Determine whether the following series converge or diverge, and state the test you
used to arrive at your conclusion.
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Solution: Alternating series. The terms b,, = \/iﬁ are decreasing, and lim,,_, \/ia =0,
so the AST says this converges.
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Solution: This is a geometric series with ratio r = {5 < 1. A geometric series with
7| < 1 converges, so this converges. For the variant
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note that this is still a geometric series, with r = ¢/4 < 1, so is convergent:
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Solution: Try limit comparison test with b, = . You'll see

i n+2 1 . n?42n?
m — =+ — = lim — =
n—soond+2n+1  n?2 noocond+2n4+1

Since ¢ = 1 > 0 and ) - converges, the limit comparison test says that the series

converges.
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Solution: Ratio test. Compute
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Since the ratio is 0 and 0 < 1, the ratio test says this converges.
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Solution: Root test. Compute
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since lim,,_,o V3 = 1. As the limit is 0 and 0 < 1, the root test says this converges.
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Solution: Ratio test. Compute
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As the limit is 0 and 0 < 1, the ratio test says that this converges.
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Solution: Divergence test. Compute
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As this limit is not equal to zero, the divergence test says that the series diverges.
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Solution: Use the comparison test, replacing Inn with \/n > Inn. Thus
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Since this is a p-series with p = 3/2 > 1, it converges, and hence the original series
converges as well.
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Solution Limit comparison test, comparing to the convergent geometric series b,, =
15+ Compute

lim 2 — lim Le"+i: limwzl

Since ¢ = 1 > 0 and the comparison series converges, LCT says that the original
series converges too.

Alternatively, you can split this up into two series:
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You can do comparison test with each piece, eliminating the n? in the denominator:
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The second of these is a convergent geometric series (see problem 2). The first of
these is seen to be convergent, e.g. by ratio test.
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Solution: Root test. Compute
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To evaluate the limit, rewrite n as (n + 2) — 2 and simplify:
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and more generally

we can recognize this limit as giving e 2. As this is less than 1, the Root test gives
that the series is convergent.
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Solution: Limit comparison test with the convergent series ) ;. Compute
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Set z = =5, and see
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(The limit can be computed by L'Hopital, or recognized as the derivative of arctan(x)
atz = 0). Since ¢ = 1 > 0, LCT says that since ) -5 converges, so does the original
series.



