Absolute convergence

Definition A series Y a, is called absolutely convergent if the series of
absolute values > |a,| is convergent.

If the terms of the series a, are positive, absolute convergence is the same as
convergence.

Example Are the following series absolutely convergent?

. . _q\n+l
> To check if the series Y72, % is absolutely convergent, we need to
check if the series of absolute values °7°, - is convergent.

> Since > 7, n% is a p-series with p = 3 > 1, it converges and therefore

_1yn+1l |
p e ( i)3 is absolutely convergent.
> To check if the series Y7, # is absglutfly convergent, we need to

check if the series of absolute values 3, < is convergent.

> Since Y 0, L'is a p-series with p = 1, it diverges and therefore

n

> % is not absolutely convergent.
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Conditional convergence

Definition A series ) a, is called conditionally convergent if the series is
convergent but not absolutely convergent.
Which of the series in the above example is conditionally convergent?

. . _1\nt1 N
> Since the series >, % is absolutely convergent, it is not

conditionally convergent.

n
> Since the series >, (_:) is convergent (used the alternating series test
last day to show this), but the series of absolute values 2%, 1 is not

n

convergent, the series >, (_:) is conditionally convergent.
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Absolute conv. implies conv.

Theorem If a series is absolutely convergent, then it is convergent, that is
if > |an| is convergent, then Y a, is convergent.

(A proof is given in your notes)

Example Are the following series convergent (test for absolute convergence)

e

n=1

1 n+1

. _1\yntl | .
> Since Y 0, % is absolutely convergent, we can conclude that this
series is convergent.
> To check if the series > 72 5";—4") is absolutely convergent, we consider the

sin(n)
n*

series of absolute values > 72,

> Since 0 < [sin(n)| <1, we have 0 < 5‘:3")

1
< L.

sin(n)
n*

> Therefore the series >, converges by comparison with the

converging p-series >, .

> Therefore the series > > 5'24")
convergent.
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The Ratio Test

This test is useful for determining absolute convergence.
Let >>°, an be a series (the terms may be positive or negative).

an+1

Let L =lim,— o

> If L <1, then the series > ° a, converges absolutely (and hence is
convergent).
> If L > 1 or oo, then the series > ° a, is divergent.
> If L =1, then the Ratio test is inconclusive and we cannot determine if
the series converges or diverges using this test.
This test is especially useful where factorials and powers of a constant appear
in terms of a series. (Note that when the ratio test is inconclusive for an
alternating series, the alternating series test may work. )
Example 1 Test the following series for convergence

oo

S

n=1

on+1 / (n+1)!

2n /o

» Therefore, the series converges.
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Example 2

Ratio Test Let > ° a, be a series (the terms may be positive or negative).

an+1
an

Let L =lim,—

If L <1, then the series > - a, converges absolutely.
If L> 1 or co, then the series > °°, a, is divergent.

If L =1, then the Ratio test is inconclusive.

Example 2 Test the following series for convergence

> ()

(n+1)/5"+1

n/5”

Himpooo(l+1/n) =1 < 1.

» Therefore, the series converges.

n+l __

> limp—o = limp—o = limp o0 %

an+1
a
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Example 3

Example 3 Test the following series for convergence > 7, %

(n+1)"+1/ (n+1)!

. EM T _ (n+1)(n+1)" [
> limpeo |2 = limp— oo n"/n ’ limp— oo =T o=
. 1\ 1\ _ 1\
limp— oo ("T) = limy—oo (1 + ;) = limx_oo (1 + ;)
> i (1 " l)x = limy—oo exln(1+1/x) — elimxﬁ,wxln(lJrl/x).
n(1+1 =vis
limy—oo xIn(14+1/x) = limy— o0 (1+/ 19— = (L"Hop) limy—co (FII/XXZ) =

. 1 _
||mx_.oo m =1.

» Therefore lim,— oo

S0 1 diverges.

n=1 nl

an+1
a

= limy_ 00 (1 + é)x = e! = e > 1 and the series
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Example 4

n
Example 4 Test the following series for convergence > -, (_n?

» We know already that this series converges absolutely and therefore it
converges. (we could also use the alternating series test to deduce this).

> Lets see what happens when we apply the ratio test here.

. 1/(n+1)2 . n \2
=limpsoo | —F7—| = liMmp— o i) =
l/n2

. 1 2
||m,,ﬂoo (Tl/n) =1.

» Therefore the ratio test is inconclusive here.

> limy_ oo

an+1
an
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The Root Test

Root Test Let ) 2, a, be a series (the terms may be positive or negative).

> If limy—oc v/|an| = L < 1, then the series 7, a, converges absolutely
(and hence is convergent).

> If limyoo v/]an] = L > 1 or lim,_.oo {/|an| = 00, then the series > 2 a,
is divergent.

> If limp—oo ¢/|an] = 1, then the Root test is inconclusive and we cannot
determine if the series converges or diverges using this test.

Example 5 Test the following series for convergence >°°, (—1)"! (%)

n
- . 2 . 2 - 2
> limp—oo V/]an] = limp—oo 1" (F”l) = limp—oo HT"I = limp—oo i

2>1
» Therefore by the n th root test, the series Z;”;l(—l)"_l(n%) diverges.
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Example 6

Root Test For 3% a,. L = limy—oc {/|an].

If L <1, then the series > a, converges absolutely.
If L > 1 or co, then the series 3 a, is divergent.

If L =1, then the Root test is inconclusive.

n
Example 6 Test the following series for convergence > 2, (TZA)

n
i . n . n . 1
> |Imn4>oo \n/ |3n‘ = IIm""‘X) \ (2n+1) = |Imn4,00 2+l Ilmnﬂoo 2+1/n =

1/2<1

n
> Therefore by the n th root test, the series >~ 2, (Tﬂrl) converges.
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Example 7

Root Test For 372, ar. L= limy_oco {/]an|.
If L <1, then the series > - a, converges absolutely.

If L > 1 or oo, then the series > 2 a, is divergent.

If L =1, then the Root test is inconclusive.

n
Example 7 Test the following series for convergence > -, ('“—”) .

n
n
> iMoo /2] = limnoo 0/ (122)" = limooo B2 = fim, oo 2% =
. 1
(L"Hop) limy_ 00 # =0<1

n
> Therefore by the n th root test, the series >~ °2, ('"—”) converges.

n
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Rearranging sums

If we rearrange the terms in a finite sum, the sum remains the same. This is
not always the case for infinite sums (infinite series). It can be shown that:

> If a series Y a, is an absolutely convergent series with > a, = s, then any
rearrangement of Y a, is convergent with sum s.

> It a series ) a, is a conditionally convergent series, then for any real
number r, there is a rearrangement of 3 a, which has sum r.

n
> Example The series > 2, CU s absolutely convergent with

2/1
—1)"
) ¢ 2,,) = % and hence any rearrangement of the terms has sum %
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Rearranging sums

> It a series Y a, is a conditionally convergent series, then for any real
number r, there is a rearrangement of >_ a, which has sum r.
. . . oo (—1)"1
» Example AIFernatmg Harmonic series Do ——
convergent, it can be shown that its sum is In2,

11 1 1 1 1 1 1 1
1— -4+ - 4 - 4 ~1"= 4+ ... =1In2.
2-1—3 4+5 6+7 8+9 +( )n+ n
» Now we rearrange the terms taking the positive terms in blocks of one

followed by negative terms in blocks of 2

gl 1,11 11111
2 4 3 6 8 5 10 12 7

R R

1 11 1 1 1 1 1 1 1 1
l—4+ -t ==+ = (=D +.. )= 1In2.
> ( 2373 5 6 7 gt W) =g
» Obviously, we could continue in this way to get the series to sum to any

number of the form (In2)/2".

is conditionally
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