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§1. INTRODUCTION

LET f (z,w) ≡ f0(z)wn + f1(z)wn−1 + · · · + fn(z) ∈ C[z,w]. Classically, the equation
f (z,w) = 0 was said to definew as an (n-valued)algebraic functionof z, provided thatf0(z)
was not identically 0 and thatf (z,w) was squarefree and without factors of the formz−c.
Then, indeed, thesingular set B= {z: there are notn distinct solutionsw to f (z,w) = 0}
is finite; and asz varies in any simply-connected domain avoidingB, the n distinct so-
lutions w1, . . . ,wn of f (z,w) = 0 will be analytic functions ofz. Now let γ be a simple
closed curve inC−B. In the open solid torusγ×C ⊂ C

2, the setKγ = Vf ∩ γ×C (where
Vf = {(z,w): f (z,w) = 0}) is evidently a closed 1-manifold, as smooth asγ, on which the
projection toγ is ann-sheeted (possibly disconnected) covering map. A 1-manifold in a
solid torus, which projects as a covering onto the circle factor, is called aclosed braid.
When the torus is embedded (in the standard way) in a 3-sphere(asγ×C will be, shortly),
the closed braid becomes a knot or link in that sphere; if the circle factor is oriented, there
is a natural way to orient that knot or link. Which such oriented links, we may ask, arise
from algebraic functions (whenγ is oriented counterclockwise)?

The pointsz0 ∈ B are of two kinds (some may be of both). If, for somew0 such that
f (z0,w0) = 0, it also happens that(∂ f/∂w)(z0,w0), we call z0 a singular point of the
algebraic function. (Either(z0,w0) is a singular point, in the usual sense, of the algebraic
curveVf , or it is a regular point at which the tangent line is the vertical line z = z0.) At
a singular pointz0, some solutionw to f (z0,w) = 0 has multiplicity greater than 1. On
the other hand,z0 may be a root off0(z); then there are notn solutions, even counting
multiplicities, to f (z0,w) = 0. A root of f0(z) is apoleof the algebraic function.

The setKγ, being compact, actually lies in some closed solid torusγ×Dr = {(z,w): z∈

γ, |w| ≤ r}. Let B4 be the bicylinderD×Dr whereD is the bounded region inC with
∂D = γ; thenB4 is homeomorphic to a 4-ball, and its boundary 3-sphere is decomposed in
the usual way into two solid tori,γ×Dr andD× ∂Dr. If no pole of f(z,w) lies in D, then
Kγ is the entire intersection of Vf with ∂B; that is,Vf does not meetD×∂D. (This may be
seen by an appeal to the maximum modulus principle.) Below (except in§3, Remark 2) we
will assumef0(z) is a (non-zero) constant, that is, that there are no poles. This is only for
convenience; everything would work as well just assuming that no poles lie inD.

In §2 we recall the definition ofpositiveclosed braids, and define a strictly larger class,
the quasipositiveclosed braids. The definition is purely braid-theoretic. Several mathe-
maticians (including Murasugi, Stallings [9], and Birman [1]) have observed that many
positive closed braids, in particular all those which are knots (rather than links), arefibred
links; there are quasipositive closed braids which are knots and not fibred.
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In §3 we give one proof that the closed braidKγ is quasipositive. The proof is real
semi-algebraic geometry, and gives a method (which is, alas, far from practicable in most
cases) of explicitly calculating the braid type ofKγ in terms of one’s knowledge ofγ and
f (z,w).

In §4 we briefly discuss those loops inM−V, whereM is a simply-connected algebraic
variety andV is an algebraic subset, which are freely homotopic to loops which bound
analytic (possibly singular) disks in all ofM. In many cases, the free homotopy classes
of “analytic boundaries” turn out to be precisely those classes which are “quasipositive”
in an appropriate sense. WhenM is the space of unorderedn-tuples of (not necessarily
distinct) complex numbers, andV is the so-called “discriminant locus” ofn-tuples with
not all members distinct, the theory applies (to check one hypothesis, I use the method of
§3), and we have the following theorem.

THEOREM. The closed braids Kγ that arise from algebraic functions without poles are
precisely the quasipositive closed braids.

Here are some consequences of the theorem. Many more fibred links occur asKγ than
just those associated to singular points of curves (as in [6])—these “links of singularities”
may be recovered as a special case (γ is a small circle enclosing a single point ofB, for
suitablef (z,w)). Many non-fibred knots and links occur asKγ’s. And in each concordance
class of links that appears at all, infinitely many distinct links occur; for instance (even for
f (z,w) as special asw3 − 3w+ 2zm, m = 1,2,3 . . . ), infinitely many distinct slice knots
occur—a marked contrast to the links of singularities.

Remarks and examples conclude the paper.

§2. POSITIVE AND QUASIPOSITIVE BRAIDS AND CLOSED BRAIDS

A general reference for the braid theory used here is [1] (where a polyhedral approach
is taken).

Forn≥ 2 the algebraicn-string braid groupBn is generated byn−1 standard generators
σ1, . . . ,σn−1 subject to the relationsσiσi+1σi = σi+1σiσi+1 (i = 1, . . . ,n−2),σiσ j = σ jσi

if |i − j| > 1. A wordσe(1)
k(1) · · · σe(m)

k(m) (eachε( j) = ±1) in the generators and their inverses

is positiveif eachε( j) = +1, strictly positiveif also every index from 1 ton−1 occurs as
somek( j); an elementp of Bn is (strictly) positive if it can be represented as a (strictly)
positive word.

Let K ⊂ γ×C be a closed braid in an open solid torus, withK, the simple closed curve
γ, andC all oriented, and the projection fromK to γ smooth and orientation preserving
of degreen. It is well-known that the isotopy classes of suchK (say, ambient isotopy pre-
serving the product structure of the solid torus) are in 1-1 correspondence with conjugacy
classes inBn. The correspondence is implemented by the choice of a diffeomorphism (pre-
serving orientations)h : γ×C→S1×R×R of the formh(z,w) = (h0(z),h1(z,w),h2(z,w))

together with a basepoint expiθ0 onS1. Any suchh can be changed by an arbitrarily small
isotopy, if necessary, to make it yield a “good” braid diagram d(K) in the half-open rectan-
gle [θ0,θ0 + 2π]×R (project ontoS1 and take logarithms for the first coordinate, project
onto the firstR factor for the second coordinate, and at multiple points usethe secondR
factor to determine under- and over-crossings)—“good” in the sense that:d(K) is the union
of n properly embedded arcs, on each of which the projection to[θ0,θ0 + 2π] is a diffeo-
morphism; there are no triple points ofd(K); there are only finitely many double points, all
interior to the rectangle, and at each of which the tangent lines to the two arcs are distinct;
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and theθ coordinates of distinct double points are distinct. From such a good braid dia-
gramd(K) a word in the lettersσ j and their inverses may be read off, as follows. Let theθ
coordinates of the double points beθ1 < θ2 < · · · < θm. For eachj = 1, . . . ,m, there are
preciselyn−1 points in{θ j}×R∩d(K). Let the double point be thek( j)th among them,
in increasing order ofR coordinate. Letψθ andψ2(θ) parametrize the two arcs that cross
at the double point in question, so labelled thatψ′

1(θ j) > ψ′
2(θ j). Nearθ j there are smooth

functionsφ1(θ),φ2(θ) so thatθ 7→ (expiθ,ψl (θ),φl (θ)) (l = 1,2) parametrize intervals on

h(K). Let ε( j) = sgn(φ2(θ j)−φ1(θ j). Then the word to be read off fromd(K) is
m
∏
j=1

σε( j)
k( j).

A closed braid ispositiveif its corresponding conjugacy class inBn contains a positive
braid. If K has a braid diagramd(K), as above, in which each exponentε( j) is 1, certainly
K is positive.

Let w1, . . . ,wm be arbitrary words inσ1, . . . ,σn−1,σ
−1
1 , . . . ,σ−1

n−1. We will say that

the wordw1σk(1)w
−1
1 w2σk(2)w

−1
2 · · · wmσk(m)w

−1
m is quasipositive, and thatq∈Bn is quasi-

positiveif it can be represented as a quasipositive word.
A closed braid isquasipositiveif the corresponding conjugacy class inBn contains a

quasipositive braid.
Now let γ×C be embedded inS3 as a tubular neighborhood of an unknotted circle,

and letK be a closedn-string braid in that neighborhood. Corresponding to any good braid
diagramd(K), in which there arem double points, there is a natural Seifert surfaceS⊂ S3

for K (i.e. an oriented surface with∂S= K) made up ofn disks connected bymbands—the
disks are “stacked” (they may be taken to be meridional disksof the complementary solid
torus toγ×C) and each band connects two adjacent disks in the stack, witha half-twist
in one sense or the other depending on the signε( j) of the corresponding double point.
(This construction by “bands”, following Murasugi, is expounded in Stallings’s paper [9].
A general “band representation” which constructs “Seifertribbons” instead of Seifert sur-
faces, is discussed in [7].) As in [9], when K is positiveand so displayed by d(K), any
connected componentS0 of Shas the property that the push-off mapπ1(S0)→ π1(S3−S0)
(defined by taking a nowhere-zero normal vectorfield onS0 and using it to push any loop
onS0 into the complement ofS0) is a bijection. It then follows from a theorem of Neuwirth
and Stallings that the boundary ofS0, a union of components of the linkK, is a fibred link.
In particular,K is fibred if eitherK is a knot orS is connected, which last happens if and
only if the word ofd(K) is strictly positive. Details of the proof appear in [2]. 1©

§3. THE CLOSED BRAIDS Kγ ARE QUASIPOSITIVE

Until further notice, our algebraic functions will not haveany poles.
Let π = pr1 |Vf : Vf → C. We begin by observing that there is no loss of generality, for

the purposes of studying all the braidsKγ, in assuming thatVf is a non-singular curve and

that for eachz0 ∈ B, the fibreπ−1(z0) consists ofn−1 distinct points, at one of whichVf

has a vertical tangent. Indeed, if this is not so already, anysufficiently small change in the
constant term offn−1(z) will make it so; while the closed braids lying over a fixedγ on the
two curvesVf andVf+εw are surely isotopic (by a vertical isotopy) for all sufficiently small
ε.

Now suppose thatγ0 andγ1 are isotopic in the complement ofB. The differentialDπ
is surjective offπ−1(B); so the isotopy lifts to an isotopy of embeddings betweenKγ0 →֒
γ0 ×C and Kγ1 ×C. In the special case thatγ0 and−γ1 cobound an annulusA in the

complement ofB, then the union of annuliπ−1(A) ⊂Vf is the trace of an isotopy between
the closed braids.
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To show thatKγ is quasipositive we will isotopeγ to a more-or-less normal form for
which the conclusion will be obvious. (All the unbridgeablegap between positive and
quasipositive lies in that “more-or-less”!)

We will begin by constructing an oriented graph (smoothly embedded in the plane)
with vertices including all the points ofB. Let z1, . . . ,zl be the points ofB, and for 2©
j = 1, . . . , l let w j,l , . . . ,w j,n−1 be then− 1 distinct roots off (zj ,w) = 0. Then for all
but finitely manyθ ∈ [0,2π] the n− 1 real numbersℜ((expiθ)w j,k), k = 1, . . . ,n− 1,
are pairwise distinct, for eachj = 1, . . . , l . Changing thew-coordinate by a rotation,
then, we may assume without loss of generality thatθ = 0 works, that is, that at
each pointzj the n− 1 real partsℜw j,k are pairwise distinct. LetB+ = B∪ {z ∈ C−
B: for some two distinct solutionsw1,w2 of f (z,w) = 0,ℜw1 = ℜw2}. Then B+ is the
projection of a real algebraic set, so on general principlesit is a real semialgebraic set,
evidently of dimension 1, and so a graph; we will see this directly in the course of es-
tablishing its local structure. We will find a locally-finite(actually finite) subsetB0 of B+,
containingB, so thatC is stratified byB0, B+−B0, C−B+. Let us consider the intersection
of B+ with a disk around an arbitrary point ofC. If this point z0 does not belong toB, let
ε > 0 be sufficiently small that the diskDε(z0) is disjoint fromB. Then on this disk there
are analytic functionsw j(z) so thatπ−1(Dε(z0)) is the union of the graphs of the functions
w j . ThusB+ ∩Dε is the union of setsA j,k = {z∈ Dε(z0): ℜ(w j(z)−wk(z)) = 0}. Each
differencew j −wk is analytic, not identically 0, and so, near any point ofDε(z0), w j −wk

is a branched cover of its image; so the real analytic setA j,k is a 1-complex, smoothly
embedded near its manifold points, and near its finitely manynon-manifold points (which
we assign toB0) smoothly equivalent to a union of diameters in a disk. Likewise, distinct
setsA j,k,Ag,h cross only finitely often; put their intersections inB0 too.

If we look near a pointzj of B the situation is slightly different. Here, for smallε > 0,

π−1(Dε(zj) consists of notn but n−1 smooth disks. There aren−2 functionswk(z) an-
alytic on Dε(zj) whose graphs aren− 2 of these disks; the last disk is parametrized by

t 7→ (zj + t2,w(t)), where|t|2 < ε, w(t) is analytic, andw′(0) 6= 0 (we are at a simple ver-
tical tangent). Since we have assumedℜwi(zj), . . . ,ℜwn−2(zj),ℜw(0) are distinct, after
possibly shrinkingε we can guarantee thatB+∩Dε(zj) has no contributions from the inter-
action of any of thewk(z) with each other or withw(t): we will have simplyB+∩Dε(z) =

{zj + t2: |t|2 < ε,ℜ(w(t)−w(−t) = 0}. But, like w(t), w(t)−w(−t) has non-zero deriva-

tive att = 0, so (shrinking again if necessary) we see that{t: |t|2 < ε,ℜ(w(t)−w(−t) = 0}
is smoothly (and equivariantly) equivalent to a diameter ofthet-disk, and its image inB+

is smoothly equivalent to a radius ofDε(zj).
We now orientB+, at the same time labelling each edge with one of the symbols

σ1, . . . ,σn−1. Let A be an arc inB+ −B0. Then anywhere in the interior ofA, one may
find a short transverse arc which intersectsA only in one point, andB+ nowhere else. Over
such an arc then branches ofw(z) are distinct, and even their real parts are distinct except
where the transverse arc crossesA: at that point, for somek, 1≤ k ≤ n−1, the branches
with real partskth-greatest and(k+ 1)st-greatest among all the branches have equal real
part; labelA with σk. (Clearly this label is independent of the transverse arc.)OrientA so
that, when the orientation of the transverse arc, followingthe orientation ofA, gives the
complex orientation ofC, the braid diagram over the transverse arc is one forσk (rather

than forσ−1
k ).

Let γ be a smooth simple closed curve inC−B, oriented counterclockwise, and bound-
ing the bounded regionD. Let z1, . . . ,zs be the points ofB∩D, let D j = Dε(zj), and let
Cj = ∂D j oriented counterclockwise, forj = 1, . . . ,s. For sufficiently smallε the disksD j

lie in D and are pairwise disjoint. By a traditional construction ofthe theory of algebraic
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functions, there is a diskD0 = Dε0(z0) ⊂ D−
s
⋃

j=1
D j with boundaryC0 (oriented counter-

clockwise), and pairwise disjoint smooth embeddingsa j : [0,1] → D ( j = 1, . . . ,s) with

a j(0)∈C0,a j(1)∈Cj ,a(]0,1[) ⊂ D−
s
⋃

k=0
Dk, anda j perpendicular toC0 andCj at its ends,

all so thatγ is isotopic inD−B to a simple closed curveγ′ which “follows the arcs and

circles.” Formally,γ′ = ∂(D0∪
s
⋃

j=1
Nj ∪

s
⋃

j=1
D j), where the setsNj are “strips”—pairwise

disjoint product neighborhoods of the arcsa j([0,1]), sayNj = ν j([−1,1]× [0,1]), where
ν j is an embedding such thatν j(0, t) = a j(t) (t ∈ [0,1]), etc.

Now we involveB+. Without loss of generality, we assume thatD j ( j = 1, . . . ,s)
intersectsB+ only in an arc that joinszj to Cj , and thatD0 is disjoint from B+. It is
clear that, in performing the traditional construction, wemay so arrange things that the
embeddingsa j are transverse to the stratification—they missB0 and cross the manifold
points ofB+ transversely in the ordinary sense—and then make the product neighborhoods
Nj so narrow thatNj ∩B+ is itself a product[−1,1]× (a j([0,1])∩B+).

Let h0 : γ′ → S1 be a diffeomorphism so thath−1
0 (1) is a point onC0; defineh : γ′×C→

S1×R×R by h(z,w) = (h0(z),ℜw,ℑw). I claim that applying the construction of§2 to
this h (with base-point 1 onS1) yields a good braid diagramd(K′

γ) for which the braid

word is already in the form
m
∏
j=1

α jσk( j)α
−1
j ; so thatK′

γ andKγ are quasipositive. Indeed, the

diagramd(K′
γ) is the “product” in an obvious sense of diagrams for the (non-closed) braids

which correspond to the successive arcsν j(1)({1}× [0,1]), Cj(1) − ν j(1)(]− 1,1[×{1}),
ν j(1)({−1} × [0,1]), . . . of γ′ (where the order in which the points ofB∩ D are gone
around iszj(1), . . . ,zj(s), and where the arcsν j(k)({−1}× [0,1]) are of course traversed
from the 1 end to the 0 end). Each arc contributes, in turn, theword in the symbols

σ1, . . . ,σn−1,σ
−1
1 , . . . ,σ−1

n−1 which is given by its successive crossings of the labelled
arcs ofB+ −B0 (a crossing which, following the orientation of the arc, gives the wrong
orientation toC, is what merits the exponent−1). Obviously, by our construction, the two
edges of a stripNj give (up to orientation) the same word as the central arca j([0,1]), call
it α j . So the claim of quasipositivity is proved once one sees thatthe diagrams correspond-
ing to the arcs on the circlesCj ( j = 1, . . . ,s) contribute exactly a generatorσk( j), and not

the inverse of a generator. (Certainly by construction eachsuch arc meetsB+ in just one
point.) The exponent is seen to be+1 in all cases; it suffices to study just one example, for
instancef (z,w) = w2 + z, whereB = {0}, B+ is the non-negative real numbers, and the
conclusion is obvious.

We have proved thatif f (z,w) has no poles insideγ, the closed braid Kγ is quasipositive.
A converse will be proved in the next section.

Remarks.(1) Theexponent sum e(w) of a braid word
m

Π
j=1

σε( j)
k( j) is

m

Σ
j=1

ε( j). From the form

of the relations inBn, this is actually defined on braids; clearly it is conjugation invariant,
so it is an isotopy invariant of closed braids. The exponent sum of a quasipositive braid is
non-negative. The proof above actually shows that the exponent sum ofKγ is the number of
points ofB enclosed byγ (counting multiplicities appropriately iff (z,w) is not restricted
to simple vertical tangents and no singularities). It is easy to see that the exponent sum of
a closed braidK equalssw(K), the self-windingdefined by Laufer [4]. The proof above
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readily generalizes to analytic (rather than simply algebraic curves), and some theorems of
[4] can be recovered quickly.

(2) We have excluded from consideration simple closed curves γ enclosing poles of
our algebraic function. This is because, on the one hand, ifγ does enclose any poles of
f (z,w) then the closed braidKγ is not the whole intersection ofVf with ∂(D×D2

r ) for

anyr—there are always components inD×∂D2
r corresponding to the poles; while, on the

other hand, if we allow poles thenevery isotopy class of closed braidcan be realized as
the braided partKγ of that intersection, for appropriatef (z,w) andγ. The proof is by the
theory of rational approximation. Letγ = {z: |z| = 1}. Let K0 ⊂ γ×C be a closed braid,
not necessarily smoothly embedded, with componentsC1, . . . ,Cd of degreesn1, . . . ,nd.
For a suitable large constantM, the polynomialp(z) = M(z−1)n1 · · · (z−d)nd is such that
the compact setP= {z : |p(z)| ≤ 1} is the union ofd components, each diffeomorphic to a
disk, on the boundaries of whichp(z) has degreesn1, . . . ,nd respectively. Evidently, there
is a unique continuous functionq0(z) defined on∂P such that the pair(p,q0) : ∂P→ γ×C

parametrizesK0. According to the Hartogs-Rosenthal Theorem [3], on any compact subset
of C with measure 0 (e.g.∂P) the rational functions with poles off the compact set are
uniformly dense in the continuous functions. Letq(z) be a rational approximation toq0(z)
so close thatK = (p,q)(∂P) lies inside a tubular neighborhood ofK0 in γ×C (which
exists, even thoughK0 may not be smooth, becauseK0 is a closed braid); thenK andK0

are isotopic (by a vertical isotopy). But(p,q)(C) =V is an algebraic curve inC2 (generally
with many singularities), that is,V = Vf for somef (z,w).

Of course, whenq has poles interior toP as well as inC−P, there will be poles of
f (z,w) enclosed byγ.

(3) For later use, and intrinsic interest, we give some calculations of setsB+ in partic-
ular examples.

Example3.1. f(z,w) = w2−z. Herew1 =
√

(z), w2 = −
√

(z), andℜw1 = ℜw2 iff w1

andw2 are pure imaginary iffz is negative real; thusB+ is the ray]−∞,0] ending in 0,
the only point ofB; the ray is oriented away from 0, and labelledσ1. More generally, if
f (z,w) = w2−zn−1, thenB+ = {z: zn+1 is negative real} is the union ofn rays, oriented
outward, emanating from thenth roots of 1, all labelledσ1. Of course, in the 2-string braid
group, which is infinite cyclic, quasipositive is the same aspositive.

Example3.2. f(z,w) = w3−3w+2zn. If w1, w2, andw3 are the three roots off (z,w) =
0, thenw1 + w2 + w3 = 0, w1w2 + w1w3 + w2w3 = −3, andw1w2w3 = −2zn. Eliminating
w3 between the first two equations, we get the quadratic relation w2

2+w1w2+(w2
1−3) = 0,

whence{w2,w3} = {1
2(−w1 +

√

(−3w2
1 + 12), 1

2(−w1 −
√

(−3w12+ 12}. The indices
are irrelevant; there is perfect symmetry, and we see thatB+ = {z: ℜw2 = ℜw3} =

{z:
√

(−3w2
1 +12) is pure imaginary} = {z: −3w2

1 ∈ ]−∞,−12]}. Forn = 1, B+ is thus
the two rays]−∞,−1] and[1,∞[; in general,B+ is the union of 2n rays, oriented outward,
emanating from the 2nth roots of 1, and labelled alternatelyσ2 andσ1. For n = 4, we get
an example of a quasipositive, not positive, knotKγ for the curve pictured in Figure 1; the

braid word here isσ1σ3
2σ1σ−3

2 . This knot is 820 of the Alexander-Briggs table; it is slice—
indeed, ribbon—and non-trivial; it cannot be positive because, for instance, according to
[8] a non-trivial positive closed braid has signature greater than 0.

Example3.3. (This example will be used in the next section to establish that all
quasipositive closed braids occur asKγ’s.) Consider the reducible polynomialf (z,w) =
P(w)(w− z), whereP is a polynomial inw without double roots. HereB = z: P(z) = 0
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σ1

σ2

σ1

σ2

σ1

σ2

σ1

σ2

Fig. 1.

is just the set of roots ofP, andB+ will either be all ofC (in the unfortunate case, ruled
out in the discussion above by a rotation ofw when necessary, that some two distinct
roots ofP have equal real part) or, generically, the union ofn straight (real) linesℜz= r j

( j = 1, . . . ,n), wherer j is the real part of a (unique) root ofP: B0 here is justB. Now
supposeP has real coefficients, and consider, forε 6= 0 small and real, the setB+

ε corre-
sponding tof (z,w) + ε, and its distinguished subsetBε. Evidently these sets are invari-
ant under complex conjugation of the variablez. One sees that, in fact, the points of the
original B were “to be counted twice” and that asε moves away from 0 these points of
multiplicity two alternately (with increasingr j ) bifurcate to two real points and to two
conjugate, non-real points. Further, it is not much harder to see that the interval of the
real line between the points of a real pair itself lies entirely in B+

ε . Only in the simplest
case, whenP is linear, have I been able to get an explicit description of the full setB+

ε ;
but this suffices to give an adequate qualitative description in the general case. Namely,
if P(w) = w, say, thenB+

ε = {z: w2−wz+ ε} has two real roots with equal real parts} =

{z:
√

(z2 − 4ε) is pure imaginary} = {z: z2 ∈ ]−∞,4ε]}. Whenε < 0, this is the union
of two rays lying on the imaginary axis, oriented outward; when ε > 0, however, it is a
cross, containing the whole imaginary axis and a short interval of the real axis—the short
arms oriented towards the crossing point, the long arms out to infinity. Now for a poly-
nomial P of higher degree, there is a neighborhoodN of B which is a union of disjoint
disks around the roots ofP, so that forε sufficiently small (and real) the setB+

ε looks like
B+ outsideN (that is, it consists of two proper arcs leaving each disk ofN and going to
infinity without crossing) while inside alternate disks ofN (from left to right) B+

ε looks
like the caseP(w) = w, with anε of the same or opposite sign. So the whole setB+

ε is,
qualitatively, a sequence of alternate crosses and double-rays; Figure 2 gives a sketch in
caseP(w) = w(w−1)(w+1). The orientations are as in the linear model, and from left to
right the arcs ofB+

ε are labelledσ1, . . . ,σn (wheren is the degree ofP) in batches. For
later use note that, from an arbitrary basepoint∗ (off B+) for each j a loop can be drawn

whose word in the labelsσ j andσ−1
j is freely equal (in the free group on the labels) toσ j .

For instance, for∗ to the far left in Fig. 2, a loop forσ1 is obvious; a loop forσ2 can slip
between the two rays labelledσ1, do the obvious, and slip back; a loop forσ3 will have to
intersect the cross labelledσ2, but if it goes through the gap between the two ends of the

short arm it will pick up successivelyσ2 andσ−1
2 ; and so on.
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σ1 σ3

σ1 σ3

Fig. 2.

§4. ANALYTIC LOOPS IN THE CONFIGURATION SPACE

Throughout this section letD be the closed unit disk inC, S1 = ∂D its boundary ori-
ented counterclockwise.

If X is a complex analytic space, ananalytic disk in X is a mapi : D → X which
is the restriction toD of a complex analytic map on some slightly larger open disk; an
analytic loopis the oriented boundary of an analytic disk. SupposeX is simply connected,
andV ⊂ X is a closed analytic subset such thatX−V is connected but no longer simply
connected. We may ask, which non-trivial homotopy classes of loops in X −V contain
representatives which are analytic loops inX?

Even when the question is asked in such generality, partial answers can be given. For
our present purposes, however, it is enough to have the answer with X andV considerably
restricted. So, letX = C

n be affine space, and letV ⊂ C
n be an algebraic hypersurface

V = Vf = {z ∈ C
n: f (z) = 0}, possibly singular and/or reducible (but without multiple

components). The complex manifoldR(V) of regular points ofV is of (real) codimension
2 in C

n, and is everywhere dense inV; let its connected components beR1, . . . ,Rs. For
some arbitrary point on eachRi, let Di be an oriented normal 2-disk intersectingV only at
that point, and there positively (with respect to the complex orientations ofR(V) andC

n);
for some fixed basepoint∗ not onV, let ai be an arc inCn−V from ∗ to a point on∂Di;
let l i be a loop which runs from∗ alonga j to ∂Di , once around∂Di countercloskwise, and
back alonga j to ∗; and let[l i ] be the class ofl i in π1(C

n−V); all for i = 1, . . . ,s. For later
use, in the particular case thatn = 1 andV is a finite set of points, each one a component
Ri, let us demand further that the disksDi be pairwise disjoint from each other and from∗,
and that the arcsai be simple, pairwise disjoint except for their common endpoint ∗, and
outside the union of theDi (except for their other endpoints).

An element ofπ1(C
n−V;∗) which can be written as a product

m

Π
j=1

wi[l j(i)]w
−1
i of con-

jugates of the classes[l i ] will be called aquasipositiveelement of the fundamental group.
Quasipositivity is invariant under conjugation, and thus is really a property of free homo-
topy classes of loops.

LEMMA 1. An analytic loop inC
n−V represents a quasipositive conjugacy class in

π1(C
n−V;∗).

Proof. Let i : D → C
n be an analytic disk inCn with i(S1)∩V = /0. Replacingi by a

sufficiently close approximation (for instance, a high-order Taylor polynomial at 0) we may
assumei is the restriction toD of a (vector-valued) complex polynomialp(t) of a single
complex variable t, without changing the (free) homotopy class ofi(S1) in the complement
of V. In C×C

n×C
n let Z be the set{(t,ε,z): z = p(t)+ε belongs toS(V)}, whereS(V) =
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V−R(V) is the singular set ofV, an algebraic set of complex dimension no greater thann−
2. ThenZ is an algebraic subset ofC

2n+1. Its complex dimension is no greater thann−1,
for z varies in a set of dimension at mostn−2, p(t) is on a curve, andε is determined byz
p(t). Then the projection ofZ onto the second factor,pr2(Z)⊂C

n, is again an algebraic set
of dimension at mostn−1. Then almost anyε, in particular, almost anyε sufficiently close
to 0, is not in pr2(Z). Translatingi(D) by an appropriate smallε will not change the free
homotopy class of the analytic loopi(S1) while ensuring thatp(C) and its subset the new
analytic disk meetS(V) nowhere. Now the whole intersection of the analytic disk andV is
in the manifoldR(V) and it is a simple matter to make the intersection transverse, when it
will appear that each point of intersection counts+1 becausep(C) andR(V) are complex
manifolds. Since the boundaries of two normal disks (positively oriented) at any two points
of a componentRi are freely homotopic, the analytic loop is a product of conjugates of the
loopsl i . �

LEMMA 2. Conversely, when n= 1, every quasipositive conjugacy class inπ1(C−
{z1, . . . ,zs}) is represented by an analytic loop inC.

I do not know if Lemma 2 is true whenn 6= 1. However, the following immediate
consequence of Lemma 2 suffices to replace the putative stronger version for our purposes.

COROLLARY. If there is a proper analytic map L ofC into C
n so that the induced homo-

morphismπ1(C−L−1(V))→ π1(C
n−V) is surjective, then every quasipositive conjugacy

class inπ1(C
n−V) is represented by an analytic loop (which in fact bounds an analytic

disk lying on L(C)). �

Proof of Lemma 2.Let α =
m

Π
j=1

wi[l j(i)]w
−1
i ∈ π1(C = {z1, . . . ,zs},∗) be quasipositive. Let

the disksD j ( j = 1, . . . ,s) be as above, letD0 be a disk centered at∗ and disjoint from
all the otherD j , and suppose for neatness that for eachj = 1, . . . ,s the arca j intersects
D0 in a radius ofD0, and comes intoD j normally. Letc( j) ≥ 0 be the number of times
the index j appears asj(i) in the given presentation ofα, asi runs from 1 tom. Let D′

j,c

( j = 1, . . . ,s,c = 1, . . . ,c( j)) andD′
0 be 2-disks which we think of as (2-dimensional) 0-

handles, and letNi (i = 1, . . . ,m) be strips, each homeomorphic to[−1,1]× [0,1], which
we think of as 1-handles. Fix orientations on all the handles. Takem disjoint closed inter-
vals, successive in the cyclic order, on∂D0, and one closed interval on each of the∂D′

j,c

(of which there aremall together). We form an identification space from the disjoint union
of all the 0- and 1-handles as follows: orientedly, attach one end[−1,1]×{0} of Ni to
the ith chosen interval on∂D0, and the other end[−1,1]×{1} to the chosen interval on
∂D′

j(i),c (wherec is the number ofk with k≤ i, j(k) = j(i)). Then this identification space

D′′ is homeomorphic to a disk. We will mapD′′ into C handle by handle. First eachD j,c is
mapped homeomorphically, preserving orientation, ontoD j so that the image of the chosen
interval on∂D j,c is centered at the end ofa j on∂D j ; andD0 is mapped homeomorphically,
preserving orientation, ontoDi. For each conjugatorwi, find an immersed arc inC which
begins (outward normal) in the image on∂D0 of the ith chosen interval on∂D0 and repre-
sentswi in π1(C−{z1, . . . ,zs},D0); then map the center line{0}× [0,1] of Ni to an arc
which follows the arc representingwi from ∂D0 back toD0, then inD0 to ∗, and then along
a j(i) to D j . Because the exponent of[l j(i)] in α is +1 and not−1, the map on this center
line can be extended over all ofNi to give an immersed tubular neighborhood of the image
of the centerline, which respects the identifications at both ends. The map so constructed
is an immersion on the interior̊D′′, and on the boundary representsα. By “transport of
structure” the interior ofD′′ becomes a Riemann surface, and by the Riemann Mapping
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theorem there is an analytic homeomorphismD̊1+ε → D̊′′, whereD̊1+ε = {z: |z| < 1+ ε},

for anyε > 0. For appropriately smallε, if i is the compositeD ⊂ D̊1+ε → D̊′′ → C, theni
is an analytic disk whose boundaryi(S1) represents (the conjugacy class of)α. (A tiny bit
more juggling could assure thati(S1) passed through∗.) � 3©

Presumably the hypothesis of the corollary is always true, even with L a linearly
parametrized straight line in sufficiently general position (see [5, p. 33]). In any case, con-
sider the following example.

Example4.1. The groupBn may be defined topologically as the fundamental group of
theconfiguration spaceof unorderedn-tuples of distinct points inR2. ReadingC for R

2,
one may recognize that, first, the spaceC

n/Sn (whereSn, the symmetric group onn letters,
acts by permuting the coordinates) of unorderedn-tuples of complex numbers (distinct or
not) is in a natural way equal toCn again, by the theorem on symmetric polynomials; and,
second, that the so-called “multi-diagonal” or discriminant locus, consisting of unordered
n-tuples of which two (at least) are equal, is an algebraic hypersurfaceV∆ in the affine
spaceCn/Sn. I claim that Example 3.3 provides one with a lineL in C

n/Sn satisfying the
hypothesis of the Corollary to Lemma 2. For, what “is” an element ofCn/Sn but the monic
polynomial of degreen, in one complex variablew, whose roots are the unorderedn-tuple
in question? Under this identification, the affine coordinates in C

n/Sn are precisely the
significant coefficients of that polynomial (to wit, up to sign, the elementary symmetric
functions of the roots). Now, if the polynomialP(w) in Example 3.3 is chosen monic of
degreen−1, then the assignmentL : z 7→ P(w)(w− z)+ ε ∈C[w] of a monic polynomial
of degreen is clearly a linear parametrization of a straight line inC

n/Sn. The work done in
the example shows thatπ1(L(C)−V∆) → π1(C

n/Sn−V∆) = Bn is surjective. Further, the
two uses of the word “quasipositive” coincide here.

According to this example and the corollary, every quasipositive element ofBn, when
considered as a homotopy class in the configuration space, contains an analytic loop in
C

n/Sn. But an analytic diski : D → C
n/Sn is nothing more nor less than ann-valued

analytic function onD, that is, an analytic subset ofD×C which projects properly and
n-to-1 (counting multiplicities) toD. Without changing the free homotopy class ofi(S1) in
C

n/Sn −V∆, one may (as in the proof of Lemma 1) replace the analytic function by (the
restriction toD of) a vector-valued polynomial; and a polynomial map fromC to C

n/Sn is
precisely ann-valuedalgebraicfunction without poles. We have proved the following.

THEOREM. The closed braids that arise from algebraic functions without poles are pre-
cisely the quasipositive closed braids.

Remarks.(1) Which classes inπ1(X−V;∗) are represented by analytic loops depends
not only onX−V but very strongly onX as well. For instance, the natural way to com-
plete the affine spaceCn/Sn is to (CP

1)n/Sn, which is canonicallyCP
n. Let V̄∆ be the

completion ofV∆ in CP
n and letCP∞

n−1 beCP
n−C

n, that is, the unorderedn-tuples of
extended complex numbers one at least of which is∞. Then certainly(Cn/Sn)−V∆ =

((CP
1)n/Sn)− (V̄∆ ∪CP∞

n−1). But the loops in this space, which are boundaries of an-
alytic disks in the whole projective space, fall into every homotopy class: everything is
quasipositive. Indeed, an analytic disk in the projective space is ann-valued analytic func-
tion with poles allowed; the poles correspond to intersections of the disk withCP∞

n−1.
Then by Remark 2 of§3 we actually have that any loop at all can be perturbed by an
arbitrarily small amount, to become the boundary of an analytic disk (probably crossing
infinity). In general, it appears that there will be more analytic disks in a projective variety
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than in a comparable affine one. (2) IfX is a simply connected complex manifold, andV
is a non-singular analytic subset with finitely many components, with the components of
complex codimension 1 beingR1, . . . ,Rs, then it is general knot theory thatπ1(X−V;∗)
is normally generated by the classes of loopsl i , i = l , . . . ,s, defined as in the case studied
earlier ofX = C

n. In fact, even whenV is singular (without multiple components) and
theRi are the complex-codimension-1 components of its regular set, the same conclusion
holds—one need only observe that the union of the singular set S(V) and the regular com-
ponents of complex codimension 2 or more, as an analytic variety in its own right, has a
resolution which is a smooth map of a smooth manifold intoX; then any loop inX−V may
be made to bound a smooth 2-disk inX transverse to the resolution, and therefore disjoint
from its image. Note however that this argument depends on the ambient spaceX being a
smooth manifold with its given structure as analytic space.In this connection it is worth
contemplating the example ofX = {(z1,z2,z3,z4) ∈C

4: z2
1+z3

2+z5
3 = 0}. This is the prod-

uct of C (thez4 factor) with the cone on the dodecahedral space [6], and by the celebrated
Double Suspension Theorem,X is homeomorpic toC3. The singular setS(X) is a straight 4©
complex line, with real codimension 4. Of courseπ1(X−S(X)) has 120 elements. (It can
be shown that each of them is, in fact, represented by analytic loops.)

(3) It was asserted in the introduction that not all quasipositive knots were fibred. In-
deed, the first non-fibred knot in the Alexander-Briggs table, 52, can be represented as the

closure of the quasipositive braidσ2
1σ2(σ2σ1σ−1

2 ).
(4) For eachn, there is ananalytic curveVf in C

2, smooth, andn-sheeted over the
z-axis, such that all quasipositven-string closed braids occur asKγ for this f (z,w) and an

appropriateγ. For n = 3, one may takef (z,w) = w3−3w+ 2expz. Here, the points ofB
are the integral multiples ofπi, andB+ is a union of horizontal rays.

(5) Every oriented link has infinitely many representationsas a closed braid (see [1]). It
would be interesting to have purely knot-theoretical necessary and/or sufficient conditions
that one of the representations be quasipositive. Presumably not every knot or link has such
a representation. I hope to return to this and related questions in a future paper. 5©
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ADDENDA

Typographical errors in the original publication have beencorrected without notice; it
is to be hoped that no new ones have been introduced. The following notes provide updates
on various points.

(1) [19] gives another proof that the closure of a positive braid is a fibered link, by
constructing the fibration explicitly.

(2) Some other applications of the oriented graphB+ have been given by Orevkov
[17], [18] and Dung [13].

(3) I am indebted to Stepan Orevkov for his observation that Sandy Blank’s unpub-
lished 1967 thesis (see [11]) contains a proof that (what is here called) the quasipositivity
of α is equivalent to the existence of an immersionD̊′′ → C like that constructed in the
proof of Lemma 2.

(4) The “celebrated Double Suspension Theorem” is expounded in [15].
(5) The existence of a link which has no representation as theclosure of a quasipositive

braid was first proved using knot polynomials, as a corollaryto an inequality of Morton
[16] and Franks and Williams [14]. Boileau and Orevkov [12] have characterized such
“quasipositive links” as precisely the links isotopic to boundaries of pieces of complex
plane curve inD4, but “purely knot-theoretical necessary and/or sufficientconditions” re-
main elusive.

(6) [2] was published as [10].
(7) [7] was published as [20].
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