Lecture 19: Sequences

A Sequence is a list of numbers written in order.

$$
\{a_1, a_2, a_3, \ldots\}
$$

The sequence may be infinite. The $n \text{ th term}$ of the sequence is the n th number on the list. On the list above

$$
a_1 = 1
$$
st term, $a_2 = 2$ nd term, $a_3 = 3$ rd term, etc....

Example In the sequence $\{1, 2, 3, 4, 5, 6, \dots\}$, we have $a_1 = 1, a_2 = 2, \dots$. The n^{th} term is given by $a_n = n$.

Some sequences have patterns, some do not.

Example If I roll a 20 sided die repeatedly, I generate a sequence of numbers, which have no pattern.

Example The sequences

$$
\{1,2,3,4,5,6,\dots\}
$$

and

$$
\{1, -1, 1, -1, 1, \ldots\}
$$

have patterns.

Sometimes we can give a formula for the *n* th term of a sequence, $a_n = f(n)$.

Example For the sequence

 $\{1, 2, 3, 4, 5, 6, \ldots\},\$

we can give a formula for the n th term. $a_n = n$.

Example Assuming the following sequences follow the pattern shown, give a formula for the n-th term:

$$
\{1, -1, 1, -1, 1, \dots\}
$$

$$
\{-1/2, 1/3, -1/4, 1/5, -1/6, \dots\}
$$

Factorials are commonly used in sequences

 $0! = 1, 1! = 1, 2! = 2 \cdot 1, 3! = 3 \cdot 2 \cdot 1, \ldots, n! = n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot 1.$

Example Find a formula for the n th term in the following sequence

$$
\left\{\frac{2}{1}, \frac{4}{2}, \frac{8}{6}, \frac{16}{24}, \frac{32}{120}, \ldots, a_n = \quad ,\right\}
$$

Below we show 3 different ways to represent a sequence:

$$
\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots\right\} \qquad \left\{\frac{n}{n+1}\right\}_{n=1}^{\infty} \qquad a_n = \frac{n}{n+1}.
$$

$$
\left\{\frac{-3}{3}, \frac{5}{9}, \frac{-7}{27}, \dots, (-1)^n \frac{(2n+1)}{3^n}, \dots\right\} \qquad \left\{(-1)^n \frac{(2n+1)}{3^n}\right\}_{n=1}^{\infty} \qquad a_n = (-1)^n \frac{(2n+1)}{3^n}.
$$

$$
\left\{\frac{e}{1}, \frac{e^2}{2}, \frac{e^3}{6}, \ldots, \frac{e^n}{n!}, \ldots\right\} \qquad \left\{\frac{e^n}{n!}\right\}_{n=1}^{\infty} \qquad a_n = \frac{e^n}{n!}.
$$

Graph of a Sequence

A sequence is a function from the positive integers to the real numbers, with $f(n) = a_n$. We can draw a graph of this function as a set of points in the plane. The points on the graph are

 $(1, a_1), (2, a_2), (3, a_3), \ldots, (n, a_n),$

Example Below, we show the graphs of the sequences $\left\{\frac{(-1)^n}{n}\right\}$ $\frac{(1)^n}{n}\}_{n=1}^{\infty}$ and $\left\{\frac{2n^3-1}{n^3}\right\}$ $\left\{\frac{1}{n^3}\right\}_{n=1}^{\infty}$ $n=1$

We can see from these pictures that the graphs get closer to a horizontal asymptote as $n \to \infty$, $y = 0$ for the sequence on the left and $y = 2$ for the sequence on the right. Algebraically this means that as $n \to \infty$, we have $\frac{(-1)^n}{n} \to 0$ and $\frac{2n^3-1}{n^3} \to 2$.

Limit of a Sequence

Definition A sequence $\{a_n\}$ has **limit** L if we can make the terms a_n as close as we like to L by taking n sufficiently large. We denote this by

$$
\lim_{n \to \infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty.
$$

If $\lim_{n\to\infty} a_n$ exists (is finite), we say the sequence **converges** or is convergent. Otherwise, we say the sequence diverges.

Graphically: If $\lim_{n\to\infty} a_n = L$, the graph of the sequence $\{a_n\}_{n=1}^{\infty}$ has a unique horizontal asymptote $y=L$.

Formal Definition A sequence $\{a_n\}$ has limit L and we write

$$
\lim_{n \to \infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty
$$

if for every $\epsilon > 0$ there is and integer N with the property that

if $n > N$ then $|a_n - L| < \epsilon$.

Determining if a sequence is convergent. Using our previous knowledge of limits :

Theorem If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$, where *n* is an integer, then $\lim_{n\to\infty} a_n = L$. Example Determine if the following sequences converge or diverge:

$$
\Big\{\frac{2^n-1}{2^n}\Big\}_{n=1}^\infty, \qquad \quad \Big\{\frac{2n^3-1}{n^3}\Big\}_{n=1}^\infty
$$

We can use L'Hospital's rule to determine the limit of $f(x)$ if we have an indeterminate form.

Example Is the following sequence convergent?

$$
\left\{\frac{n}{2^n}\right\}_{n=1}^\infty
$$

Diverging to ∞ . $\lim_{n\to\infty} a_n = \infty$ means that for every positive number M, there is an integer N with the property

$$
if \t n > N, \t then \t a_n > M.
$$

In this case we say the sequence $\{a_n\}$ diverges to infinity.

Note: If $\lim_{x\to\infty} f(x) = \infty$ and $f(n) = a_n$, where *n* is an integer, then $\lim_{n\to\infty} a_n = \infty$.

Example Show that the sequence $\{r^n\}_{n=1}^{\infty}$, $r \geq 0$, converges if $0 \leq r \leq 1$ and diverges to infinity if $r > 1$.

The usual Rules of Limits apply:

If ${a_n}$ and ${b_n}$ are convergent sequences and c is any constant then

$$
\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n
$$
\n
$$
\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n
$$
\n
$$
\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n
$$
\n
$$
\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \quad \text{if } \lim_{n \to \infty} b_n \neq 0
$$

$$
\lim_{n \to \infty} a_n^p = \left[\lim_{n \to \infty} a_n \right]^p
$$
 if $p > 0$ and $a_n > 0$

In fact if $\lim_{n\to\infty} a_n = L$ and $f(x)$ is a continuous function at L, then

$$
\lim_{n \to \infty} f(a_n) = f(L).
$$

Example Determine if the following sequence converges or diverges and if it converges find the limit.

$$
\left\{\sqrt[3]{\frac{2n+1}{n}} - \frac{1}{n}\right\}_{n=1}^{\infty}.
$$

Note We cannot always find a function $f(x)$ with $f(n) = a_n$. The Squeeze Theorem or Sandwich Theorem can also be applied :

If
$$
a_n \le b_n \le c_n
$$
 for $n \ge n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

Example Find the limit of the following sequence

$$
\left\{\frac{2^n}{n!}\right\}_{n=1}^{\infty},
$$

Alternating Sequences

For any sequence, we have $-|a_n| \le a_n \le |a_n|$. We can use the squeeze theorem to see that

if
$$
\lim_{n \to \infty} |a_n| = 0
$$
, then $\lim_{n \to \infty} a_n = 0$.

In fact any sequence with infinitely many positive and negative values converges if and only if $\lim_{n\to\infty} |a_n|$ 0

Let
$$
\{a_n\} = \{(-1)^n a'_n\}
$$
 where $a'_n > 0$

- If $\lim_{n\to\infty} a'_n = L \neq 0$, then $\lim_{n\to\infty} (-1)^n a'_n$ does not exist.
- If $\lim_{n\to\infty} a'_n = \infty$, then $\lim_{n\to\infty} (-1)^n a'_n$ does not exist.
- If $\lim_{n\to\infty} a'_n$ does not exist, then $\lim_{n\to\infty} (-1)^n a'_n$ does not exist.

Below, we show a picture of a sequence where, as in the first case above, $\lim_{n\to\infty} a'_n = L \neq 0$.

ternating sequence converges if and only if $\lim_{n\to\infty} |a_n| = 0$ or (for the sequence described above) $\lim_{n\to\infty} a'_n \to 0.$ (also true for sequences of form $(-1)^{n+1}a'_n$ or any sequence with infinitely many positive and negative terms)

Example Determine if the following sequences converge:

$$
\left\{(-1)^n \frac{2n+1}{n^2}\right\}_{n=1}^{\infty}, \qquad \left\{(-1)^n \frac{2n+1}{n}\right\}_{n=1}^{\infty}
$$

Monotone Sequences

Definition A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \geq 1$, or

$$
a_1 < a_2 < a_3 < \ldots
$$

A sequence $\{a_n\}$ is called **decreasing** if $a_n > a_{n+1}$ for all $n \geq 1$, or

$$
a_1 > a_2 > a_3 > \ldots
$$

A sequence $\{a_n\}$ is called **monotonic** if it is either increasing or decreasing.

Definition A sequence $\{a_n\}$ is **bounded above** if there is a number M for which

$$
a_n \le M \quad \text{ for all} \quad n \ge 1.
$$

A sequence ${a_n}$ is **bounded below** if there is a number m for which

$$
a_n \ge m \quad \text{ for all} \quad n \ge 1.
$$

A sequence that is bounded above and below is called Bounded.

Theorem Every bounded monotonic sequence is convergent.

(This theorem will be very useful later in determining if series are convergent.)

To check for monotonicity

If we have a differentiable function $f(x)$ with $f(n) = a_n$, then the sequence $\{a_n\}$ is increasing if $f'(x) > o$ and the sequence $\{a_n\}$ is decreasing if $f'(x) < \infty$.

Example Show that the following sequence is monotone and bounded and hence converges.

$$
\{\tan^{-1}(n)\}_{n=1}^{\infty}
$$

Extra Examples

Example Determine if the following sequences converge or diverge:

$$
\left\{\frac{1}{n^5}\right\}_{n=1}^{\infty},
$$

 $\lim_{n\to\infty}\frac{1}{n^5}=\lim_{x\to\infty}\frac{1}{x^5}=0$. Therefore the sequence converges to 0.

Example Is the following sequence convergent?

$$
\left\{\sqrt[n]{n}\right\}_{n=1}^{\infty}.
$$

 $\lim_{n\to\infty} \sqrt[n]{n} = \lim_{n\to\infty} n^{\frac{1}{n}} = \lim_{x\to\infty} x^{\frac{1}{x}} = \lim_{x\to\infty} e^{\frac{\ln(x)}{x}} = e^{\lim_{x\to\infty} \frac{\ln(x)}{x}}.$

Using L'Hospital's rule, we get $\lim_{x\to\infty} \frac{\ln x}{x} = \lim_{x\to\infty} \frac{1/x}{1} = 0$. Using L Hospital s rule, we get $\lim_{x\to\infty} \frac{x}{x} = \lim_{x\to\infty} \frac{1}{1} = 0$
Therefore $\lim_{n\to\infty} \sqrt[n]{n} = e^0 = 1$ and the sequence converges.

Example Determine if the following sequence converges or diverges and if it converges find the limit.

$$
\left\{\left. \cos\left(\frac{n}{2^n}\right) \right\}_{n=1}^{\infty}
$$

 $\lim_{n\to\infty}\frac{n}{2^n}=0$ (see lecture notes)

Using the rules of limits, we have $\lim_{n\to\infty} \cos\left(\frac{n}{2^n}\right)$ $\left(\frac{n}{2^n}\right) = \cos\left(\lim_{n\to\infty}\frac{n}{2^n}\right)$ $\left(\frac{n}{2^n}\right) = \cos(0) = 1$. Therefore the sequence converges to 1.

Example Show that the sequence $\{r^n\}_{n=1}^{\infty}$, converges if $-1 < r \leq 1$ and diverges to infinity if $r > 1$. This was demonstrated in class for $r > 0$. The case $r = 0$ is obvious.

The case where $r < 0$ gives an alternating series $\{r^n\}_{n=1}^{\infty}$. This converges if and only if $\lim_{n\to\infty} |r|^n =$ 0. this happens only when $|r| < 1$, giving the desired result.

Example Show that the following sequence is decreasing and bounded and hence convergent

$$
a_1 = 3, \quad a_{n+1} = \frac{a_n}{2}.
$$

The terms of this sequence are positive, since the first term is 3 and each term is half of the previous term. Therefore the sequence is bounded, since $0 < a_n < 3$ for all n.

 $a_{n+1} = \frac{1}{2}$ $\frac{1}{2}a_n < a_n$, therefore the sequence is decreasing and bounded and thus it converges.