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1. Introduction

Alexander [1] showed that an oriented link K in S3 can always be represented as a
closed braid. Later Markov [5] described (without full details) how any two such
representations of K are related. In her book [3], Birman gives an extensive descrip-
tion, with a detailed combinatorial proof of both these results.

In this paper I shall describe a simple method of representing an oriented link K as a
closed braid, starting from a knot diagram for K and' threading' a suitable unknotted
curve L through the strings of K so that K is braided relative to L, i.e. K\}L forms a
closed braid together with its axis.

I shall then give a straightforward derivation of Markov's result, using the ideas of
threading, and a geometric version of the braid moves with which Markov relates two
braids representing the same K. The geometric approach is described in terms of links
K U L, in which K forms a closed braid relative to an axis L. Such a link will be called
braided, and in addition it will be called a threading of an explicit diagram for K if it
arises from the threading construction. Two braided links which are related by the
geometric version of Markov's moves will be called Markov-equivalent. Markov's
theorem, which says in this geometric translation that braided links K\j L and K' U L'
are Markov-equivalent if and only if the oriented links K and K' are isotopic, will then
follow from Theorems 2, 3 and 4, on threadings.

These results on threadings, whose proofs are not elaborate, are as follows:

THEOREM 2. Any braided link K u L arises as a threading of some diagram for K.

THEOREM 3. Any two threadings of a given diagram of K are Markov-equivalent.

THEOREM 4. Two different diagrams of K have Markov-equivalent threadings.

Remarks. Bennequin [2] gives a geometric proof of Markov's theorem in the course
of his work on contact structures, using suitably positioned spanning surfaces for the
closed braids; see also Rudolph [7] for a discussion of such surfaces.

Markov's result itself, and also the representation of a knot as a closed braid, have
had attention recently following Jones' use of braid groups in constructing his new
polynomial knot-invariant [4].

2. Notation and definitions

For definitions and notation concerning braids I shall refer to [3]. In particular,
given an w-string braid fieBnI shall refer to the closure of ft, written ft, to mean an
oriented link which arises from an explicit geometric representative of ft in D2 x / by
identifying the ends of the cylinder. The closure of ft is determined by ft up to isotopy
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248 H. R. MOBTON

in S3. In fact/? determines up to isotopy a link ft u Lp consisting of its closure ft, lying in
the complement of Lp, an unknotted curve called the axis of ft; here the exterior of Lp
is an unknotted solid torus D2 x S1 in which the curve y l̂ies regularly with respect to the
projection to S1.1 shall refer to the link ft u L^, with a natural choice of orientation, as
the complete closure of ft.

If an oriented link K u L is given in which L is unknotted, and K projects regularly
to S1 under some choice of product projection pL: 83 — L->81 then I call K \j L braided
(relative to L). Then the complete closure of ft is braided, and conversely any braided
link is the complete closure of some ft. Geometrically the complete closure captures
fteBn very well, for ft and y have isotopic complete closures (respecting orientation)
if and only if ft and y are conjugate in Bn, see e.g. [6].

Consequently a braided link K u L determines fteBn, (n = lk(K, L)), up to conjugacy.
A TEST FOR A BRAIDED LINK . / / L is unknotted, and a product projection

pL:S3-L->S1

is found in which K is mapped monotonically, i.e. for a suitable orientation of S1 the map
pL is locally increasing on K, but not necessarily strictly increasing, and in addition pL is
not constant on any component of K, then K\) Lis braided.

Proof. Under these conditions an arbitrarily small isotopy of K can be made in
S3 — L to ensure that pL becomes strictly increasing.

Markov moves
A Markov move replaces a braid (/?, n) e Bn by
(1) (y, n), with y conjugate to /? in Bn, or
(2) (/?c-±1,n+l)e5n+1,or
(3) (ft',n-l) eBn^, if ft = ft'a^, and ft' is a word in ax,.... an_8.
The complete closures of two braids related by a type (1) move are isotopic; con-

versely we have noted that a braided link determines a braid up to type (1) moves.
I shall shortly describe a relation, simple Markov'-equivalence, between two braided

links which will ensure that they are complete closures of two braids related by a move
of type (2), or its inverse, of type (3).

If Markov-equivalence is denned as the relation on braided links generated by isotopy
and simple Markov-equivalence we have then the geometric reformulation of Markov's
theorem which follows.

THEOREM 5. If ft and y are two braids whose closures are isotopic as oriented links, then
their complete closures are Markov-equivalent.

Definition. Two braided links K\]L and K' u L' are simply Markov-equivalent if the
second one can be isotoped so that L' = L and K' agrees with K except for arcs a of K
and a' of K' with the following properties:

(1) we can find a projection pL: S3-L^-S1 which is constant on a, strictly mono tone
on the rest of K and monotone of degree 1 on a'.

(2) there is a disc A spanning a u a' whose interior meets L transversely in one
point and avoids K (J ct'.

From the definition it is clear that if lk(K,L) = n then lk(K',L') = n+l, so the
braided links will be complete closures of braids in Bn, Bn+1 respectively.

LEMMA 1. If K u L and K' u L' are simply Markov-equivalent braided links then they
are the complete closures of some ft e Bn and fta^1 e Bn+1 respectively where n = \k(K, L).
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Proof. Suppose that the links have been isotoped to agree except on arcs a of K and
a? oiK' as specified in the definition, and suppose that a lies at the l e v e l s = 6Q. Look
at the way in which the disc A bounded by a U a' meets the level disc D, with boundary
L, for the level pL = d0.

Fig. 1

Fig. 2

After a slight isotopy of the interior of A we may assume that it meets D trans-
versely and that A f) D consists of the arc a in dA together with a finite number of
disjoint closed curves and arcs as illustrated in Fig. 1. Where an arc meets a we may
assume that pL behaves locally on A like the restriction to one side of a saddle point.

The single point, p, of transverse intersection of A with L = dD will be the end-point
of exactly one arc y of A (\D, whose other end must lie on a. Choose a small disc in A,
centre p, which we can assume (after isotopy of A) to lie, except forp, as a product of a
subarc y' c y with Sl in the solid torus S3 — L. The boundary of this disc will eventually
form a single braid string over the end-point q of y' in D.

Adjoin to this disc a thin ribbon of A about y small enough to contain no critical
points for pL and to have pL monotone on its edge. This ribbon, whose end on the arc a
will be called S, may be chosen to lie arbitrarily close to y, say within the levels
[60 — e,60 + e] ofpL. Together with the disc aboutp it makes up a disc B <= A. We now
use the isotopy determined by A from 8A to BB in the complement of L to isotop K and
K' into new positions where they are related by the disc B in place of A. The disc D and
its relation with K, K' and B are illustrated in Fig. 2.

To make an explicit correspondence of K, K' with the closure of two braids, choose
n+ 1 reference points qv ..., qn, q in D, and a standard arc from qn through q to p on
dD, which extends the arc y' from q to p. These points (with or without q) will be the
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starting and finishing points for the braids on n (or n + 1) strings in D x / which become
K, or K', when closed.

We now complete the proof by isotoping D, keeping L = 8D and y' fixed so that a
becomes the standard arc from qn top, S becomes a small arc through qn and K meets D
in this small arc, together with the points qlt. ..,?„-!• Extend this by a level preserving

Fig. 3

isotopy which is the identity outside the levels [d0...2e, 60 + 2e] of pL and carries B to a
ribbon within these levels lying close to the standard arc together with the unchanged
disc transverse to L determined by y'. Assume that the ribbon lies within the levels
[0O — e, 00 + e], and that K passes through qv •••,qn-1 vertically between these levels,
so that K' differs from K after this isotopy only by the addition of the ribbon edges
close to level 60 between qn and q and an extra straight string above q in the levels
beyond the ribbon.

A slight adjustment to K and K' is still strictly necessary to realise both as the
closure of braids based on the reference points when cut open at level 60, or better at
6Q-e.

Fig. 3 shows the difference of K and K' between levels 60 — e and d0 + e for the two
possible orientations of 8 in D. I t is then clear that the braids given by cutting open at
60 — e differ simply by the addition of an extra string about q and a generator cr*1 which
comes from the string exchange close to the standard arc joining qn to q. \
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A separating curve, L

The resulting threading

Fig. 4

3. Threadings

Starting from a diagram for an oriented link KI shall describe how to find unknotted
curves L resulting in a variety of braided links K\i L which will be called threadings of
the diagram for K.

By a diagram for KI shall mean a simple projection of K to some plane P in which a
finite number of over-crossing and under-crossing points in K are distinguished - these
are the inverse images of the double-points of the projection.

Definition. A choice of overpasses for a diagram will consist of (S, F), two finite subsets
8 = {«!, ...,sk}, F = {flt ...,/t} of K forming the 'starting' and 'finishing' points of
overpasses, which alternate in K, and which divide K into arcs of the form [«,/] called
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overpasses containing no undercrossings, and [/,«], underpasses, containing no
over crossings.

There is no need, however, for an overpass to contain any overcrossing.
We can alter K by isotopy without changing its projection to P so that its overpasses

and underpasses lie in planes parallel to P, (horizontal) just above and below it, except
for vertical segments near 8 and F, where K goes upwards or downwards respectively.

It will be helpful to think of 8 and F as points lying in P, in the projection of
K.

A threading of the diagram for K with the given choice of overpasses (S, F) is con-
structed from any closed curve L in P which separates S and F as follows:

Arrange that L crosses the image of K transversely, and alter K in the neighbourhood
of each crossing point so that K crosses over L if it is passing from the side of L which
contains 8, and K crosses under L if it passes from the side of L which contains F, to
give a link K U L called a threading. See Fig. 4 for an example of a choice of overpasses
and a separating curve L, with the resulting threading.

THEOREM 1. Any threading of a diagram for K is a braided link.

Proof. Select overpasses {8, F) for the diagram, and a curve L in the plane P of the
diagram which separates S from F. Now straighten out L in the plane P by an isotopy
of P, carrying the projected image of K along, so that L becomes (almost) a straight
line, with points of S lying to one side and F to the other. We can suppose that K is
isotoped at the same time so that the overpasses and underpasses lie in planes parallel
to P, just above and below their projected image.

We now change our point of view, and imagine that P forms the xz-plane and L forms
the z-axis (having sent one point of L to infinity on P). Using polar coordinates based
on L as axis, the plane P splits into two half-planes, one, given by 8 = 0 say, containing
the points of F, and the other, 6 = n, containing the points of 8.

Project the overpasses of K to the half-planes 6 = — e and 6 = n + e, and similarly
project the underpasses to the half-planes 6 = e and 6 = n — e, for some suitably small e.
These curves (which cross the axis L in various points corresponding to the crossings of
L with the projected image of K) are then joined up by vertical arcs (i.e. in the direction
of projection) through the points of S and F to give a closed curve isotopic to K with the
same projected image.

Apart from the points where this curve crosses L the polar coordinate increases
monotonically, since it is constant, except on the vertical arcs, where it increases from
- e toe for those through a point of F, because of moving from an overpass to an
underpass, and it increases from n — eton + e for the arcs through points of 8.

As illustrated in Figs. 5 and 6, which show the process for a simple knot diagram, the
threading construction now diverts the curve K near its crossings with L to run around
L in the direction of increasing 6. We can arrange explicitly that pieces of K which pass
through the cylinder r ^ 8 are diverted to run around r = S, with pieces of K which
come from the #-side (8 = n ± e) being taken above L (i.e. through 6 = \n) and pieces
which come from the i^-side (6 = ±e) being taken beneath. Thus, where, say, an
overpass crosses L from side 8 to side F the polar coordinate after threading will increase
by less than n, from TT + e to — e, while on an overpass which crosses from side F to side
8 the increase will be n + 2e.

Consequently the threading has been isotoped so that, with L as axis, the curve K
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runs monotonically (althought not strictly so) with respect to the polar coordinate.
This is enough to guarantee, by the monotone test, that K u L is braided. |

Remark. A threading of K will exhibit K as the closure of a braid on n strings, where
n is the number of times that K crosses the curve L from the #-side to the .F-side;
consequently n is at least as large as the number of overpasses.

In an attempt to reduce n for a given K it would be natural to present K so that a
small number of overpasses can be chosen (the minimum possible is the bridge number).
I t is clearly always possible to find an L which meets each overpass exactly once; the
resulting threading may however have many more strings, for there is no guarantee
that the underpasses all cross L once, and L will have to be threaded under them every
time they cross from side S to side F.

Nevertheless the threading process is a very quick means of exhibiting any K as a
closed braid, starting from any diagram of K.

Alexander's theorem, that any oriented link K can be represented as a closed braid,
is an immediate corollary of Theorem 1, since any diagram of K can be threaded in
many ways.

I shall now show that all braided links arise from threadings in the next Theorem.

THEOREM 2. The complete closure of a braid fleBnisa threading of some diagram of its
closure ft.

Proof. A braid ft corresponds to a homeomorphism h of the disc Z>2 leaving dD2 fixed
and n points pv -.^Pn invariant. In this correspondence we choose an isotopy of h to
the identity, rel dD2, to give a level-preserving homeomorphism H: D2xl -»• D2xl,
with h = H\D2x{l}. The image of {pv ...,pn}xl form the strings of a representative
braid for /?.

Choose disjoint arcs alt..., an in D2 joining points ri e 8D2 topt. The closure of/?is then
isotopic to H({px,...,pn} x I) together with

( (hU. - .UoJxfOjuKU. . . UoB)x{l}u{r1>...,rB} x I,

and the axis of /?can be represented by a circle just inside 8D2 x {J}; as shown in Fig. 7.

Fig. 7

Apply the homeomorphism H~1 to D2 x 1 to show that ft is isotopic to the vertical
lines {p1,..., pn] xl {j {rlt ...,rn}xl together with the ar cs ax U ... U an in level 0 overlaid
with the arcs A-1(ai) U ... U A" 1 ^ ) in level 1. The axis remains as before, and ft is
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represented as the threading of a diagram in Z)2 with S = (pv ...,pp}, F = {fj, ...,»*„},
underpasses «!,...,&„ and overpasses A~1(a1),..., A~1(an), where the threading curve
is a circle just inside 3D2. \

4. Markov's Theorem

As shown by Lemma 1, Markov's theorem, which says that any two braids with
isotopic closures are related by a sequence of Markov moves, can be given in geometric
form as follows.

THEOREM 5. (Markov). If K U L and K' U L' are braided links, and K is isotopic to K',
as oriented links, then K\J L and K' u L' are Markov-equivalent.

The theorem will follow by using Theorem 2 to show that K u L and K' u L' are both
threadings of some diagrams of K. Then Theorems 3 and 4 will complete the proof.

THEOREM 3. Any two threadings of a given diagram for K are Markov-equivalent.

THEOREM 4. Any two diagrams for K have Markov-equivalent threadings.

Proof of Theorem 5. By Theorem 2, K U L is a threading of some diagram of K.
Again by Theorem 2, K' u L' is a threading of some diagram of K'; since K' is isotopic
to K this is a threading of a second diagram of K.

By Theorem 4 we can choose threadings of the first and second diagrams of K which
are Markov-equivalent. By Theorem 3 the chosen threading of the first diagram is
Markov-equivalent to K u L, since K U L is another threading of the same diagram
of K; the chosen threading of the second diagram is similarly Markov-equivalent to
K'uL'. |

To prove Theorem 3 we show it first with a given choice of overpasses (S, F), in
Lemma 2. Independence of the choice of overpasses follows, using Lemma 3 to con-
struct a choice of overpasses (S", F") with S, 8' <= 8"; F, F' <= F", for any two given
choices (8, F) and (£', F'). Then any threading of (8", F") will give threadings of (8, F)
and (S', F') which are isotopic.

For Theorem 4 is is enough to show that two diagrams of K which differ by a
Reidemeister move have isotopic, hence Markov-equivalent, threadings for some
choice of overpasses. This is done by choosing (S, F) and the threadings to be identical
outside the region of the move, and only to involve the region very simply, if at all.

I now complete the proof of Theorem 5 by proving Lemmas 2 and 3, and Theorem 4.
In the accompanying diagrams the curve L to be threaded is drawn more thickly
than K.

LEMMA 2. Given a diagram for an oriented link K in a plane P, with choice of overpasses
(S, F), then the threadings defined by any two simple closed curves L, L' which separate 8
and F are Markov-equivalent.

Proof. We may suppose, without loss of generality, that F lies in the bounded com-
ponent oiP-L and of P-L'.

(a) Suppose that L and L' are isotopic in P - (S U F). Then L, L' and K are related
by a sequence of moves of type 1 or type 2 shown in Fig. 8, in which no points of 8 or
F appear.

The two threadings in type 2 are clearly isotopic, except when the orientations
require them to look as in Fig. 9. A picture like that in Fig. 9 can indeed occur, as seen

9-2
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Typel

Type 2

Fig. 8.

Fig. 9.

Type 1

Typel

Isotopy

Fig. 10.

Fig. 11.

for example near the bottom of Fig. 4. In this case one threading converts to the other
by a sequence of type 1 moves and isotopies, as in Fig. 10, noting that undercrossings
and overcrossings of K with L must alternate on passing around K. It is then enough
to show that the two threadings in a type 1 move are simply Markov-equivalent. Now
the whole of K in the diagram belongs either to one overpass or to one underpass. In the
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Threadings

Fig. 12.

Fig. 13.

threading construction we may then assume that the two parts of K to one side of L
lie at the same level of pL (it will be 0 = 7r ± e or ±e according to side and whether we
have an under or overpass) until reaching the immediate neighbourhood of L. Join
them by an arc a at this level, as indicated in Fig. 11. Then a together with the arc a'
oiK crossing L bounds a disc as required for a simple Markov-equivalence between the
two threadings.

(6) To deal with the general case, observe that if a curve M' in P separating 8 and F
is isotoped to M by pushing a pair of crossings with K past a point of 8 (or of F) as in
Fig. 12, then M, which also separates S and F, and M' define isotopic threadings.

By isotopy of P we may make an explicit choice of S, F and L. Let us take S and F
to consist of the points {(— 1, %)} and {(1, a{)} respectively, for some ax,..., ak, and take
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L to be part of the y-axis, completed with a large semicircle to enclose F. We may
suppose also that K runs parallel to the rc-axis near each point s1;..., sk of S.

Let L' be any simple closed curve separating 8 and F and enclosing F. Assume, after
a small isotopy that L' meets transversely the lines y = ai, x < — 1 running from s, to
infinity away from L. By an isotopy in the complement of 8 and F, pushing along these
lines, we can alter L' to M' whose intersections with the lines all lie close to S. A picture
of a typical M' is given in Fig. 13. Each line is met an even number of times by M',
since S lies outside M'; we may now isotop M' by moving the intersections across the
points of S a pair at a time to reach a curve M which does not meet the lines, and so is
isotopic to L in the complement of 8 and F.

The threadings denned by M and L, and by M' and L', are Markov-equivalent, by
(a); we have just observed that the threadings denned by M and M' are isotopic, so
Lemma 2 is established. |

LEMMA 3. Given a diagram for K and a choice (S, F) of overpasses, and any point sofK
not in F, we can make a new choice of overpasses (8, F) with seS, 8 <= 8 and F <= F.

Proof. If s lies on an overpass of (S, F) then choose / immediately before s on K, so
that [/, s] c K contains no overcrossing point, and take F = F u {/}, S = S U {s}. The
original overpass containing s becomes separated into two by the new underpass [/, s]

If s lies on an underpass then choose/immediately after s with no undercrossings in
[s,/], and take F, S as before. Then [s,f] becomes a new overpass, separating one
underpass into two. |

A similar argument allows extension of F by any /£ S. Two choices (S, F) and
(S', F') of overpasses can then be extended readily (provided that

SnF' = S'nF= 0)

to a choice of overpasses (S", F") with 8 (J 8' <= S" and F U F' c F".
Clearly any curve L in P which separates 8" and F" will also separate 8 and F, and

so L determines a threading for ($", F") and for (8, F). These threadings are actually

Fig. 14.
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Fig. 15.

Fig. 16.

the same, since the construction of the threading from the diagram depends only on
the sense in which K crosses L. The dissection of K into overpasses is required only to
ensure that L is a suitable curve to make K u L braided. Consequently for any two
choices of overpasses there is some common threading. The Markov-equivalence of
any two threadings of a given diagram then follows using Lemma 2.

THEOREM 4. Any two diagrams for an oriented link K have Markov-equivalent
threadings.

Proof. Any two diagrams for K are related by a sequence of Reidemeister moves,
illustrated in Fig. 14, so it is enough to show how, for each Reidemeister move, isotopic
threadings can be chosen for the two related diagrams.

By Theorem 3 we may make any convenient choice of overpasses. In choosing (S, F)
on any diagram we need only ensure that there is always a point of S U F separating an
overcrossing from a neighbouring undercrossing.

Place points seS a n d / e F as indicated in Fig. 14, and choose the rest of S U F to lie
outside the region altered by the move, with s and/interchanged if the orientation of
K is in the opposite sense. In the case of the first two moves we can then choose our
separating curve L to lie outside the region of change, so that the resulting threadings
are unaltered by the move.

For the third move we must choose L to separate s and/. Fig. 15 shows part of a
suitable L which gives a threading isotopic to that from L' or L", depending on the
orientation of the uppermost piece of K. Fig. 16 shows the relevant parts of the
threadings in one of the two cases, making it clear that they are isotopic. The crossing
of L with the lowest piece of K will not affect the isotopy. The proof of Theorem 4, and
so also of Markov's theorem, is complete. |
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