
Lecture 27: Power series representations of functions

From our knowledge of Geometric Series, we know that

g(x) =
1

1− x
= 1 + x+ x2 + x3 + . . . =

∞∑
n=0

xn for |x| < 1.

(Recall that we had

a+ ar + ar2 + ar3 + · · · =
∞∑
n=1

arn−1 =
a

1− r
if − 1 < r < 1

and this series diverges for |r| ≥ 1.
Above we have a = 1 and x = r. )

This gives us a power series representation for the function g(x) on the interval (−1, 1).
Note that the function g(x) here has a larger domain than the power series.

The n th partial sum of the above power series is given by Pn(x) = 1 + x+ x2 + x3 + · · ·+ xn.
Hence, as n→∞, the graphs of the polynomials, Pn(x) = 1 + x + x2 + x3 + · · · + xn get closer to the
graph of f(x) on the interval (−1, 1).

Having a power series representation of a function on an interval is useful for the purposes of integration,
differentiation and solving differential equations.

Method of Substitution

First, we examine how to use the power series representation of the function g(x) = 1/(1 − x) on the
interval (−1, 1) to derive a power series representation of other functions on an interval.
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Example (Substitution) Find a power series representation of the functions given below and find the
interval of convergence of the series.

f(x) =
1

1 + x7
,

Example (Substitution) Find a power series representation of the functions given below and find the
interval of convergence of the series.

f(x) =
2x

1 + x
,
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Example (Substitution) Find a power series representation of the functions given below and find the
interval of convergence of the series

h(x) =
1

4− x
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Differentiation and Integration of Power Series

We can differentiate and integrate power series term by term, just as we do with polynomials.

Theorem If the series
∑
cn(x− a)n has radius of convergence R > 0, then the function f defined by

f(x) = c0 + c1(x− a) + c2(x− a)2 + · · · =
∞∑
n=0

cn(x− a)n

is differentiable (and therefore continuous) on the interval (a−R, a+R) and

f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + · · · =
∞∑
n=1

ncn(x− a)n−1.

Also ∫
f(x)dx = C + c0(x− a) + c1

(x− a)2

2
+ c2

(x− a)3

3
+ · · · = C +

∞∑
n=0

cn
(x− a)n+1

n+ 1
.

The radii of convergence of both of these power series is also R. (The interval of convergence may
not remain the same when a series is differentiated or integrated; in particular convergence or divergence
may change at the end points).

Example Find a power series representation of the function

1

(x+ 1)2
.
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Example (Integration) Find a power series representation of the function

ln(1 + x).

Extra (Summing Series) Use the fact that a power series (with x values in the real numbers)
is continuous on its domain to show that

∞∑
x=0

(−1)n

n+ 1
= ln(2).

We have

ln(1 + x) =
∞∑
n=0

(−1)n
xn+1

n+ 1
for − 1 < x < 1.

When x = −1, the series
∑∞

n=0(−1)n xn+1

n+1
=
∑∞

n=0(−1)n (−1)n+1

n+1
=
∑∞

n=0(−1)2n+1 1
n+1

= −
∑∞

n=0
1

n+1

which diverges, by comparison with the harmonic series.
When x = 1, the series

∑∞
n=0(−1)n xn+1

n+1
=
∑∞

n=0(−1)n 1
n+1

=
∑∞

n=0(−1)n 1
n+1

= 1− 1
2

+ 1
3
− 1

4
+ . . . which

converges , by the alternating series test.
Therefore the interval of convergence of the power series

∑∞
n=0(−1)n xn+1

n+1
is (−1, 1] and since this power

series is continuous on its interval of convergence, we have

lim
x→1−

∞∑
n=0

(−1)n
xn+1

n+ 1
=
∞∑
n=0

(−1)n
1

n+ 1

. Using the fact derived above that
∑∞

n=0(−1)n xn+1

n+1
= ln(1 + x) for x < 1, we have

lim
x→1−

ln(1 + x) =
∞∑
n=0

(−1)n
1

n+ 1

or

ln(2) =
∞∑
n=0

(−1)n
1

n+ 1
.
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Example (Approximation) Use power series to approximate the following integral up to 4 decimal
places: ∫ 0.1

0

1

1 + x7
dx
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Extra Example (Integration)Show that

tan−1(x) =

∫
1

1 + x2
dx

and use your answer calculate
∑∞

n=0(−1)n 1√
3
(2n+1)

(2n+1)
.

Using the power series representation of 1
1−x on the interval (−1, 1), we get a power series representation

of 1
1+x2 :

1

1 + x2
=
∞∑
n=0

(−1)nx2n = 1− x2 + x4 − x6 + · · · on the interval (−1, 1).

Now we can integrate term by term to get a power series representation of tan−1(x) on the interval
(−1, 1),

tan−1(x) = C +
∞∑
n=0

(−1)n
x2n+1

2n+ 1
= C + x− x3

3
+
x5

5
− x7

7
− · · · on the interval (−1, 1).

Since tan−1(0) = 0, we have C = 0 and

tan−1(x) =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
= x− x3

3
+
x5

5
− x7

7
− · · · on the interval (−1, 1).

Since 1√
3
< 1 and with x = 1√

3
, we get

π

6
= tan−1(

1√
3

) =
∞∑
n=0

(−1)n
1

√
3
(2n+1)

(2n+ 1)
.

The pictures shown below are of the 4th and 10th partial sums of the above two series, alongside the
graphs of the corresponding functions.
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Extra Example:( Substitution) Find a power series representation of the function

tan−1
(x

2

)
We saw above that

tan−1(y) =
∞∑
n=0

(−1)n
y2n+1

2n+ 1
= y − y3

3
+
y5

5
− y7

7
− · · · on the interval (−1, 1).

Letting y = x
2
, we get

tan−1(
x

2
) =

∞∑
n=0

(−1)n
(x/2)2n+1

2n+ 1
= (x/2)− (x/2)3

3
+

(x/2)5

5
− (x/2)7

7
− · · · for − 1 <

x

2
< 1.

giving us that

tan−1
(x

2

)
=
∞∑
n=0

(−1)nx2n+1

(2n+ 1) · 22n+1
=
[x

2
− x3

3 · 23
+

x5

5 · 25
+ · · ·+ (−1)nx2n+1

(2n+ 1) · 22n+1
+ · · ·

]
for −2 < x < 2.
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Extra Example; Two methods, same result
Find a power series representation of the function

ln (x2 + 4)

First Way: Substitution and Integration We have

ln(x2 + 4) =

∫
2x

x2 + 4
dx

Check that

1

4 + x2
=
[1

4
− x2

42
+
x4

43
− x6

44
+ · · ·+ (−1)nx2n

4n+1
+ · · ·

]
=

[
∞∑
n=0

(−1)nx2n

4n+1

]
for − 2 < x < 2

Hence

2x

4 + x2
=
[2x

4
−2x · x2

42
+

2x · x4

43
−2x · x6

44
+· · ·+(−1)n2x · x2n

4n+1
+· · ·

]
=

[
∞∑
n=0

(−1)n2x · x2n

4n+1

]
for −2 < x < 2

[2x

4
− 2x3

42
+

2x5

43
− 2x7

44
+ · · ·+ (−1)n2x2n+1

4n+1
+ · · ·

]
=

[
∞∑
n=0

(−1)n2x2n+1

4n+1

]
for − 2 < x < 2

Integrating both sides, we get

ln(x2+4) =

∫
2x

x2 + 4
dx = C+

[∫ 2x

4
dx−

∫
2x3

42
dx+

∫
2x5

43
dx−

∫
2x7

44
dx+· · ·+

∫
(−1)n2x2n+1

4n+1
dx+· · ·

]
= C +

[
∞∑
n=0

∫
(−1)n2x2n+1

4n+1
dx

]
for − 2 < x < 2.

Substituting x = 0 into the equation, we get ln 4 = C. Thus we get

ln(x2 + 4) = ln 4 +
[ 2x2

2 · 4
− 2x4

4 · 42
+

2x6

6 · 43
− 2x8

8 · 44
+ · · ·+ (−1)n2x2n+2

(2n+ 2) · 4n+1
+ · · ·

]
= ln 4 +

[
∞∑
n=0

(−1)n2x2n+2

(2n+ 2) · 4n+1

]
for − 2 < x < 2

= ln 4+
[x2

4
− x4

2 · 42
+

x6

3 · 43
− x8

4 · 44
+· · ·+ (−1)nx2n+2

(n+ 1) · 4n+1
+· · ·

]
= ln 4 +

[
∞∑
n=0

(−1)nx2n+2

(n+ 1) · 4n+1

]
for −2 < x < 2

Second Way (Substitution): ln(4 +x2) = ln(4(1 + x2

4
) = ln(4) + ln(1 + x2

4
). We can now use our result

from before

ln(1 + y) =
∞∑
n=0

(−1)n
yn+1

n+ 1
.

Let y = x2

4
to get

ln(1 +
x2

4
) =

∞∑
n=0

(−1)n
(x2/4)n+1

n+ 1
=
∞∑
n=0

(−1)n
x2n+2

4n+1(n+ 1)

Hence

ln(4 + x2) = ln(4) +
∞∑
n=0

(−1)n
x2n+2

4n+1(n+ 1)
.
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Extra Example: (Substitution) Find a power series representation of the functions given below and
find the interval of convergence of the series.

g(x) =
2x2

3− x
,

We have
2x2

3− x
=

2x2

3

[
1

1− (x/3)

]
.

Now recall from above that

1

1− y
= 1 + y + y2 + y3 + · · ·+ yn + · · · =

∞∑
n=0

yn for − 1 < y < 1

Therefore, substituting x/3 for y, we get

1

1−
(

x
3

) = 1 +
(x

3

)
+
(x

3

)
2 +

(x
3

)
3 + · · ·+

(x
3

)
n + · · · =

∞∑
n=0

(x
3

)
n for − 1 <

(x
3

)
< 1

We have −1 <
(

x
3

)
< 1 if −3 < x < 3 (multiplying the inequality by 3). Therefore

1

1−
(

x
3

) = 1 +
x

3
+
x2

32
+
x3

33
+ · · ·+ xn

3n
+ · · · =

∞∑
n=0

xn

3n
for − 3 < x < 3.

Now we want a power series representation for

g(x) =
2x2

3− x
=

2x2

3

[
1

1− (x/3)

]

using the power series derived above for 1
1−(x/3) , we get

2x2

3− x
=

2x2

3

[
1 +

x

3
+
x2

32
+
x3

33
+ · · ·+ xn

3n
+ · · ·

]
=

2x2

3

∞∑
n=0

xn

3n
for − 3 < x < 3.

or

2x2

3− x
=

[
2x2

3
+

2x2

3
(
x

3
) +

2x2

3
(
x2

32
) +

2x2

3
(
x3

33
) + · · ·+ 2x2

3
(
xn

3n
) + · · ·

]
=
∞∑
n=0

2x2

3
(
xn

3n
) for −3 < x < 3.

or
2x2

3− x
=

[
2x2

3
+

2x3

32
+

2x4

33
+

2x5

34
+ · · ·+ 2xn+2

3n+1
+ · · ·

]
=
∞∑
n=0

2xn+2

3n+1
for − 3 < x < 3.
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