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1 

This paper  deals with the structure of algorithms for finding approxima- 
tions of the zeros of a  complex polynomial, especially lower bound  esti- 
mates. 

Consider the problem: 

Poly(d): Data, a  complex polynomial of degree d, leading 
coefficient 1  and  E > 0. F ind all the roots off within E. 

So if {i, . . . , td are the roots off, perhaps mu ltiple, the problem is to 
findz,, . . . , zd such that Izi - &I < E, each i. 

Eventually we will specify E(d) and require E < E(d). 
For the purposes of this paper, an  algorithm will be  a  rooted tree: root 

at the top (!) for the input, leaves at the bottom for the output. Internal 
nodes will be  of two types: 

Computation nodes, 3, which transmit a  program of real numbers,  mod-  
ified by a  rational operation + , - , x , t ; 

Branching nodes, A, which go  right or left according to whether an  
inequality is true or false (precision will be  given in Section 2). 

We  call such an  algorithm a  computation tree. 
A computation tree for the problem Poly(d) has input the coefficients of 

a  polynomial f (in terms of real and  imaginary parts). The  output must 
consist of (z,, . . . , zd) (again given in terms of real and  imaginary parts), 
each zi being within E of {i, the <i being the roots off. 

The  computation nodes do  not contribute to the topology of the compu- 
tation tree, so we define the topological complexity of the tree, as the 
number  of branching nodes. The  topological complexity of problem 
Poly(d) is the m inimum of the topological complexity of all computation 
trees for that problem. 
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Our main result is: 

MAIN THEOREM. For all E < e(d), the topological complexity of the 
problem Poly(d) is greater than (logzd)2’3. 

The proof goes by topology, especially algebraic topology. Eventually 
Fuchs’ results on the cohomology ring of the braid group play a decisive 
role. 

Some of the ideas of the proof seem quite universal, but unsolved 
problems in algebraic topology prevent extension of the result to several 
variables. 

Steele and Yao (1982) used algebraic topology to study decision trees 
for very different problems. Subsequently, Ben-Or (1983) extended this 
work. The braid group enters into McMullen’s work (1985; 1986a, b) on 
algorithms for zero finding. His negative results and those of the present 
paper are different in character. 

Two conversations with Emery Thomas were very helpful to me in 
understanding the work of Fuchs. 

2 

We now formally state what we mean by an algorithm. The notion of a 
computation tree of Section 1 is made precise (some of the computation 
nodes of Section 1 are collapsed, but the number of branching nodes is the 
same). 

The following foundational account is a little more systematic than 
necessary here, but it will be useful later. 

The definition of a Flowchart Program in Manna (1974, p. 163) is modi- 
fied in this way. No loops are allowed (for the present paper), the vari- 
ables are real numbers, and “predicates” of Manna are defined in terms 
of rational functions. 

Thus the input domain, denoted here by 9, the program domain 9, and 
the output domain 6, are each real Cartesian spaces of some dimension. 
The set of usable inputs (satisfying an input predicate in the terminology 
of Manna, 1974) is supposed to be a real semialgebraic set Yin 9. There- 
fore Y has the form Y = {y E SlSi(y) = 0, tj(y) < 0, u&) 5 0) for some 
finite set of rational functions, {si, tj, uk}. Moreover we always suppose 
that rational functions have integer coefficients in this paper. 

The set of acceptable outputs is defined by another semialgebraic set X 
C Y x 0. Definef: X+ Y as the restriction of the projection Y X 0 + Y; 
we require that f be surjective. 

Nodes of the computation tree are of four types: root (or start), compu- 
tation (or assignment), branching (or test), and leaf (or halt). Each has an 
associated rational map. 
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The root is defined by a rational mapf: 9 + 9 (each coordinate offis a 
rational function). 

A computation node is described by a rational map g: 9 x 9 + 9, 

yz-q or Y+-g(x,Y) 

To a branch node is associated a rational function h: 9 x 9 -+ R. 

i*\T (couldbeh(x,y)sO) 

Finally a leaf is defined by a rational map I: 9 x 9 + 6. 

I 1(x, Y) Or z +- 4x, Y) 

Each x E sl defines a path starting down the tree. We require that if 
x E Y, then division by zero is not encountered along the path. This con- 
dition on the computation tree ensures that each such path leads to a leaf. 
A final requirement is that for x E Y, the endpoint z of this path satisfy 
(x, z) E x c 9 x 0. 

A further reference on algorithms with an extensive up-to-date bibliog- 
raphy is Burdom and Brown (1985). 

The number of paths equals the number of leaves equals the number of 
branches plus one. 

3 

Letf: X+ Y be a continuous map. Define the covering number offas 
the least k with this property; there is an open covering %I) . . . , %k of Y 
and continuous maps gi: % i -+ X with f(gi(y)) = y, each i and y E % i. 
Note that if f is not sujective, the covering number is infinite. 

Next let 9~d be the space of complex polynomials of degree d with 
leading coefficient 1. Thus a point of CPd may be thought of as either a 
vector (aO, . . . , ad-t) with ai E C or as the polynomialf(z) = Ztaiz’, 
ad= 1. 

Let Cd be complex d-dimensional space and m: Cd + 9d the map which 
assigns to (I$, . . . , cd) the pOlynOmid with roots {r, . . . , {d. Thus ?T 
has as coordinates the symmetric functions ai (cf. Lang, 1984) in the &. 
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Let 

A = {Z; = ((1, . . . , [d) E Cd)(i = (j, some i # j} 

and r(A) = C C ??d. One may describe Z as the algebraic variety of 
polynomials f whose discriminant (Lang, 1984) is zero. Note that 
r-l(X) = A. 

9d is the input space of problem Poly(d) and Cd the output space. 
Moreover, the set of usable inputs (Y of Section 2) is BK and the set of 
acceptable outputs is 

x = KfY(z, 9 . . . 9 zd)) E BK X cdl IZi - [iI < e, f(z) = fi (Z - 6i))T 

where BK = {fCZ 9gdj (ai] I K, i = 0, . . . , d - l} and K = K(d) is chosen 
large enough that if f has all roots in the unit disk, then f E BK . 

THEOREM A. The covering number of the restriction rr: Cd - A + 
9d - 2 is less than or equal to the topological complexity of problem 
Poly(d), for all E < e(d), e(d) described in the proof. 

Proof. Let a computation tree for Poly(d) be given with leaves num- 
beredi= 1,. . . , k. Denote by Vi the subset of BK (inputs) which arrives 
at leaf i. Then BK = U$, Vi and Vi fl Vj = 0 if i # j. (The Vi are real 
semialgebraic subsets of Pd.) 

These input-output maps, denoted by 4i: Vi + Cd, are continuous real 
rational maps with integer coefficients in the variables (Re ai, Im ai). The 
values satisfy 4i(f) = (zl, . . . , zd), IZi - {il < E, where the & are the 
roots off. For our purposes, we only need the +i to be continuous. 

The Vi may be described by 

Vi={U=(U(j,* = f . 3 ad-l) E BK/ gj(a) < 0, j 1, . . + 3 1; hk(a) 2 0, 

k= 1,. . . ,m}, 

where the gj and hk are continuous (even rational) functions. Thus Vi is a 
closed subset of an open set Vi in BK. By the Tietze Extension Theorem 
(see Munkres, 1975), 4i can be extended to an open set %i of Vi and this 
map still denoted by +i; 4i: Qi + cd will satisfy: +i(f) = (~1, . . . , zd), 
Izi - {iI < E, {i the roots off. These sets %i are open in BK and cover BK 
since the Vi do. 

If Y is a subspace of a space X, it is called a deformation retract of X 
provided there is a homotopy h,: X ---, X, 0 I t I 1, satisfying: ho is the 
identity, h,(X) C Y, and hi(y) = y for y E Y. 
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The following well-known lemma is implicit in Spanier (1966, pp. 290- 
291). 

LEMMA 1. Let Y be a closed subspace of a compact space X such that 
the pair (X, Y) can be triangulated. That is, there is a homeomorphism h: 
(X, Y) ---* (K, L), where L is a subcomplex of a simplicial complex K. 
Then there is a neighborhood N of Y such that X - N is a deformation 
retract of X - Y. 

Let S = {z E Cdl llzll = 1) using the Hermitian inner product on Cd. 

LEMMA 2. The pair (r(S), 2 tl r(S)) can be triangulated. 

For the proof, see Lojasciewicz (1964). 

LEMMA 3. m(S) - C fl r(S) is a deformation retract of CPd - 2. 

Proof. First define h,: Cd - A * Cd - A by h,(x) = (1 - t)x + txlllxll. 
The homotopy is invariant under the group S(d) of covering transforma- 
tions, hence induces the required homotopy of 9d - C. 

As a consequence of Lemmas 1, 2, and 3, we have: 

LEMMA 4. There is a neighborhood N of Z n n(S) in r(S) such that 
r(S) - N is a deformation retract of !i!?d - 2. 

Let h,: ?j’d - C + 9d - C be the retraction. Thus ho is the identity, 
h@‘ti - 2) C r(S) - N, and h,(y) = y for all y E r(S) - N. Choose 
?) = q(d) with this property if f E r(S) - N; then the roots off are 
separated by at least 7. 

Next let Pi = %i fl (r(S) - N), and suppose E < r)(d)/2. Thus forf E Pi, 
and h(f) = (~1, . . . , zd), each zi has a closest root <i off defined 
unambiguously. Let $i(f) = ({I, . . . , [d). Then @i: Pi + Cd is continu- 
ous and +{f) = f. We have found a covering {Pi} of r(S) - N showing 
that the covering number of n: S - r-i(N) + r(S) - N is at least d. The 
final step in the proof of Theorem A is to use the deformation retraction to 
define the appropriate covering {Qi} of Yd - C. Let Qi = h;‘(Pi) and 
extend $i to Qi using the covering homotopy property. This finishes the 
proof of Theorem A. 

Remark. It is clear from the proof that Theorem A holds in considera- 
bly greater generality. 

4 

The cup length of a ring % is defined as the maximum number k such 
that y1 U . . . U ok # 0, yi E 3, where “U” denotes the product. 

For a continuous map f: X + Y, let K(f) be the kernel (an ideal) of 
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f*: H*(Y) --, H*(X), i.e., 

K(f) = {Y E H*(y)1 f*(r) = 01. 

Here H*(X) is the singular cohomology ring of X, and f* is the induced 
map. 

PROPOSITION 1.’ The covering number off is greater than the cup 
length of K(f). 

The cup length depends on the coefficients in cohomology, but Prop& 
tion 1 is true for any coefficients. Later the coefficient ring will be the 
integers mod 2. 

This proposition is related to category theory of Lusternik and 
Schnirelman; see Schwartz (1967) or Spanier (1966, p. 279). 

Proof of Proposition 1. We proceed by supposing the proposition is 
false. In that case there exist yl, . . . , ok E K with 71 U . * * U 'yk f 0 and 
there is an open covering Vi, i = 1, . . . , k of Y, with associated continu- 
ous maps oi: Vi + X having the property f(Ui(V)) = v for all v E Vi. 

Consider a portion of the singular cohomology sequence of the pair 
(Y, Vi) (see Spanier, 1966). 

4 H*( Y, Vi) I, H*(Y) J, H*(Vi) + * . ‘. 

Here Zi and Ji are induced by inclusion and the sequence is exact. Con- 
sider yi E K(f) C H*(Y). Then Ji(ri) = UFf *(rJ -= 0; thus by exactness, 
there is some vi E H*( Y, Vi) with Zi(Ui) = yi. 

Since the Vi are open in Y (see Spanier, 1966) we may take the cup 
product of the Vi, ~1 U * . . U vk in H*(Y, Uf=, Vi) = H*(Y, Y) = 0. On the 
other hand, by naturality v1 U * . * U uk maps into yl U . ’ 3 U Yk f 0. This 
is a contradiction and Proposition 1 is proved. 

PROPOSITION 2. Let n: Cd - A+ 9)d - 2 be as in Theorem A. Then the 
induced map in cohomology, coefficients Z, , 

is trivial for i > 0 (and an isomorphism for i = 0, of course). 

For this and the next proposition, we use the work of Fuchs (1970), but 
also the works of Arnold (1968), Birman (1974) Brieskorn (1973), Cohen 
in Cohen et al. (1976), and Fade11 and Newwirth (1962) are also quite 

’ Note added in proof. Moe Hirsch pointed out to me that by taking X as the path space of 
Y, Proposition 1 contains the Lusternik-Schnirelman result. 
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pertinent. One definition of the braid group is the fundamental group of YQd 
- Z and these papers all deal with the topology of the braid group. The 
cohomology of the braid group is the same thing as the cohomology of 9)d 
- c. 

Proof of Proposition 2. Consider certain spaces as follows. Let O(d) 
be the orthogonal group and BO(dI the corresponding classifying space (see 
Husemoller, 1966). Let S(d) be the symmetric group on d elements and let 
IIS be the Eilenberg-MacLane space K(S(d), 1) let & + BScd) be the 
universal covering (see Spanier, 1966). 

According to Fade11 and Newwirth (1962) 9 - 2 is an Eilenberg- 
MacLane space, K(fI,(Y - C), 1). The map 7~: Cd - A + 9 - C is a 
regular covering (see Spanier, 1966) with group S(d) since the map r is 
given by the symmetric functions. Thus there is a natural map from cover- 
ing space theory 

rI,(Y - z,) + S(d). 

This map can also be given by interpreting geometrically Hr(9 - C) as the 
braid group; each braid gives a permutation. There is also a natural map 

by the symmetric group permuting the coordinates. 
Ring homomorphisms in cohomology over Z, are induced by the group 

homomorphisms, SO We have H*(9d - 2) + H*(&(d)) + H*&,(d)). AC- 
cording to Fuchs (1970) the map H*&(d), Z2) --, H*(9d - x, ZZ) is sur- 
jective. 

Thus 

LEMMA. The map H*(BS(d,, Z2) + H*(9d - z, ZJ is surjectiue. 

Since the composition Hl(Cd - A) + H,(yd - xc) -+ H@,& = S(d) is 
zero, by covering space theory (Spanier, 1966), there is a map h with the 
cummutative diagram: 

cd - A 3 %d 
i i 

9d - 2 --, &S(d). 

Since H*(%d, Z2) =L H’(%d, Z2), HT(Bs(d), Z2) -b HT(Cd - A) is trivial for 
i > 0 (either way around the diagram). Proposition 2 follows, using the 
lemma. 

Let H,*(9d - c, Z2) be the ring x!!1Hi(9d - 2, Z2). 
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PROPOSITION 3. The cup length of H,*(Pd - X, Z,) is greater than 
(log2 d)2’3. 

Proof. According to Fuchs (1970), the generators of H,Y(Pd - 2, ZZ) 
are &,k, k = 0, 1, 2, . . . , m = 1, 2, 3, . . . , degree am,k = 2k(2m-‘>, 
relations ak,k = 0 and otherwise, a,,,k,. . . . . am,,k, = 0 just when 
2ml+-+m,+kl+-+k, > da 

So we want to find a sequence of distinct pairs, (ml, kJ, . . . , (m,, k,) 
with t as large as possible and 

imi+ikiSlogzd. 
I I 

Consider now the set of all distinct pairs (mi, k;) such that mi + ki 5 M. 
An easy counting shows that there are t = M(M + 1)/2 of these pairs. 

A second easy counting shows that (*) will be satisfied provided x?j2 = 
M(M + 1)(2M + 1)/6 I log2d. 

It is not difficult to check that t = (log2d)2’3 satisfies these conditions. 
Actually there is a universal E > 0 with t = (1 + E)(log2d)2’3 satisfactory. 
This proves Proposition 3. 

The proof of the Main Theorem now follows: 

Topological complexity Poly(d) 
2 Covering Number (P: Cd - A * PPd - Z) Theorem A 
> Cup length ker 7r* Proposition 1 
= Cup length H39d - I&Z,) Proposition 2 
> (log,d)2’3 Proposition 3. 
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