from (1.1):

Ho. When X, Y are the empty word
(i) if atX = a,7, then X == 7 (i = 1, 2,..., n),

(ii) if t ^ i, then at X cannot be positively equal to ak 7.
Hj. When X, 7 are of word-length 1, for t = 1, 2,..., n,

(i) if atX = £1,7, then X = 7,
(ii) if o ^ = a t 7 (|fc—i| > 2), then X = ak, 7 == «<,

(iii) if \k—1| = 1, then atX cannot be positively equal to akY.
The proof of the general theorem now follows by induction. For our

induction hypothesis we assume
(a) Hs is true for 0 <C s < r for transformations of all chain-lengths,

and
(/}) H,.+1 is true for all chain-lengths ^ t.
Let X, 7 be of word-length r+1 , and let atX = akY through a

transformation of chain-length f+1. Let the successive words of the
transformation be

W1 = aiX, W2 = ..., Wt+t=akY.
Choose arbitrarily any intermediate word Wg = am W, say, from the
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ON THE BRAID GROUP AND OTHER GROUPS 237

middle of the chain somewhere. The transformations atX -> amW,
am W -*• ak Y are each of chain-length ^ t, and we can therefore apply
(P) to them. We have then

aiX = amW = akY. (1.2)

For the complete proof (8) we have to consider all possible variations
in the values of i, m, k. The general pattern of the proof is, however,
exactly the same for each variation, and it will be sufficient here to deal
with two cases only, as typical examples of the common method of proof.

(1) k = i, \m—i\ > 2. From (1.2) we have

aiX = amW; amW = aiT (\m-i\ ^ 2).
By (j3) X = amP, W = ^P for some P ;

and W — atQ, Y = amQ for some Q.

The two expressions for W give atP = O4 Q, and hence by (a), P = Q.
Hence X = = a m P = amQ = F a s required.

(2) \k—1| ^ 2, \m—i\ ^ 2, \k—m\ = 1. From (1.2) we have

By (j3) X = amP, W = atP for some P;

and W =p akamQ, Y = amakQ for some Q.

By (a) the two expressions for W give

P = akR, am Q = at iJ for some i2.

The last equation now gives

Q = at *S, iJ =F am <S for some *S.

Therefore I==a m a f c o m S, 7 — amakaiS.
Henoe, using the defining relations, we have

x =F afcomai<S, 7 = oma<afc5 =F aiamakS,
i.e. X == afcZ, F == a^Z as required, where Z = amakS.
The proofs for other variations in the values of i, m, k are similar.

Since H,..^ is true for chain length 1, an induction proves it for all
chain lengths, and a further induction (on r) completes the proof of
the theorem.

THEOBEM K. In Bn+1,for i,k = 1, 2,..., n, given l a ( = Yak, it follows
that

(i) ifk = i, then X = Y,
(ii) if \k—i\ > 2, then X = Zak, Y = Zat, for some Z,
(iii) if \k—i\ = 1, then X = Zatak, Y = Zakait for some Z.
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238 F. A. GARSIDE

The theorem follows from Theorem H and the fact that I = T
implies revX = revY.

As an immediate consequence of Theorems H (i), K (i) follows

THEOREM 1. In Bn+1, if A = P, B = Q, AXB = PTQ {L{A) ^ 0,
L(B) 5s 0), then X - 7.

2. The fundamental word A

2.1. Definitions and notation
The word arar+1...aa (aTaT_1...as), where all the generators from ar to

a, inclusive occur in ascending (descending) sequence will be denoted by
the abbreviation (ar...aa). By the notation II, we shall mean the word
(«! . . . Os).

In Bn+1, if 91 is the mapping of (a1)o2,...,an) onto itself given by
9tot = on+1_(, then by inspection of the relations 5R extends to an
automorphism of Bn+l. This automorphism we continue to denote by
5R, and call it reflection in Bn+1. We note that if P — Q, then "SIP = 5RQ.

Associated with the ordered sequence of generators %, Og,..., o, is the
word A TT TT TT

which is of fundamental importance in what follows. We shall refer to
A, as the fundamental word of order r+1 . When we are considering Bn+1

we shall normally abbreviate An to the simpler form A.

LEMMA 1. In Bn+1,for 1 < s < t < n, a,II, = I^a,,^.
For by use of the defining relations

a, n, s a^... a,_,)of_! a,(as+1... a,)

== (a1...a,_i)at_1al(as+1...at)aa_1

== n^a,,.! as required.

LEMMA 2. In Bn+1 (i) e^A, == A^o, (f = 1, 2,..., n ) ; (ii) a, A = A5Ra,,
(iii) a , - ^ = A(5Ra#)-

1, (iv) a^A"1 = A " 1 ^ , , (v) o , " ^ - 1 = A
(s= l , 2 , . . . , n ) .

(i) For < = 1,
Oj Ax = Oj Oj =F Ax Oj as required.
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ON THE BRAID GROUP AND OTHER GROUPS 239

For t = 2, 3,..., n,

... a,){II JA,_2. b y Lemma 1,

= A, a, as required,

(ii) For a = 1, by (i) above,

% A = AaB = AStoj as required.

For s = 2, 3,..., n,

aaA = o,nnnB_1...nn_,+aAn_ t+1

= nnnn_1...nn_,+,a1An_s+1) by Lemma 1,

=? n n nn_!... nn_,+2 AB_s+1on^,+1) by (i),

i.e. aaA == A9to4 as required,

(iii), (iv), and (v) follow easily from (ii).

THEOREM 2. In Bn+1,

(i) PA6" = A ^ P , PA2m+1 = A^+iJLP/or all positive words P (m ^ 0),
(ii) QA2*1 = A2"1©, eA21"*1 = A ^ + ^ Q /or afl umfs Q, m positive or

negative.

This follows immediately from repeated applications of Lemma 2,
remembering that 5R*P = P , 5R2C = Q.

2.2. LBMMA 3. In Bn+1, (i) 5RA = A, (ii) rev A == A.

(i) By Theorem 2,

(5RA)A = A9l(5RA) = AA.

Hence, by Theorem 1,

5RA — A as required.
(ii) The proof is by induotion. Assume that for" any particular

r that revA, = Ar. Then

r e v A ^ = rev{(o1...or+1)Ar}

= revArrev(o1...ar+1)

— Ar(ar+1... Oj), using the induotion hypothesis,

i.e. rev A,+1 = n r n r _ j . . . ni(ak.+1... Oj).
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240 F. A. GARSIDE

Now ay+1 commutes with II1( Il2>..., IL^ ; °Y commutes with n l f IT2,...,
IL._2; ...,eto. Hence

The induction is now established, since the hypothesis is clearly true for
r = 1, and the result follows.

LEMMA 4. In Bn+1 there exist positive words Xr, YT such that

aTXr^A = YTOT (f = 1, 2,..., »).

By definition A = IIn nn_x... IIB11^

i.e. A = Y1ax, where 7X = I ^ I I , ^ . . . II,. (2.1)

We now observe that if /(a2, Og,..., a,) is any positive word involving the
generators a2, a3,..., a, only, then by Lemma 1

n j /K.°2»- , aj-i) =f(ai,a3,...,at)Tlt.

Let a, be any particular one of the generators ai, 03,..., on. Then, denoting
Oj,. . . ,^), we have

= nn n ^ . . . n^i/cas., 03,..
= Yta,, say. (2.2)

(2.1) and (2.2) show that words YT exist for r = 1,..., n. Now putting
X r = rev Yr, we have, for r = 1, 2,..., n,

a,.Xr = a,.TGvYT = rev^ay.) = revA = A, by Lemma 3.

Hence words Xr also exist, and the proof is oomplete.

COBOLLABY. In Bn+1, if A is any positive word, then for r = 1, 2,..., n,
there exist words AT such thai AA == AT a,..

For AA - (914)A = (RA)Yrar = ATar, say.

LEMMA 5. Let ot be any one of the n generators in Bn+1, and let xx, x2,..., xt

be generators, not necessarily distinct, such that each xT permutes with a<.
Then, if atP == x1x2...xtQ, there exists some R such that Q = atR.

We have atP = a^Xj.-.XjQ. Hence, by making successive applica-
tions of Theorem H (ii), we have x2x3...x,Q = atRt for some R2\
xszi ...xtQ = a{R3foT some -Ks; ...; xt Q == OjiJ^for some i^; and finally
Q == atR for some R, as required.

LEMMA 6. In Bn+1, if ai+1 P = Il1 Q, then Q == ai+1 at R, for some R

(»= l ,2 , . . . ,n - l ) .
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ON THE BRAID GROUP AND OTHER GROUPS 241
By hypothesis ai+1 P = 0^01...a{Q and hence, by Lemma 5,

for some T. Hence, by Theorem H (iii), it follows that Q = ai+1at B for
some B, as required.

THBOBBM 3. If W is any positive word in Bn+1 such that either

(i) W = a1X1 = OjZ, = ... == anXn,

or (ii) W = Yiai == Tsa2 = ... = Ynan,

then W = LZ for some Z.

(i) The proof is by induction. Let r be any natural number ^ n—1.
Then as our induction hypothesis we assume that, in Bn+1, if

then W =p A, PT for some Pr. Now suppose that

W = a1X1 = aiXi - ... - OrX, = a,+1Xr+1. (2.3)

Then from (2.3) and the induction hypothesis it follows that

Hence, by Lemma 6,

A,.! Pr = oy+1 a, Qr for some Qr,

so that W = (a1...aT)ar+1aTQr,

or, putting T = aTQT (2.4)

W = (a1...aT+1)T=nr+1T. (2.5)

From (2.3) and (2.5) we now have, for * = 1, 2,..., r—1,
ai+ixi+i =F ((h.-ai)(ai+i-ar+i)T,

so that, by Lemma 6,

(ai+1... ar+1)T = ai+1 a<8it for some 8^

Therefore, by Theorem 1,

(ai+i...ar+1)T = UfSi.

Applying Lemma 5 it follows that for some Qt

T = a<Q{ ( i = 1, 2 , . . . , r - l ) . (2.6)

From (2.4), (2.6), and the induotion hypothesis, it now follows that

= ^Prnt for some Pr+1,
and hence, by (2.5)

w = nr+1A,pr+1 = A,+1pr+1.
8*85.2^0 E
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242 F. A. GARSIDE

Remarking that the induction hypothesis is clearly true for r = 1, the
induction is now established, and the result follows,

(ii) Now suppose

1 1

Then

rev W = c^revFi == ̂ revr , , = ... == anre\Yn = AP, by (i).

Henoe TF = rev P rev A = (rev P) A, by Lemma 3,

== A<R(rev P), by Theorem 2,
and the result follows.

2.3. LEMMA 7. / / X, Y are any two positive words in Bn+1, then there
exist words U, V such that TJX == VY.

For let X = rxri...rt, Y = 81s2...smhe any two positive words, where
the r< and st are genera&rs, not necessarily distinct. Then, by repeated
application of the Corollary to Lemma 4,

The result follows on putting U = Am, F = Am.

THEOEBM 4. In Bn+1 if two positive words are equal they are positively
equal.

Let S be the semi-group generated by a^, at,..., an subject to the
relations

F ai+iOiOt+i (1 < i < n—

By Theorem 1 and Lemma 7, 5 is oanoellative and right-reversible,
and hence, by Ore's Theorem (4, 5), can be embedded in a group, On+1,
say. Let (?n+1 be the subgroup of On+1 generated by a^, Oj,..., an. Then
(?n+1 embeds S, and in virtue of (2.7) its relations include

|t—Jt| ^ 2) ')•

which are precisely the relations of Bn+1.
Now suppose X, Y are any two equal positive words in Bn+1. The

equality X = Y in i?n+1 must be a consequence of the relations (1.1).
These are also relations in (5n+1, and henoe X = Y in (?n+1. Since Gn+l

embeds S, X = Y in S also, i.e. X == Y, and the theorem is proved.
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ON THE BRAID GROUP AND OTHER GROUPS 243

3. Cayley diagrams

3.1. Any group 0 with given generators and defining relations can be
represented in a drawn diagram, called its Cayley diagram (6, 7). In
the sequel, although all the proofs given will be purely algebraic, con-
siderable use will be made of the general concept of the Cayley diagram,
and in one or two instances actual diagrams will be drawn. In order to
preserve algebraio rigour we proceed to make certain formal definitions.

3.2. Definitions and notation
Links. The successive generators of a positive word will be called links.

Thus the initial link of the word a2a1alaz is Ojj the third link is a4; etc.
In the drawn diagram the link a, will be represented as

FIG. 1

No arrow will be put in, as it will be understood always that the positive
direction is left to right. The drawn figure will show the initial link on
the left, the successive other links extending in order to the right.

Diagram. Let W be any positive word, and let W, Wlt W2,..., Wm be
the complete set of distinot words which are positively equal to W (see
Lemma 8). Then we shall refer to this set as the diagram of W, and
write it D{W). Clearly D(W) = DiWJ = ... ~ D{WJ. The words
W, Wx,...., Wm will be called the routes of D(W). The process of enumerat-
ing the routes of D( W) will be called drawing the diagram D( W). In the
drawn figure the diagram of W is the Cayley diagram of all words
positively equal to W. The name Cayley will be omitted from now on.

Nodes of D{W). Let W be any positive word, and D(W) its diagram.
JfA, X are any two positive words such that W = AX (0 ^ L{A), L(X)),
then we shall call D(A) a node of D( W). When we are considering nodes
we shall frequently write the node D(A) as the node A, or simply A.
If L(A) = (we shall say the node A is of order t.

Sub-routes of D{W). If W = AXB (L(A) > 0, L(B) > 0), we shall
say that X is a sub-route of D(W). If L(A) = 0, we shall say X is an
initial sub-route ofD{W). If W = PXQ (L(P) > 0, L(Q) > 0), we shall
say the sub-route X starts at P. If W = BQ = PXQ we shall say the
sub-route X ends at B.

Incidence. If the link a,, either (i) starts at P, or (ii) ends at P, we
shall say the link a,, is incident at P. If the links ar, a, are both incident
at P, we shall say they meet at P. We shall also say that P is the meet
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244 F. A. GABSIDE

of the links ar, ag. If a link a,, ends at P and a link a,, starts at P, we
shall say the link a, is repeated at P.

W contains A. W is prime to A. If any sub-route of D(W) is A, i.e.
if W = ^ A B (L(4) ^ 0, L(B) ^ 0), we shall say A is a factor of T ,̂
or simply W contains A. It follows from Theorem 2 that if W contains A,
then W = AX for some X. If TF is any positive word which does not
contain A, we shall say W is prime to A.

Fio. 2

Base of D(W). In Bn+1 suppose W is of word-length L, and suppose
D(W) consists of the t words Wy = aiajak..., Wz = apqqaT..., ...,
Wt = axayaB Then there is a one to one correspondence between the
words Wlt Wit..., WJand the set of numbers Py = ijk..., P2 = pqr..., ...,
Pt = xyz..., where each number P is expressed in the scale of n-f-1, and
consists of L digits. The numbers P are all distinct. Suppose the
smallest is Pr. Then the corresponding word Wr, which is uniquely
defined, will be called the base of D(W). If A is a positive word prime
to A, we shall sometimes denote the base of A by A. The use of this
notation will imply that A is positive and prime to A.

Example. We proceed to give an example to illustrate the corre-
spondence between these definitions and the drawn figure. In Bt con-
sider the word W = a^a^a^a^^. The drawn diagram of D(W) is shown
in Fig. 2.

Algebraically, D(W) is the set a1a2ala3, a1aia3a1, a^ayO^a^. The
node 0, of order 0, is the empty set. The node B, of order 3, is the set
a1aea1, a2a1a2. The links at, a^ end at B. The links Oy, Oj, az are incident
at B. W, the base of D(W), is o ^ ^ O g .... etc.

LEMMA 8. The diagram ofany positive toord Win Bn+1canbe systematic-
ally drawn, and is finite.

Let the set of all distinct words positively equal to W through a
transformation of chain-length 1 be W^..., Wt. I t is clear that this set
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ON THE BRAID GROUP AND OTHER GROUPS 246

can be enumerated, and is finite. Now consider the set of words positively
equal to Wx through a transformation of chain-length 1. Denote those
which are distinct from W,Wx,...,Wt and from each other, by Wt+V Wt+2

Continue to repeat the process successively for W2, Wa,..., Wt+l,..., etc.
Clearly the number of positive words of word-length equal to L(W) is
finite, and hence the set of words positively equal to FT is finite. Hence
the sequence W, Wlt... ultimately terminates. It is clear that any word
which is positively equal to W must ultimately be reached through the
process outlined above, and the lemma is proved.

3.3. Solution of the word problem

THEOREM 5. In Bn+1 every word W can be expressed uniquely in the
form A*M.

(i) First suppose P is any positive word. From the set D(P) select
any route starting with as many consecutive sub-routes A as possible,
equal to t, say (t ^ 0). Suppose P = &A. Then A is prime to A, as
otherwise there would be a route of D(P) starting with more than t
consecutive sub-routes A. Denoting the base of A by A, we have
P = A'A.

(ii) Now let W be any word in Bn+1. Then clearly we may put

W = W1(x1)-iW2(xz)-i...(xe)-Ws+1,

where each Wr is a positive word of word-length ^ 0, and the xT are
generators. Now for each xr there exists, by Lemma 4, a positive word
Xr such that xrXr = A, so that (x,.)-1 = XTA~1, and hence

W = W1X1&-W2Xi^...W,X,A-Ws+1.

Hence, moving the factora A"1 to the left by Theorem 2, we have
W = A~*P, where P is positive. Now using (i) above to express P in
the form A'.Z, we have W = A^A'̂ L, or, putting t—s = m,

W = &mA. (3.1)

(iii) It now merely remains to show that the form (3.1) is unique.
S u PP° 8 e A«M = A»S. (3.2)

First suppose p < m, and let m—p = t, where t > 0. Then (3.2) gives
A'-Z = B and hence, by Theorem 4, &'A = B. Hence S contains A,
which is impossible. Therefore p < m, and similarly m < p. Hence
p = m, and from (3.2) we now have A = B, and on using Theorem 4,
A =F B. But any positive word has one and only one base. Hence
A = S, and the uniqueness of the form (3.1) is established.
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246 F. A. GARSIDE

Definitions. Any word W of Bn+1 expressed in the unique form A*M
of Theorem 5 will be said to be in standard form. The index m will be
called the power of W.

THBOBEM 6. The necessary and sufficient condition that two words in
Bn+1 are equal is that their standard forms are identical.

The condition is clearly sufficient. The necessity has been shown in
section (iii) of the proof of Theorem 5.

3.4. The centre of Bn+1

THEOBBM 7. (i) When n = 1 the centre of i?n+1 is generated by A.
(ii) When n > 1 the centre of Bn+1 is generated by A*. (3)

(i) This case is trivial.
(ii) Let W be any word in the oentre. Then, by the definition of centre,

if X is any word in Bn+1, X^WX = W, so that

WX = XW. (3.3)

There are three possible forms for W: (a) W = AM, where L(A) > 0;
(6) W = A4"1"1"1; (c) W = A2"1. We proceed to consider each in turn.

(a) W = AM (L(A) > 0).

Let A = o<A{ (L(A{) > 0). Let \s—i\ = 1. Considering first the
case p even, put X = aaa{. Then (3.3) gives

ApaiAia,ai = asai^
paiAi = ApasaiaiAi.

Hence aiAia3ai = aga io i^4(. Applying Theorem 4,

and hence by Theorem H, aiaiAi =p a ^ . 4 , for some At, so that by
Theorem 1 A A II A\

aiAi == a, A,. (3.4)
The case p odd gives exactly the same result on putting X = ^(a^Oi).
Repeated application of (3.4) now gives

a1A1 = atA2 = ... = an^n = I.
Hence by Theorem 3, A oontains A, which is impossible. Therefore there
are no words in the centre of the form (a).

(b) W =
Putting X = a^, (3.3) gives A2"1*1^ = a1A

i!m+1 = b*m+1'Ra1 by
Theorem 2. Hence % = <Skt1, which is impossible since n > 1. There-
fore there are no words in the centre of the form (b).
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ON THE BRAID GROUP AND OTHER GROUPS 247

(c) W = A4"1.
Clearly X~XWX = W for all words X in virtue of Theorem 2. Hence

any word of the form A2"1 is in the centre, and no other words, i.e. the
centre of Bn + 1 is generated by As.

3.5. The structure of Z>(A)

THEOREM 8. In Bn+1, if W = AF is any positive word containing A,
then each of the n links Oy (r = 1, 2,..., n) is incident at each node of D(A).

By Lemma 4, W == a1W1 == a^Wt = ... == anWn, so the theorem is
certainly true for the initial node 0. The proof of the theorem will be
by induction. As our induction hypothesis we assume the theorem is
true for all nodes of D( W) of order ^ m. Let 0 be any node of order m,
and let a, be any link of the diagram starting at 0 and ending at t>.

(a) We first consider the links a{, where \i—s\ ^ 2. By the induction
hypothesis D( W) includes either (i), a link at ending at C, or (ii), a link a4

starting at C, or (iii), both (i) and (ii) are true.
(i) Oi ends at 0 (\i—s\ ^ 2). The diagram D(W) includes Fig. 3. By

the defining relations this implies Fig. 4, i.e. D(W) includes a link a{

ending at t).
(ii) a< starts at 0 (\i—s\ > 2). The diagram D(W) includes Fig. 5.

By Theorem H this implies Fig. 6, i.e. D{ W) includes a link ai starting
at t).

(iii) If (i) and (ii) are both true D(W) must include both a link at

ending at t), and a link at starting at t>.
Henoe in all cases, for |t—«| ^ 2, at least one link ai is incident at Z).

(b) It remains to consider the linkR at, where \t—s\ = 1. The proof
will be omitted. It follows the same pattern as (a) above. In all cases,
if \t—s\ = 1, at least one link a, is incident at t>.

Now by hypothesis there is a link o, ending at t). Henoe, by (a) and
(b) together, we see that the n links ar(r=l, 2,..., n) are incident at t).
The induction is now established, and the result follows.

THEOREM 9. In Bn+1 every node of -D(A) is the meet of the n links
a±, Oj,..., an. Furthermore only n links are incident at each node.

By Theorem 8 it follows at once that each node of D(A) is the meet
of the n links %, a%>..., an. It therefore remains only to prove that we
cannot have a repeated link at any node. For suppose the contrary is
true, so that for some A, r, B we have A =F Aa^a^B. Then

AaTaTByiA = A9L4 = AA,

by Theorem 2. Hence OyarX =? A, (3.5)
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248 F. A. GABSIDE

where X = B31A. Using Lemma 4 then, (3.5) gives

araTX = a^Ax = ... == ar_1Ar_1 = o r + 1^ r + 1 = ... = anAn,

Fia. 3

FIG. 4

FIG. 5 FIG. 6

and Theorem H now gives

ciyX = a^Bi = ... = Oj . .^ , . ! =F a,+lBr+1 = ... = anBn.

Henoe, by Theorem 3, aTX contains A, whioh is impossible since
L(arX) < L(A), from (3.5). The theorem therefore follows.

Drawn diagram of A3.
The drawn diagram of A8 is given in Fig. 7.
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ON THE BRAID GROUP AND OTHER GROUPS 240

4. Solution of the conjugacy problem in Bn+1

4.1. Index length
The algebraic sum of the indices of any given word will be called ite

index length. For example (Oi)~3(o3)
iO2 is of index length 2.

FIG. 7

I/KMMA 9. In Bn+1 the number of words in standard form of index length
t and power ^ p is finite.

Let AmA be any word satisfying the conditions. Then if L(A) = d,
we have m ^ p, (4.1)

and t = md+L(I). (4.2)

Since L{A) ^ 0 and d is positive, the last equation gives
m ^ tjd. (4.3)

(4.1) and (4.3) together show that the number of values of m is finite.
(4.2) shows that for any fixed m, L(A) is constant, and so the number
of possible values of A is finite. The result now follows.

Definitions. In the diagram D(A) in Bn+1, let a be any initial sub-route,
so that A = txX (0 ^ L(X) ^ L{&)). We shall call such a sub-route an
a-rovie. If W is any word in Bn+V the word a^Wa, reduced to standard
form, will be called an a-transformation of W. If a is the base of any
a-route a, then we shall call a an a-route and the transformation a"1 Wa.
an a-transformation of W. I t is clear that any a-transformation is equal
to the corresponding a-transformation.

Summit form. Summit set. Summit. Summit power.
Let W be any word in Bn+1 with standard form AmA =̂  Wx, flay.

Consider now the following chains of a-transfonnations of W. Take all
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260 F. A. GARSIDE

the ot-transformations of Wx and let those which are of power ^ m and
which are distinct from Wt and from each other, be Wt, Wz,..., Wt. Now
repeat the process for each of the words Wit W&..., W, in turn, denoting
successively by Wi+V Wt+i,... any new words occurring, the condition
being always that eaoh new word must be of power ^ m. Continue to
repeat the process for every new distinct word arising, as the sequence
Wlt W2,..., Wi+S,... expands. Now eaoh word of the sequence is of the same
index length as W. Hence, by Lemma 9, the sequenoe is finite, and
ultimately a stage must be reached when further applications of the
process will yield no new words.

Suppose that in the set Wlt Wt,... the highest power reached is s, and
that the words of power a form the subset Vx, V2, Then any VT will
be said to be a summit form of W. The set Vlt Vit... will be called the
summit set of W, or simply the summit of W. The power s of any summit
form will be called the summit power of W. I t is clear from the definitions
given above that no single a-transformation of a summit form can be
of power greater than the summit power.

LEMMA 10. In Bn+1, if W = AmV, where V is positive, and P is a
positive word such that P-lWP is of power m+r (r > 0), then VP
contains A.

By hypothesis P~lAmVP = Am+*Q, so that

VP = A-mPAmJ"Q. (4.4)

Put P = P (m+r even), P = 9?P (m+r odd). Then, by Theorem 2,
(4.4) gives VP = ATPQ, so that by Theorem 4, VP == ArPQ. Hence
VP contains A.

LEMMA 11. In Bn+1, if W ~ V, then there exists a positive word X
such that X-^WX = V.

By hypothesis there exists a word A such that A~XWA = V. Let
A = A-P. Then p-1A-mW±mp = y ( 4 . 5 )

If m is even, Theorem 2 now gives F^WP = V (P positive). I f m i s
odd, (4.5) may be written p"-iA-1(A-m+1TPAm-1)AP = V, i.e. using
Theorem 2 again, (AP)-1TT(AP) = V (AP positive), and the lemma is
proved.

LEMMA 12. In Bn+1, suppose (i) that W = A*>P" is a summit form of
any given word A, (ii) that X is any positive word such thai X*1 WX = AQQ,
where q 72* p, and (iii) that X = uT where u is an <x-rovte of maximum
length. Then u^Wu, reduced to standard form, is a summit form of A.
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ON T H E B R A I D GROUP AND O T H E R G R O U P S 251

When u = A the proof is trivial. For u ^ A, since u is an a-route,
there exists a word U (L( U) > 0) such that

uU == A. (4.6)

Now, by Theorem 9, every node of #(A) is the meet of the n links
Oj, 02,..., an, and of these n linkR only. In the diagram D(A) denote

the links ending at the node D(u) by Xj, xt,..., xs; (4.7)

and the Unks starting at D(u) by ylt ys,..., yn-f- (4.8)

By hypothesis,

A°Q = Z^TFZ = Y-iu-WPuY (q > #). (4.9)

Now from (4.6), u^Wu = U^APPU = u ^ f / A ^ P i i = UAP^Pu, so
that, putting ?7 = 5RC7 (JJ even), and V = U (p odd), and using
Theorem 2, u _ 1 ] F w = u-^vpu = fr-iQ?u. (4.l0)

Substituting in (4.9) we now get Y^AP-WFuT = A«$ (g > p ) , and
hence, by Lemma 10, VPuY contains A. By Theorem 8, therefore,
each of the n links xlt xt,..., xs, ylt t/2,..., yn_, is incident at each node
of D(OPuY). Now in the diagram D{0PuY) no link yt can start at
the node Z>( VPu). For in this oase we would have Y — yt Z for some Z,
and hence X = uy{ Z where uyi would be an a-route of length greater
than L(u), vitiating condition (iii) of the hypothesis. Hence the n—8
links ylt y2,..., yn_, all end at the node D(VPu). Furthermore, by (4.7),
the s linkR x-y, xz,..., xa end at D(0Pu). Hence by Theorem 3, VPu
contains A, so that, from (4.10), u-^Wu reduced to standard form is of
power at least p. Now it cannot be of power > p, since it is an a-
transformation of the summit form W. Hence u~1Wu, reduced to
standard form, is an a-transformation of the summit form W of A, of
the same power as W, and is therefore itself a summit form of A.

THEOBEM 10 (CONJTJGACY). In Bn+1, A ~ B if and only if their
summit sets are identical.

(i) If the condition is satisfied, let C be any member of the common
summit set. Then A ~ C, B ~ C. Hence A ~ B, so that the condition
is certainly sufficient.

(ii) We now proceed to show that the condition is necessary. Suppose

A~B. (4.11)

Let APP ~ A be any summit form of A, (4.12)

and AQQ ~ B be any summit form of B. (413)
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252 F. A. GARSIDE

First suppose q ^ p. Clearly ApP ~> AaQ, and hence, by Lemma 11,
there exists a positive word X such that

X-WPX = A'Q (q ^ p). (4.14)

Let X == ttjXi, Xx = « j T
8 etc., and finally Xs = ua+l, where

Ux, ut>... are denned successively as a-routes of maximum length, and
Xl3 X2,... are words of steadily reducing length, so that the final word
Xs+1 is the empty word. Then

X = u1u2...ut+1. (4.15)

Using (4.15) the transformation (4.14) may be regarded as the product
of the «-(-1 successive transformations (u1)-1ApPu1 = Wx say, in standard
form; (us)-

1W1 v^ = T^say, in standard form;.. .; (ua+1)~
1Wa'ua+l = &aQ-

Now, by Lemma 12, Wlt Wiy... and finally A*Q are each summit forms
of A. Hence we oannot have q > p, and similarly we cannot have 2? > ?•
Hence q = p, and by the argument given above AQQ = APQ is a summit
form of A. We have thus proved that any summit form of £ is a summit
form of A. Similarly any summit form of A is a summit form of B,
i.e. the summit sets of A and B are identical.

4.2. Remark on the definition of summit set
In Bn+1 suppose any word W = AVA has summit power p-\-r, where

r > 0. Then in the process of finding the summit set of W outlined in
§ 4.1, we have constantly to include in the words considered all words
of powers p, p-\-l, p-\-2,... until finally the complete set of words of
power p+r is established. In the process we must at some stage reach
a first word of power p-\-l, Wx say. Now since Wxr^ W it follows from
Theorem 10 that their summits are the same. Hence it now suffices to
find the summit, of Wlt and in doing this we can ignore all words of
power p. Similarly, when once a word of power p+2 is reached we can
thereafter ignore words of powers p and p-\-l . . . etc Moreover,
since any a-transformation is equal to the corresponding a-transforma-
tion, it is in fact sufficient to consider a-transformations only.

5. Other groups
5.1. Considered as a diagram in 3-space, the drawn Cayley diagram
of As, given in Fig. 7, will be seen to be the 2-skeleton of the truncated
octahedron (4.6*). Similarly, in Bn+1, the drawn diagram of An is the
2-skeleton of the ^-dimensional polytope (4*<n-ix»>-*)j 6

1*-1).
Groups similar to the braid groups exist whose Cayley A-diagrams

are the 2-skeletons of the other even-faced Arohimedean solids (inoluding
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ON THE BRAID GROUP AND OTHER GROUPS 253

the prisms), and their higher-dimensional counterparts. The methods
given in the present paper can be applied to solving the word problems
and the conjugacy problems of these groups. In the next three sections
examples will be given of groups for which it may be verified that the
above remarks apply.

For all the examples given, Theorems H, K, 1-6, 8-10, and Lemmas
3, 4, 7—12, are true. The centres are given by methods of the same
general pattern as for the braid groups (Theorem 7), but there are con-
siderable differences in detail. In each example given, A is the shortest
element of the group which oan start with each one of the generators.

5.2. The truncated cuboctahedron (4. 6. 8)
The group, T3 say, is generated by c ,̂ Oj, a% subject to the relations

For Ts, A = (o^Os)8, and Aat = a, A (t = 1, 2, 3). The centre is
generated by A.

5.3. The truncated icosidodecahedron (4. 6. 10)
The group, I3 say, is generated by %, <%, Og subject to the relations

ci1aia1aia1 = a2a1a2ci^lai, aia3ai = azaici3, a1a3 = a^a^.

For I3, A = ((^ajOj)6, and Aat = af A (i = 1, 2, 3). The centre is
generated by A.

5.4. The hypercube (4m)
Naming the groups Cm, say, there are two cases acoording as m is

odd or even.
(1) The group C2n-1 is generated by a^, (%,..., ain_1 subject to the

relations
r = Chn-rOr (r = 1, 2,..., 2 n - l ) , j

= agCiin^ (r, s: 8 lies between r and 2n—r)j

For C2n_j, A = {a1ain_1){a2aZn_t)...{an_1an+1)an,

and Aar = a ^ ^ A (r = 1, 2,..., 2n—1).
The n products (ara2n_r) (r = 1, 2,..., n) generate the centre. A* is in
the centre, but A is not.

(2) The group C2n is generated by Oj, a^,..., a^n subject to the relations

^n-r+l", (»" = 1, 2,..., 2n)
a, = cis

a2n-T+i (r> s: 8 ^ ^ between r and In—r+1)
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254 ON THE BRAID GROUP AND OTHER GROUPS

For Cin, A = (a1a2n)(a2a2n_,)...(onon+1),

and Aar = aTA (r = 1, 2,..., 2n).

The n products {aTa^n_^.^ (r = 1, 2,..., n) generate the centre, and in
this case A is in the centre.
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'Elementary Differential Equations
T. W. CHAUNDY, Late Student of Christ Church, Oxford
EDITED BY J. B. MCLEOD, Fellow of Wadham College, Oxford
This book contains material for more than one course on ordinary
differential equations. The first five or six chapters cover what would
normally be regarded as the material for a first course—separating the
variables, the first-order linear equation, the operator Z> •=• djdx. In
addition, Chapter 3 contains a discussion of existence and uniqueness
of solutions using Wronskians. Chapters 7 to 9 discuss solutions in series
and by definite integrals, effective use being made of the operator
8 — x djdx. The later chapters introduce the student to the hyper-
geometric and allied functions, leading into them from the differential
equations which they satisfy; and the last chapter is on singular
solutions. 75/- net paper covers 40/- net

An Introduction to Applied Mathematics
J. C. JAEGER
This textbook is primarily concerned with the means of applying
mathematics (particularly differential equations) to the study of physical
and engineering problems. It is intended as a course which is more
useful to students of engineering and physics than those courses usually
followed by specialist mathematicians, but it is not inferior in developing
mathematical technique. The book is still available in hard covers at
55/- net. It now appears for the first time in paper covers, 30/- net
95 text figures
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PRESS

The Theory of Groups
IAN D. MACDONALD, Reader in Mathematics, University
of Queensland
This book provides a substantial first course in the theory of groups
that is suitable for undergraduate courses in universities and will be of
interest to those teaching modern mathematics in schools. It is self-
contained and can be used as an introduction to modern algebra, since
no knowledge of other branches of modern algebra is assumed. Finite
and infinite groups are given equal emphasis, and topics covered extend
as far as nilpotent and soluble groups. The book thus provides the
groundwork for the study of the more specialized topics that are treated
in monographs. Numerous specially written exercises are an important
feature of the book. 45/- net paper covers 22/6 net
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new books
An Introduction to
Abstract Algebra
DENNIS B. AMES, California State
College
A degree level text covering a wide
variety of topics with early emphasis on
new ideas and methods.
9 " x 6 ' 378 pp. cloth 95i.

Probability and Statistics
with Applications
Y. LEAN MAKSOUDIAN. California
State Polytechnic College
A first course for undergraduates and
postgraduate students studying statistics
as part of a course in science or engineer-
ing.
9~x6' 438 pp. cloth 95s.

Mathematical Techniques for
Engineers and Scientists
BASIL C KAHAN, I.B.M., London,
formerly of Imperial College of Science
and Technology, London

Intended for Engineers and Scientists
during the later stages of a degree level
course, this text places emphasis on de-
monstrating techniques through plausible
argument rather than formal rigour.
Clarity of presentation and special atten-
tion to topics which students frequently
find difficult are particular features and
there is an abundance of fully worked
examples and many exercises.

400 pp. cloth 62s.

International Textbook Company Ltd.
158 Buckingham Palace Road, London, S.W. 1

THREE POPULAR TEXTS FROM SAUNDERS
Gelbaum and March

THE MATHEMATICAL FOUNDATIONS OF
THE SOCIAL AND BEHAVIORAL SCIENCES

Probability, Statistics, and Calculus
This work comprise of text and problem material for the first year of
a two-year sequence in mathematics designed especially for students
majoring in anthropology, economics, geography, political science, psycho-
logy, and sociology.
By Dr. Bernard R. Gelbaum and Dr. James G. March, both of tht Unioernty
of California, Irviru.
337 pages- Illustrated. Published February 1969. £3. 14J. od.

Owen
GAME THEORY
By Guillermo Owen
228 pages
Published January 1968
£3. 16s. 6d.

Esser
DIFFERENTIAL EQUATIONS
By Martinus Esser
249 pages
Published January 1968
£3- 8J. od.

W. B. SAUNDERS COMPANY Ltd., 13 Dyott Street, London, W.C.I
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Pergamon Press
The Origins of the Infinitesimal Calculus
M. E. Baron
Thit book Is a detailed and fully documented account of the concepts, techniques
and methods bearing on the earl/ history of the infinitesimal calculus, and throws
light on the early work of Newton and Leibniz In this field.
312 pp IS

Introduction to Calculus 2nd Edition
K. Kuratowskl
This Is the the second edition of Kuratowski's Introduction to the differential and
integral calculus of functions of one variable and his work should enjoy continuing
success among undergraduate mathematicians and scientists.
340 pp SOs

Statistics for Experimentalists
B. E. Cooper
Experimental scientists in many fields need a working knowledge of statistical
methods to assess the result of their work and this book has been produced to
meet this need. The subjects are arranged according to the type of experiment to
which they refer, rather than to their relative positions in the statistical theory
and each chapter contains problems designed to extend the reader's practical
experience.
350 pp 70s

Dealing with Data
A. J. Lyon
A practical introduction to the main problems and techniques of data analysis
based on the range method of solution. Of great value to anyone doing practical
statistical work.
414 pp 3Ss pexl-corer/SOs hard-cover

Some of the established mathematics books now available in Low Priced Student
Editions. Full list available from address given below.

Standard Student

Pric* Edition

Rumshlskil: ELEMENTS OF PROBABILITY THEORY 41s 20s

Pontryagln: ORDINARY DIFFERENTIAL EQUATIONS 87s 45s

Hall: MATRICES AND TENSORS 49s 25s
Smlrnov: A COURSE OF HIGHER MATHEMATICS

Vols. 1, 2, 3 Pts. 1 and 2,4, 5

For further details of these or other books by
Pergamon Press please write t o :
College Sales Dept., Pergamon Press Ltd.,
Headlngton HIM Hall, Oxford, OX3 OBW
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S Mathematical Sociology
• A selective annotated bibliography

Janet Holland and M. D. Steuer
Much of the teaching and training of sociologists Ignores mathe-
matical contributions to sociological theory and man/ of the
contributions do not appear to take much account of what has
been done In closely related research.

This fully annotated bibliography provides a survey of the publica-
tions In this field, partly as a reference work for sociologists already
using mathematical techniques, but also for those who are relatively
unfamiliar with mathematical sociology. All the articles from the
major English language sociological Journals have been Included,
together with a complete list of books in the field. 40s.

Published jointly with the London School of Economics
Weidenfeld & Nlcolion 5 Winsley Street London W1
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