
Lecture 23: Alternating Series

The integral test and the comparison test given in previous lectures, apply only to series with positive
terms.

A series of the form
∑∞

n=1(−1)nbn or
∑∞

n=1(−1)n+1bn, where bn > 0 for all n, is called an alternating
series, because the terms alternate between positive and negative values.

Example
∞∑
n=1

(−1)n

n
= −1 +

1

2
− 1

3
+

1

4
− 1

5
+ . . .

∞∑
n=1

(−1)n+1 n

2n+ 1
=

1

3
− 2

5
+

3

7
− 4

9
+ . . .

We can use the divergence test to show that the second series above diverges, since

lim
n→∞

(−1)n+1 n

2n+ 1
does not exist

We have the following test for such alternating series:
Alternating Series test If the alternating series

∞∑
n=1

(−1)n−1bn = b1 − b2 + b3 − b4 + . . . bn > 0

satisfies
(i) bn+1 ≤ bn for all n

(ii) lim
n→∞

bn = 0

then the series converges.

we see from the graph below that because the values of bn are decreasing, the partial sums of the series
cluster about some point in the interval [0, b1].

A proof is given at the end of the notes.

Notes

• A similar theorem applies to the series
∑∞

i=1(−1)nbn.
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• Also we really only need bn+1 ≤ bn for all n > N for some N , since a finite number of terms do
not change whether a series converges or not.

• Recall that if we have a differentiable function f(x), with f(n) = bn, then we can use its derivative
to check if terms are decreasing.

Example Test the following series for convergence

∞∑
n=1

(−1)n
1

n
,

∞∑
n=1

(−1)n
n

n2 + 1
,

∞∑
n=1

(−1)n
2n2

n2 + 1
,

∞∑
n=1

(−1)n
1

n!

∞∑
n=1

(−1)n
lnn

n2
,

∞∑
n=1

(−1)n cos

(
π

n

)
Note that an alternating series may converge whilst the sum of the absolute values diverges. In particular
the alternating harmonic series above converges.
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Estimating the Error

Suppose
∑∞

i=1(−1)n−1bn, bn > 0, converges to s. Recall that we can use the partial sum sn = b1 −
b2 + · · · + (−1)n−1bn to estimate the sum of the series, s. If the series satisfies the conditions for
the Alternating series test, we have the following simple estimate of the size of the error in our
approximation |Rn| = |s− sn|.
(Rn here stands for the remainder when we subtract the n th partial sum from the sum of the series. )

Alternating Series Estimation Theorem If s =
∑

(−1)n−1bn, bn > 0 is the sum of an alternating
series that satisfies

(i) bn+1 < bn for all n

(ii) lim
n→∞

bn = 0

then
|Rn| = |s− sn| ≤ bn+1.

A proof is included at the end of the notes.

Example Find a partial sum approximation the sum of the series
∑∞

n=1(−1)n 1
n

where the error of
approximation is less than .01 = 10−2.

Example Find a partial sum approximation the sum of the series
∑∞

n=1(−1)n 1
n!

where the error of
approximation is less than .01 = 10−2.
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Proof of the Alternating Series Test

s2 = b1 − b2 ≥ 0 since b2 < b1

s4 = s2 + (b3 − b4) ≥ s2 since b4 < b3

...

s2n = s2n−2 + (b2n−1 − b2n) ≥ s2n−2

Hence the sequence of even partial sums is increasing:

s2 ≤ s4 ≤ s6 ≤ · · · ≤ s2n ≤ . . .

Also we have
s2n = b1 − (b2 − b3)− (b4 − b5)− · · · − (b2n−2 − b2n−1)− b2n ≤ b1.

Hence the sequence of even partial sums is increasing and bounded and thus converges.. Therefore
limn→∞ sn = s for some s.

This takes care of the even partial sums, now we deal with the odd partial sums.
We have s2n+1 = s2n + b2n+1, hence limn→∞ s2n+1 = limn→∞(s2n) + limn→∞ b2n+1) = limn→∞(s2n) = s,
since by assumption (ii), limn→∞ b2n+1 = 0.

Thus the limits of the entire sequence of partial sums is s and the series converges.

Note that in the proof above we see that if s =
∑∞

n=1(−1)n−1bn, with then

s2n ≤ s ≤ s2n+1

because s2n+1 = s2n + b2n+1 and s = s2n + b2n+1 − (b2n+2 − b2n+3)− .... < s2n+1. Similarly in the proof
above we see that

s2n−1 ≥ s ≥ s2n.

Proof of Alternating Series Estimation Theorem From our note above, we have that the sum of
the series, s, lies between any two consecutive sums, and hence

|Rn| = |s− sn| ≤ |sn+1 − sn| = bn+1.
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