
Determine whether the following series converge or diverge, and state the test you
used to arrive at your conclusion.

1.
∞∑
n=1

(−1)n−1√
n

Solution: Alternating series. The terms bn = 1√
n

are decreasing, and limn→∞
1√
n
= 0,

so the AST says this converges.

2.
∞∑
n=1

en

10n

Solution: This is a geometric series with ratio r = e
10

< 1. A geometric series with
|r| < 1 converges, so this converges. For the variant

∞∑
n=1

en

22n
,

note that this is still a geometric series, with r = e/4 < 1, so is convergent:

∞∑
n=1

en

22n
=
∞∑
n=1

en

4n
.

3.
∞∑
n=1

n+ 2

n3 + 2n+ 1

Solution: Try limit comparison test with bn = 1
n2 . You’ll see

lim
n→∞

n+ 2

n3 + 2n+ 1
÷ 1

n2
= lim

n→∞

n3 + 2n2

n3 + 2n+ 1
= 1.

Since c = 1 > 0 and
∑

1
n2 converges, the limit comparison test says that the series

converges.

4.
∞∑
n=1

n!

en2

Solution: Ratio test. Compute

lim
n→∞

(n+ 1)!

e(n+1)2
÷ n!

en2 = lim
n→∞

n+ 1

e2n+1
= 0.

Since the ratio is 0 and 0 < 1, the ratio test says this converges.
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5.
∞∑
n=1

(
n
√
3− 1)n

Solution: Root test. Compute

lim
n→∞

n

√
(

n
√
3− 1)n = lim

n→∞
n
√
3− 1 = 0,

since limn→∞
n
√
3 = 1. As the limit is 0 and 0 < 1, the root test says this converges.

6.
∞∑
n=1

n2n

n!

Solution: Ratio test. Compute

lim
n→∞

(n+ 1)2n+1

(n+ 1)!
÷ n2n

n!
= lim

n→∞

2

n
= 0.

As the limit is 0 and 0 < 1, the ratio test says that this converges.

7.
∞∑
n=1

n+ 2

2n+ 1

Solution: Divergence test. Compute

lim
n→∞

an = lim
n→∞

n+ 2

2n+ 1
=

1

2
.

As this limit is not equal to zero, the divergence test says that the series diverges.

8.
∞∑
n=1

lnn

n2

Solution: Use the comparison test, replacing lnn with
√
n > lnn. Thus

an =
lnn

n
< bn =

√
n

n2
=

1

n3/2
.

Since this is a p-series with p = 3/2 > 1, it converges, and hence the original series
converges as well.

9.
∞∑
n=1

n+ en

n2 + 10n
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Solution: Limit comparison test, comparing to the convergent geometric series bn =
en

10n
. Compute

lim
n→∞

an
bn

= lim
n→∞

n+ en

n2 + 10n
÷ en

10n
= lim

n→∞

(
n
en

)
+ 1(

n2

10n

)
+ 1

= 1.

Since c = 1 > 0 and the comparison series converges, LCT says that the original
series converges too.

Alternatively, you can split this up into two series:

∞∑
n=1

n+ en

n2 + 10n
=
∞∑
n=1

n

n2 + 10n
+
∞∑
n=1

en

n2 + 10n
.

You can do comparison test with each piece, eliminating the n2 in the denominator:

n

n2 + 10n
≤ n

10n
and

en

n2 + 10n
≤ en

10n
.

The second of these is a convergent geometric series (see problem 2). The first of
these is seen to be convergent, e.g. by ratio test.

10.
∞∑
n=1

(
n

n+ 2

)n2

Solution: Root test. Compute

lim
n→∞

n

√(
n

n+ 2

)n2

= lim
n→∞

(
n

n+ 2

)n

.

To evaluate the limit, rewrite n as (n+ 2)− 2 and simplify:

lim
n→∞

(
n

n+ 2

)n

= lim
n→∞

(
(n+ 2)− 2

n+ 2

)n

= lim
n→∞

(
1− 2

n+ 2

)n

.

Remembering that

lim
n→∞

(
1 +

1

n

)n

= e,

and more generally

lim
n→∞

(
1 +

c

n

)n
= ec,

we can recognize this limit as giving e−2. As this is less than 1, the Root test gives
that the series is convergent.
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11.
∞∑
n=1

arctan

(
1

n2

)
Solution: Limit comparison test with the convergent series

∑
1
n2 . Compute

lim
n→∞

arctan
(

1
n2

)
1
n2

.

Set x = 1
n2 , and see

lim
n→∞

arctan
(

1
n2

)
1
n2

= lim
x→0

arctan(x)

x
= 1.

(The limit can be computed by L’Hopital, or recognized as the derivative of arctan(x)
at x = 0). Since c = 1 > 0, LCT says that since

∑
1
n2 converges, so does the original

series.
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