Determine whether the following series converge or diverge, and state the test you used to arrive at your conclusion.

1.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}
$$

Solution: Alternating series. The terms $b_n = \frac{1}{\sqrt{n}}$ $\frac{1}{n}$ are decreasing, and $\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0$, so the AST says this converges.

2.

$$
\sum_{n=1}^{\infty} \frac{e^n}{10^n}
$$

Solution: This is a geometric series with ratio $r = \frac{e}{10} < 1$. A geometric series with $\left| r \right| < 1$ converges, so this converges. For the variant

$$
\sum_{n=1}^{\infty} \frac{e^n}{2^{2n}},
$$

note that this is still a geometric series, with $r = e/4 < 1$, so is convergent:

$$
\sum_{n=1}^{\infty} \frac{e^n}{2^{2n}} = \sum_{n=1}^{\infty} \frac{e^n}{4^n}.
$$

3.

$$
\sum_{n=1}^{\infty} \frac{n+2}{n^3+2n+1}
$$

Solution: Try limit comparison test with $b_n = \frac{1}{n^2}$ $\frac{1}{n^2}$. You'll see

$$
\lim_{n \to \infty} \frac{n+2}{n^3 + 2n + 1} \div \frac{1}{n^2} = \lim_{n \to \infty} \frac{n^3 + 2n^2}{n^3 + 2n + 1} = 1.
$$

Since $c = 1 > 0$ and $\sum \frac{1}{n^2}$ converges, the limit comparison test says that the series converges.

4.

$$
\sum_{n=1}^{\infty} \frac{n!}{e^{n^2}}
$$

Solution: Ratio test. Compute

$$
\lim_{n \to \infty} \frac{(n+1)!}{e^{(n+1)^2}} \div \frac{n!}{e^{n^2}} = \lim_{n \to \infty} \frac{n+1}{e^{2n+1}} = 0.
$$

Since the ratio is 0 and $0 < 1$, the ratio test says this converges.

$$
\sum_{n=1}^{\infty} (\sqrt[n]{3} - 1)^n
$$

Solution: Root test. Compute

$$
\lim_{n \to \infty} \sqrt[n]{(\sqrt[n]{3} - 1)^n} = \lim_{n \to \infty} \sqrt[n]{3} - 1 = 0,
$$

since $\lim_{n\to\infty}\sqrt[n]{3} = 1$. As the limit is 0 and $0 < 1$, the root test says this converges.

6.

$$
\sum_{n=1}^{\infty} \frac{n2^n}{n!}
$$

Solution: Ratio test. Compute

$$
\lim_{n \to \infty} \frac{(n+1)2^{n+1}}{(n+1)!} \div \frac{n2^n}{n!} = \lim_{n \to \infty} \frac{2}{n} = 0.
$$

As the limit is 0 and $0 < 1$, the ratio test says that this converges.

7.

$$
\sum_{n=1}^{\infty} \frac{n+2}{2n+1}
$$

Solution: Divergence test. Compute

$$
\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n+2}{2n+1} = \frac{1}{2}.
$$

As this limit is not equal to zero, the divergence test says that the series diverges.

8.

$$
\sum_{n=1}^{\infty} \frac{\ln n}{n^2}
$$

Solution: Use the comparison test, replacing $\ln n$ with $\sqrt{n} > \ln n$. Thus

$$
a_n = \frac{\ln n}{n} < b_n = \frac{\sqrt{n}}{n^2} = \frac{1}{n^{3/2}}.
$$

Since this is a *p*-series with $p = 3/2 > 1$, it converges, and hence the original series converges as well.

9.

$$
\sum_{n=1}^{\infty} \frac{n+e^n}{n^2+10^n}
$$

Solution: Limit comparison test, comparing to the convergent geometric series $b_n =$ $\frac{e^n}{10^n}$. Compute

$$
\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n + e^n}{n^2 + 10^n} \div \frac{e^n}{10^n} = \lim_{n \to \infty} \frac{\left(\frac{n}{e^n}\right) + 1}{\left(\frac{n^2}{10^n}\right) + 1} = 1.
$$

Since $c = 1 > 0$ and the comparison series converges, LCT says that the original series converges too.

Alternatively, you can split this up into two series:

$$
\sum_{n=1}^{\infty} \frac{n+e^n}{n^2+10^n} = \sum_{n=1}^{\infty} \frac{n}{n^2+10^n} + \sum_{n=1}^{\infty} \frac{e^n}{n^2+10^n}.
$$

You can do comparison test with each piece, eliminating the n^2 in the denominator:

$$
\frac{n}{n^2 + 10^n} \le \frac{n}{10^n} \quad \text{and} \quad \frac{e^n}{n^2 + 10^n} \le \frac{e^n}{10^n}.
$$

The second of these is a convergent geometric series (see problem 2). The first of these is seen to be convergent, e.g. by ratio test.

10.

$$
\sum_{n=1}^{\infty} \left(\frac{n}{n+2}\right)^{n^2}
$$

Solution: Root test. Compute

$$
\lim_{n \to \infty} \sqrt[n]{\left(\frac{n}{n+2}\right)^{n^2}} = \lim_{n \to \infty} \left(\frac{n}{n+2}\right)^n.
$$

To evaluate the limit, rewrite *n* as $(n + 2) - 2$ and simplify:

$$
\lim_{n \to \infty} \left(\frac{n}{n+2} \right)^n = \lim_{n \to \infty} \left(\frac{(n+2)-2}{n+2} \right)^n = \lim_{n \to \infty} \left(1 - \frac{2}{n+2} \right)^n.
$$

Remembering that

$$
\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e,
$$

and more generally

$$
\lim_{n \to \infty} \left(1 + \frac{c}{n} \right)^n = e^c,
$$

we can recognize this limit as giving e^{-2} . As this is less than 1, the Root test gives that the series is convergent.

11.

$$
\sum_{n=1}^{\infty} \arctan\left(\frac{1}{n^2}\right)
$$

Solution: Limit comparison test with the convergent series $\sum \frac{1}{n^2}$. Compute

$$
\lim_{n \to \infty} \frac{\arctan\left(\frac{1}{n^2}\right)}{\frac{1}{n^2}}.
$$

Set $x=\frac{1}{n^2}$ $\frac{1}{n^2}$, and see

$$
\lim_{n \to \infty} \frac{\arctan\left(\frac{1}{n^2}\right)}{\frac{1}{n^2}} = \lim_{x \to 0} \frac{\arctan(x)}{x} = 1.
$$

(The limit can be computed by L'Hopital, or recognized as the derivative of $\arctan(x)$ at $x = 0$). Since $c = 1 > 0$, LCT says that since $\sum \frac{1}{n^2}$ converges, so does the original series.