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Alternating Series

The integral test and the comparison test given in previous lectures, apply only
to series with positive terms.

I A series of the form
P∞

n=1(−1)nbn or
P∞

n=1(−1)n+1bn, where bn > 0 for
all n, is called an alternating series, because the terms alternate between
positive and negative values.

I Example
∞X
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(−1)n

n
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3
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1
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+ . . .

∞X
n=1

(−1)n+1 n

2n + 1
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1

3
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+

3

7
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9
+ . . .

I We can use the divergence test to show that the second series above
diverges, since

lim
n→∞

(−1)n+1 n

2n + 1
does not exist
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Alternating Series test

We have the following test for such alternating series:
Alternating Series test If the alternating series

∞X
n=1

(−1)n−1bn = b1 − b2 + b3 − b4 + . . . bn > 0

satisfies
(i) bn+1 ≤ bn for all n

(ii) lim
n→∞

bn = 0

then the series converges.

I we see from the graph that because the values of bn are decreasing, the
partial sums of the series cluster about some point in the interval [0, b1].

I A proof is given at the end of the notes.
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Notes

Alternating Series test If the alternating series

∞X
n=1

(−1)n−1bn = b1 − b2 + b3 − b4 + . . . , bn > 0

satisfies
(i) bn+1 ≤ bn for all n

(ii) lim
n→∞

bn = 0

then the series converges.

I A similar theorem applies to the series
P∞

i=1(−1)nbn.

I Also we really only need bn+1 ≤ bn for all n > N for some N, since a finite
number of terms do not change whether a series converges or not.

I Recall that if we have a differentiable function f (x), with f (n) = bn, then
we can use its derivative to check if terms are decreasing.
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Example 1

Alternating Series test If the alternating seriesP∞
n=1(−1)n−1bn = b1 − b2 + b3 − b4 + . . . bn > 0 satisfies

(i) bn+1 ≤ bn for all n

(ii) lim
n→∞

bn = 0

then the series converges.
Example 1 Test the following series for convergence

∞X
n=1

(−1)n 1

n

I We have bn = 1
n

.

I limn→∞
1
n

= 0.

I bn+1 = 1
n+1

< bn = 1
n

for all n ≥ 1.

I Therefore, we can conclude that the alternating series
P∞

n=1(−1)n 1
n

converges.

I Note that an alternating series may converge whilst the sum of the
absolute values diverges. In particular the alternating harmonic series
above converges.
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Example 2

Alternating Series test If the alternating seriesP∞
n=1(−1)n−1bn = b1 − b2 + b3 − b4 + . . . bn > 0 satisfies

(i) bn+1 ≤ bn for all n

(ii) lim
n→∞

bn = 0

then the series converges.
Example 2 Test the following series for convergence

P∞
n=1(−1)n n

n2+1

I We have bn = n
n2+1

.

I limn→∞
n

n2+1
= limn→∞

1/n

1+1/n2 = 0.

I To check if the terms bn decrease as n increases, we use a derivative. Let
f (x) = x

x2+1
. We have f (n) = bn.

I f ′(x) = (x2+1)−x(2x)

(x2+1)2
= 1−x2

(x2+1)2
< 0 for x > 1.

I Since this function is decreasing as x increases, for x > 1, we must have
bn+1 < bn for n ≥ 1.

I Therefore, we can conclude that the alternating series
P∞

n=1(−1)n n
n2+1

converges.
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Example 3

Alternating Series test If the alternating seriesP∞
n=1(−1)n−1bn = b1 − b2 + b3 − b4 + . . . bn > 0 satisfies

(i) bn+1 ≤ bn for all n

(ii) lim
n→∞

bn = 0

then the series converges.

Example 3 Test the following series for convergence:
P∞

n=1(−1)n 2n2

n2+1

I We have bn = 2n2

n2+1
.

I Here we can use the divergence test (you should always check if this
applies first)

I We have limn→∞
2n2

n2+1
= limn→∞

2
1+1/n2 = 2 6= 0.

I Therefore limn→∞(−1)n 2n2

n2+1
does not exist and we can conclude that the

series
∞X
n=1

(−1)n 2n2

n2 + 1

diverges.
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Example 4

Alternating Series test If the alternating seriesP∞
n=1(−1)n−1bn = b1 − b2 + b3 − b4 + . . . bn > 0 satisfies

(i) bn+1 ≤ bn for all n

(ii) lim
n→∞

bn = 0

then the series converges.
Example 4 Test the following series for convergence:

P∞
n=1(−1)n 1

n!

I We have bn = 1
n!

.

I Since 0 ≤ bn = 1
n·(n−1)·(n−2)·····1 ≤

1
n

, we must have limn→∞
1
n!

= 0.

I bn+1 = 1
(n+1)·n·(n−1)·(n−2)·····1 = 1

(n+1)
· 1

n·(n−1)·(n−2)·····1 = 1
n+1
· bn < bn if

n > 1.

I Therefore by the Alternating series test, we can conclude that the seriesP∞
n=1(−1)n 1

n!
converges.
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Example 5

Example 5 Test the following series for convergence:
P∞

n=1(−1)n ln n
n2

I We have bn = ln n
n2 .

I limn→∞
ln n
n2 = limx→∞

ln x
x2 = (L′Hop) limx→∞

1/x
2x

= limx→∞
1

2x2 = 0.

I To check if bn is decreasing as n increases, we calculate the derivative of
f (x) = ln x

x2 .

I f ′(x) = (x2)(1/x)−2x ln x

x2 = x−2x ln x
x2 = x(1−2 ln x)

x2 < 0 if 1− 2 ln x < 0 or
ln x > 1/2. This happens if x >

√
e, which certainly happens if x ≥ 2.

I This is enough to show that bn+1 < bn if n ≥ 2 and hence
P∞

n=1(−1)n ln n
n2

converges.
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Example 6

Example 6 Test the following series for convergence:
P∞

n=1(−1)n cos
“
π
n

”
I We have bn = cos

“
π
n

”
. bn > 0 for n ≥ 2.

I limn→∞ cos
“
π
n

”
= limx→∞ cos

“
π
x

”
= 1 6= 0.

I Therefore limn→∞(−1)n cos
“
π
n

”
does not exist and the seriesP∞

n=1(−1)n cos
“
π
n

”
diverges by the divergence test.
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Error of Estimation

Estimating the Error

Suppose
P∞

i=1(−1)n−1bn, bn > 0, converges to s. Recall that we can use the
partial sum sn = b1 − b2 + · · ·+ (−1)n−1bn to estimate the sum of the series, s.
If the series satisfies the conditions for the Alternating series test, we have the
following simple estimate of the size of the error in our approximation
|Rn| = |s − sn|.
(Rn here stands for the remainder when we subtract the n th partial sum from
the sum of the series. )

Alternating Series Estimation Theorem If s =
P

(−1)n−1bn, bn > 0 is the
sum of an alternating series that satisfies

(i) bn+1 < bn for all n

(ii) lim
n→∞

bn = 0

then
|Rn| = |s − sn| ≤ bn+1.

A proof is included at the end of the notes.
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Example

Alternating Series Estimation Theorem If s =
P

(−1)n−1bn, bn > 0 is the
sum of an alternating series that satisfies

(i) bn+1 < bn for all n

(ii) lim
n→∞

bn = 0

then
|Rn| = |s − sn| ≤ bn+1.

Example Find a partial sum approximation the sum of the series
P∞

n=1(−1)n 1
n

where the error of approximation is less than .01 = 10−2.

I We have bn = 1
n

. bn > 0 for n ≥ 1 and we have already seen that the
conditions of the alternating series test are satisfied in a previous example.

I Therefore the n th remainder, |Rn| = |s − sn| ≤ bn+1 = 1
n+1

.

I Therefore, if we find a value of n for which 1
n+1
≤ 1

102 , we will have the

error of approximation Rn ≤ 1
102 .

I 1
n+1
≤ 1

102 if 102 ≤ n + 1 or n ≥ 101.

I Checking with Mathematica, we get the actual error
R101 =

P∞
n=1(−1)n 1

n
−
P101

n=1(−1)n 1
n

= 0.00492599 which is indeed less
than .01.
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