
Lecture 2 : The Natural Logarithm.

Recall ∫
xndx =

xn+1

n + 1
+ C n 6= −1.

What happens if n = −1?

Definition We can define a function which is an anti-derivative for x−1 using the Fundamental
Theorem of Calculus: We let

lnx =

∫ x

1

1

t
dt, x > 0.

This function is called the natural logarithm.

Note that ln(x) is the area under the continuous curve y = 1
t

between 1 and x if x > 1 and minus the
area under the continuous curve y = 1

t
between 1 and x if x < 1.

We have ln(2) is the area of the region shown in the picture on the left above and ln(1/2) is minus the
area of the region shown in the picture on the right above.

I do not have a formula for ln(x) in terms of functions studied before, however I could estimate the
value of ln(2) using a Riemann sum. The approximating rectangles for a left Riemann sum with 10
approximating rectangles is shown below. Their area adds to 0.718771 ( to 6 decimal places). If we
took the limit of such sums as the number of approximating rectangles tends to infinity, we would get
the actual value of ln(2), which is 0.693147 ( to 6 decimal places). The natural logarithm function is a
vuilt in function on most scientific calculators.

With very little work, using a right Riemann sum with 1 approximating rectangle, we can get a lower

bound for ln(2). The picture below demonstrates that ln 2 =

∫ 2

1

1

t
dt > 1/2 .
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Properties of the Natural Logarithm:
We can use our tools from Calculus I to derive a lot of information about the natural logarithm.

1. Domain = (0,∞) (by definition)

2. Range = (−∞,∞) (see later)

3. lnx > 0 if x > 1, ln x = 0 if x = 1, lnx < 0 if x < 1.

This follows from our comments above after the definition about how ln(x) relates to the area
under the curve y = 1/x between 1 and x.

4. d(lnx)
dx

= 1
x

This follows from the definition and the Fundamental Theorem of Calculus.

5. The graph of y = lnx is increasing, continuous and concave down on the interval (0,∞).

Let f(x) = ln(x), f ′(x) = 1/x which is always positive for x > 0 (the domain of f), Therefore the
graph of f(x) is increasing on its domain. We have f ′′(x) = −1

x2 which is always negative, showing
that the graph of f(x) is concave down. The function f is continuous since it is differentiable.

6. The function f(x) = ln x is a one-to-one function.

Since f ′(x) = 1/x which is positive on the domain of f , we can conclude that f is a one-to-one
function.

7. Since f(x) = ln x is a one-to-one function, there is a unique number, e, with the property that

ln e = 1.

We have ln(1) = 0 since
∫ 1

1
1/t dt = 0. Using a Riemann sum with 3 approximating rectangles,

we see that ln(4) > 1/1 + 1/2 + 1/3 > 1. Therefore by the intermediate value theorem, since
f(x) = ln(x) is continuous, there must be some number e with 1 < e < 4 for which ln(e) = 1.
This number is unique since the function f(x) = ln(x) is one-to-one.
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We will be able to estimate the value of e in the next section with a limit. e ≈ 2.7182818284590.

The following properties are very useful when calculating with the natural logarithm:

(i) ln 1 = 0

(ii) ln(ab) = ln a + ln b

(iii) ln(a
b
) = ln a− ln b

(iv) ln ar = r ln a

where a and b are positive numbers and r is a rational number.

Proof (ii) We show that ln(ax) = ln a + lnx for a constant a > 0 and any value of x > 0. The rule
follows with x = b. Let f(x) = lnx, x > 0 and g(x) = ln(ax), x > 0. We have f ′(x) = 1

x
and

g′(x) = 1
ax
· a = 1

x
.

Since both functions have equal derivatives, f(x) + C = g(x) for some constant C. Substituting
x = 1 in this equation, we get ln 1 + C = ln a, giving us C = ln a and ln ax = ln a + lnx.

(iii) Note that 0 = ln 1 = ln a
a

= ln a · 1
a

= ln a + ln 1
a
, giving us that ln 1

a
= − ln a.

Thus we get ln a
b

= ln a + ln 1
b

= ln a− ln b.

(iv) Comparing derivatives, we see that

d(lnxr)

dx
=

rxr−1

xr
=

r

x
=

d(r lnx)

dx
.

Hence lnxr = r lnx + C for any x > 0 and any rational number r. Letting x = 1 we get C = 0 and the
result holds.

Example Expand

ln
x2
√
x2 + 1

x3

using the rules of logarithms.
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Example Express as a single logarithm:

lnx + 3 ln(x + 1)− 1

2
ln(x + 1).

Example Evaluate
∫ e2

1
1
t
dt

We can use the rules of logarithms given above to derive the following information about limits.

lim
x→∞

lnx =∞, lim
x→0

lnx = −∞.

Proof We saw above that ln 2 > 1/2. If x > 2n, then ln x > ln 2n (Why ?). So lnx > n ln 2 > n/2.
Hence as x→∞, the values of lnx also approach ∞.

Also ln 1
2n

= −n ln 2 < −n/2. Thus as x approaches 0 the values of lnx approach −∞.

Note that we can now draw a reasonable sketch of the graph of y = ln(x), using all of the information
derived above.
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Example Find the limit limx→∞ ln( 1
x2+1

).
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We can extend the applications of the natural logarithm function by composing it with the absolute
value function. We have :

ln |x| =
{

lnx x > 0
ln(−x) x < 0

This is an even function with graph
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We have ln|x| is also an antiderivative of 1/x with a larger domain than ln(x).

d

dx
(ln |x|) =

1

x
and

∫
1

x
dx = ln |x|+ C

We can use the chain rule and integration by substitution to get

d

dx
(ln |g(x)|) =

g′(x)

g(x)
and

∫
g′(x)

g(x)
dx = ln |g(x)|+ C

Example Differentiate ln | 3
√
x− 1|.

Example Find the integral ∫
x

3− x2
dx.
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Logarithmic Differentiation

To differentiate y = f(x), it is often easier to use logarithmic differentiation :

1. Take the natural logarithm of both sides to get ln y = ln(f(x)).

2. Differentiate with respect to x to get 1
y
dy
dx

= d
dx

ln(f(x))

3. We get dy
dx

= y d
dx

ln(f(x)) = f(x) d
dx

ln(f(x)).

Example Find the derivative of y = 4

√
x2+1
x2−1 .

6



Extra Examples

Please try to work through these questions before looking at the solutions.

Example Expand ln( e
2
√
a2+1
b3

)

Example Differentiate ln | 3
√
x− 1|.

Example Find d/dx ln(| cosx|).

Example Find the integral ∫
cotxdx

Example Find the integral ∫ e2

e

1

x lnx
dx.

Example Find the derivative of y = sin2 x tan4 x
(x2−1)2 .

Old Exam Question Differentiate the function

f(x) =
(x2 − 1)4√

x2 + 1
.
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Solutions

Example Expand ln( e
2
√
a2+1
b3

)

ln(
e2
√
a2 + 1

b3
) = ln(e2

√
a2 + 1)− ln(b3) = ln(e2) + ln(

√
a2 + 1)− 3 ln b

= 2 ln e +
1

2
ln(a2 + 1)− 3 ln b = 2 +

1

2
ln(a2 + 1)− 3 ln b.

Example Differentiate ln | 3
√
x− 1|.

We use the chain rule here

d

dx
ln | 3
√
x− 1| = 1

3
√
x− 1

· 1

3
(x− 1)−2/3 =

1

3(x− 1)
.

Example Find d/dx ln(| cosx|).

Again, we use the chain rule

d

dx
ln | cosx| = 1

cosx
· (− sinx) = − tanx.

Example Find the integral ∫
cotxdx

∫
cotxdx =

∫
cosx

sinx
dx.

We use substitution. Let u = sinx, du = cosxdx.∫
cosx

sinx
dx =

∫
du

u
= ln |u|+ C = ln | sinx|+ C.

Example Find the integral ∫ e2

e

1

x lnx
dx.

We use substitution. Let u = lnx, du = 1
x
dx. u(e) = ln e = 1, u(e2) = ln e2 = 2.∫ e2

e

1

x lnx
dx =

∫ 2

1

du

u
= ln |u|

∣∣∣2
1

= ln 2− ln 1 = ln 2.
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Example Find the derivative of y = sin2 x tan4 x
(x2−1)2 .

We use Logarithmic differentiation. If y = sin2 x tan4 x
(x2−1)2 , then

ln y = ln(sin2 x) + ln(tan4 x)− ln((x2 − 1)2) = 2 ln(sinx) + 4 ln(tanx)− 2 ln(x2 − 1).

Differentiating both sides with respect to x, we get

1

y

dy

dx
=

2 cosx

sinx
+

4 sec2 x

tanx
− 2(2x)

x2 − 1
.

Multiplying both sides by y and converting to a function of x, we get

dy

dx
= y
[2 cosx

sinx
+

4 sec2 x

tanx
− 4x

x2 − 1

]
=
(sin2 x tan4 x

(x2 − 1)2

)[2 cosx

sinx
+

4 sec2 x

tanx
− 4x

x2 − 1

]
.

Old Exam Question Differentiate the function

f(x) =
(x2 − 1)4√

x2 + 1
.

We use Logarithmic differentiation. If y = (x2−1)4√
x2+1

, then

ln y = 4 ln(x2 − 1)− 1

2
ln(x2 + 1).

Differentiating both sides with respect to x, we get

1

y

dy

dx
=

4(2x)

x2 − 1
− 2x

2(x2 + 1)
.

Multiplying both sides by y and converting to a function of x, we get

dy

dx
= y
[ 8x

x2 − 1
− x

(x2 + 1)

]
=
((x2 − 1)4√

x2 + 1

)[ 8x

x2 − 1
− x

(x2 + 1)

]
.
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