
Lecture 25: Strategy for testing series

In this section, we face the problem of deciding which method to use to test a series for convergence or
divergence. You should start with a firm knowledge of each test and the ability to recall quickly the
details of each test.

Divergence Test If limn→∞ an does not exist or if limn→∞ an 6= 0, then
∑∞

i=1 an is divergent.

Geometric series The geometric series
∑∞

n=1 ar
n−1 = a + ar + ar2 + · · · is convergent if |r| < 1 and

its sum is
∞∑
n=1

arn−1 =
a

1− r
|r| < 1.

If |r| ≥ 1, the geometric series is divergent.

Harmonic Series The following series, known as the harmonic series, diverges:
∑∞

k=1
1
n
.

Telescoping Series These are series of the form
∑

f(n) − f(n + 1) or similar series with a lot of
cancellation. It is easy to calculate the partial sums and take the limit.

Integral Test Suppose f(x) is a positive decreasing continuous function on the interval [1,∞)
and f(n) = an. Then the series

∑∞
n=1 an is convergent if and only if

∫∞
1

f(x)dx converges, that is:

If

∫ ∞
1

f(x)dx is convergent, then
∞∑
n=1

an is convergent.

If

∫ ∞
1

f(x)dx is divergent, then
∞∑
n=1

an is divergent.

p-series
∑∞

n=1
1
np converges for p > 1, diverges for p ≤ 1.

Comparison Test Suppose that
∑

an and
∑

bn are series with positive terms.

(i) If
∑

bn is convergent and an ≤ bn for all n, then
∑

an is also convergent.

(ii) If
∑

bn is divergent and an ≥ bn for all n, then
∑

an is divergent.

Limit Comparison Test Suppose that
∑

an and
∑

bn are series with positive terms. If

lim
n→∞

an
bn

= c

where c is a finite number and c > 0, then either both series converge or both diverge.
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Alternating Series Test If the alternating series

∞∑
i=1

(−1)n−1bn = b1 − b2 + b3 − b4 + . . . bn > 0

satisfies
(i) bn+1 ≤ bn for all n

(ii) lim
n→∞

bn = 0

then the series converges.

Definition A series
∑

an is called absolutely convergent if the series of absolute values
∑
|an| is

convergent.
If the terms of the series an are positive, absolute convergence is the same as convergence.

Definition A series
∑

an is called conditionally convergent if the series is convergent but not
absolutely convergent.

Theorem If a series is absolutely convergent, then it is convergent, that is if
∑
|an| is convergent, then∑

an is convergent.

Ratio Test Let
∑∞

n=1 an be a series (the terms may be positive or negative).

• If limn→∞

∣∣∣an+1

an

∣∣∣ = L < 1, then the series
∑∞

n=1 an converges absolutely (and hence is convergent).

• If limn→∞

∣∣∣an+1

an

∣∣∣ = L > 1 or limn→∞

∣∣∣an+1

an

∣∣∣ =∞, then the series
∑∞

n=1 an is divergent.

• If limn→∞

∣∣∣an+1

an

∣∣∣ = 1, then the ratio test is inconclusive and we cannot determine if the series

converges or diverges using this test.

Root Test Let
∑∞

n=1 an be a series (the terms may be positive or negative).

• If limn→∞
n
√
|an| = L < 1, then the series

∑∞
n=1 an converges absolutely (and hence is convergent).

• If limn→∞
n
√
|an| = L > 1 or limn→∞

n
√
|an| =∞, then the series

∑∞
n=1 an is divergent.

• If limn→∞
n
√
|an| = 1, then the root test is inconclusive and we cannot determine if the series

converges or diverges using this test.

Trying to decide which test to use

It is best to have worked several examples from each of the previous sections to get a feel for where each of
the tests we have learned works best. If

∑
an is a series that we wish to test for convergence/divergence

we have the following tests:

• Divergence test, If limn→∞ an 6= 0, the series diverges.

• We may recognize it as a geometric series
∑

arn, a p-series
∑

1
np or a telescoping series

∑
f(n)−

f(n + 1).
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• It may be the sum or difference of two well known convergent series and we can break the series
into the sum or difference of these two convergent series.

• We may be able to use the integral test, we need a decreasing continuous function f(x) on the
interval [1,∞) with f(n) = an for which it is easy to evaluate the integral. This can only be
applied to series with positive terms (but we could use it to prove absolute convergence which
would give convergence). (It is best to consider the comparison test, ratio test and root test prior
to trying the integral test).

• A series that is roughly of the form
∑

1
np can be compared to a p-series with the limit comparison

test. A series that is roughly of the form
∑

rn can be compared to a geometric series with the
limit comparison test.

• We may be able to use the comparison test directly or the limit comparison test. This only applies
to series with positive terms (but we could use it to prove absolute convergence which would give
convergence). This is especially useful if the terms an are rational functions of n. We divide the
highest power of n in the denominator by the highest power of n in the numerator to determine
which p-series to compare to.

• For series with negative terms, keep in mind that absolute convergence implies convergence.

• We may be able to use the alternating series test, if the terms are decreasing in absolute value
and the limn→∞ |an| = 0, then the series converges. Otherwise the test is inconclusive.

• If the series has factorials or powers of a constant, the ratio test is probably going to work. The
ratio test will not work for series similar to p-series.

• If the terms of the series are n-th powers, the root test will probably work.

• If the ratio test is inconclusive, the root test will not work and vice versa. However the alternating
series test may work.

Determine whether the following series converge or diverge, and state the test you used to arrive at
your conclusion.

1.
∞∑
n=1

(−1)n−1√
n

2.
∞∑
n=1

en

10n
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3.
∞∑
n=1

n + 2

n3 + 2n + 1

4.
∞∑
n=1

n!

en2

5.
∞∑
n=1

(
n
√

3− 1)n

6.
∞∑
n=1

n2n

n!

7.
∞∑
n=1

n + 2

2n + 1
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8.
∞∑
n=1

lnn

n2

9.
∞∑
n=1

n + en

n2 + 10n

10.
∞∑
n=1

(
n− 2

n

)n2

11.
∞∑
n=1

arctan

(
1

n

)
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