Lecture 6 : Inverse Trigonometric Functions

Inverse Sine Function (arcsin $x = sin^{-1}x$) The trigonometric function sin x is not one-to-one functions, hence in order to create an inverse, we must restrict its domain. The restricted sine function is given by

> $f(x) =$ $\sqrt{ }$ \int \mathcal{L} $\sin x \quad -\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ 2 undefined otherwise

We have Domain(f) = $\left[-\frac{\pi}{2}\right]$ $\frac{\pi}{2}$, $\frac{\pi}{2}$ $\frac{\pi}{2}$ and Range(f) = [-1, 1].

We see from the graph of the restricted sine function (or from its derivative) that the function is one-to-one and hence has an inverse, shown in red in the diagram below.

This inverse function, $f^{-1}(x)$, is denoted by

$$
f^{-1}(x) = \sin^{-1} x
$$
 or $\arcsin x$.

Properties of $\sin^{-1} x$. Domain(sin⁻¹) = [-1, 1] and Range(sin⁻¹) = [- $\frac{\pi}{2}$ $\frac{\pi}{2}$, $\frac{\pi}{2}$ $\frac{\pi}{2}$. Since $f^{-1}(x) = y$ if and only if $f(y) = x$, we have:

$$
\boxed{\sin^{-1} x = y \text{ if and only if } \sin(y) = x \text{ and } -\frac{\pi}{2} \le y \le \frac{\pi}{2}.}
$$

Since $f(f^{-1})(x) = x \ f^{-1}(f(x)) = x \text{ we have:}$
 $\sin(\sin^{-1}(x)) = x \text{ for } x \in [-1, 1] \sin^{-1}(\sin(x)) = x \text{ for } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$

from the graph: $\sin^{-1} x$ is an odd function and $\sin^{-1}(-x) = -\sin^{-1} x$. Example Evaluate $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ using the graph above.

Example Evaluate $\sin^{-1}($ √ $\frac{1}{3}$ (2), $\sin^{-1}(-$ √ $3/2),$

Example Evaluate $\sin^{-1}(\sin \pi)$.

Example Evaluate $cos(sin^{-1}($ √ $3/2)$).

Example Give a formula in terms of x for $tan(sin^{-1}(x))$

Derivative of $\sin^{-1} x$.

$$
\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}, \quad -1 \le x \le 1.
$$

Proof We have $\sin^{-1} x = y$ if and only if $\sin y = x$. Using implicit differentiation, we get $\cos y \frac{dy}{dx} = 1$ or

$$
\frac{dy}{dx} = \frac{1}{\cos y}
$$

.

Now we know that $\cos^2 y + \sin^2 y = 1$, hence we have that $\cos^2 y + x^2 = 1$ and

$$
\cos y = \sqrt{1 - x^2}
$$

and

.

$$
\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}.
$$

If we use the chain rule in conjunction with the above derivative, we get

$$
\frac{d}{dx}\sin^{-1}(k(x)) = \frac{k'(x)}{\sqrt{1 - (k(x))^2}}, \quad x \in \text{Dom}(k) \text{ and } -1 \le k(x) \le 1.
$$

Example Find the derivative

$$
\frac{d}{dx}\sin^{-1}\sqrt{\cos x}
$$

Inverse Cosine Function We can define the function $\cos^{-1} x = \arccos(x)$ similarly. The details are given at the end of this lecture.

Domain(cos⁻¹) = [-1, 1] and Range(cos⁻¹) = [0,
$$
\pi
$$
].

$$
\csc^{-1} x = y \quad \text{if and only if} \quad \csc(y) = x \text{ and } 0 \le y \le \pi.
$$

$$
\csc(\cos^{-1}(x)) = x \text{ for } x \in [-1, 1] \quad \cos^{-1}(\cos(x)) = x \text{ for } x \in [0, \pi].
$$

It is shown at the end of the lecture that

$$
\frac{d}{dx}\cos^{-1}x = -\frac{d}{dx}\sin^{-1}x = \frac{-1}{\sqrt{1-x^2}}
$$

and one can use this to prove that

$$
\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}.
$$

Inverse Tangent Function

The tangent function is not a one to one function, however we can also restrict the domain to construct a one to one function in this case.

The restricted tangent function is given by

$$
h(x) = \begin{cases} \tan x & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ \text{undefined} & \text{otherwise} \end{cases}
$$

We see from the graph of the restricted tangent function (or from its derivative) that the function is one-to-one and hence has an inverse, which we denote by

$$
h^{-1}(x) = \tan^{-1} x
$$
 or $\arctan x$.

Example Find tan⁻¹(1) and tan⁻¹($\frac{1}{\sqrt{2}}$ $_{\overline{3}}$).

Example Find cos(tan⁻¹ $(\frac{1}{\sqrt{2}})$ $\frac{1}{3})$).

Derivative of $tan^{-1} x$.

$$
\frac{d}{dx} \tan^{-1} x = \frac{1}{x^2 + 1}, \quad -\infty < x < \infty.
$$

Proof We have $\tan^{-1} x = y$ if and only if $\tan y = x$. Using implicit differentiation, we get $\sec^2 y \frac{dy}{dx} = 1$ or $\overline{1}$

$$
\frac{dy}{dx} = \frac{1}{\sec^2 y} = \cos^2 y.
$$

Now we know that $\cos^2 y = \cos^2(\tan^{-1} x) = \frac{1}{1+x^2}$. proving the result.

If we use the chain rule in conjunction with the above derivative, we get

$$
\frac{d}{dx} \tan^{-1}(k(x)) = \frac{k'(x)}{1 + (k(x))^2}, \quad x \in \text{Dom}(k)
$$

Example Find the domain and derivative of $tan^{-1}(ln x)$

Domain = $(0, \infty)$

$$
\frac{d}{dx}\tan^{-1}(\ln x) = \frac{\frac{1}{x}}{1+(\ln x)^2} = \frac{1}{x(1+(\ln x)^2)}
$$

Integration formulas

Reversing the derivative formulas above, we get

$$
\int \frac{1}{\sqrt{1 - x^2}} dx = \sin^{-1} x + C, \quad \int \frac{1}{x^2 + 1} dx = \tan^{-1} x + C,
$$

Example

$$
\int \frac{1}{\sqrt{9 - x^2}} dx =
$$

$$
\int \frac{1}{3\sqrt{1 - \frac{x^2}{9}}} dx = \int \frac{1}{3\sqrt{1 - \frac{x^2}{9}}} dx = \frac{1}{3} \int \frac{1}{\sqrt{1 - \frac{x^2}{9}}} dx
$$

Let $u=\frac{x}{3}$ $\frac{x}{3}$, then $dx = 3du$ and

$$
\int \frac{1}{\sqrt{9 - x^2}} dx = \frac{1}{3} \int \frac{3}{\sqrt{1 - u^2}} du = \sin^{-1} u + C = \sin^{-1} \frac{x}{3} + C
$$

Example

$$
\int_0^{1/2} \frac{1}{1+4x^2} \, dx
$$

Let $u = 2x$, then $du = 2dx$, $u(0) = 0$, $u(1/2) = 1$ and

$$
\int_0^{1/2} \frac{1}{1+4x^2} dx = \frac{1}{2} \int_0^1 \frac{1}{1+u^2} dx = \frac{1}{2} \tan^{-1} u \Big|_0^1 = \frac{1}{2} [\tan^{-1}(1) - \tan^{-1}(0)]
$$

$$
\frac{1}{2} [\frac{\pi}{4} - 0] = \frac{\pi}{8}.
$$

Extra Examples Example Find a formula in terms of x for $\cos(\tan^{-1} x)$.

Example

$$
\int_0^{\frac{1}{\sqrt{2}}} \frac{x}{\sqrt{1 - x^4}} dx
$$

Let $u = x^2$. Then $du = 2xdx$ and $\frac{du}{2} = xdx$. $u(0) = 0$ and $u(\frac{1}{\sqrt{2}})$ $(\frac{1}{2}) = \frac{1}{2}$. We get

$$
\int_0^{\frac{1}{\sqrt{2}}} \frac{x}{\sqrt{1-x^4}} dx = \frac{1}{2} \int_0^{\frac{1}{2}} \frac{du}{\sqrt{1-u^2}} = \frac{1}{2} \sin^{-1}(u) \Big|_0^{\frac{1}{2}}
$$

$$
= \frac{1}{2} [\sin^{-1}(1/2) - \sin^{-1}(0)] = \frac{1}{2} [\pi/6 - 0] = \pi/12
$$

Example

$$
\int \frac{1}{x(1+(\ln x)^2)} dx
$$

Let $u = \ln x$, then $du = dx/x$ and

$$
\int \frac{1}{x(1+(\ln x)^2)} dx = \int \frac{1}{(1+(u)^2)} du = \tan^{-1} u + C = \tan^{-1}(\ln x) + C
$$

Example Find the domain and derivative of $h(x) = \sin^{-1}(x^2 - 1)$

The domain of this function is all values of x for which $x^2 - 1$ is in the domain of sin⁻¹ which is $\{x \mid -1 \le x \le 1\}$. Therefore the domain of $h = \{x \le k$ that $-1 \le x^2 - 1 \le 1\}$. Now $-1 \le x^2 - 1 \le 1$ is the same as $0 \leq x^2 \leq 2$, or \cdot^{e} $2 \leq x \leq$ √ 2. Therefore the domain of h is the interval $-$ √ $2 \leq x \leq$ \geq 2.

$$
\frac{d}{dx}\sin^{-1}(x^2 - 1) = \frac{1}{\sqrt{1 - (x^2 - 1)^2}} \cdot 2x = \frac{2x}{\sqrt{1 - (x^2 - 1)^2}}
$$

.

The restricted cosine function is given by

$$
g(x) = \begin{cases} \cos x & 0 \le x \le \pi \\ \text{undefined} & \text{otherwise} \end{cases}
$$

We have $Domain(g) = [0, \pi]$ and $Range(g) = [-1, 1]$.

We see from the graph of the restricted cosine function (or from its derivative) that the function is one-to-one and hence has an inverse,

Domain(\cos^{-1}) = [-1, 1] and Range(\cos^{-1}) = [0, π].

Recall from the definition of inverse functions:

$$
g^{-1}(x) = y \text{ if and only if } g(y) = x.
$$

$$
\csc^{-1} x = y \text{ if and only if } \csc(y) = x \text{ and } 0 \le y \le \pi.
$$

$$
g(g^{-1}(x)) = x \quad g^{-1}(g(x)) = x
$$

$$
\csc(\cos^{-1}(x)) = x \text{ for } x \in [-1, 1] \quad \cos^{-1}(\cos(x)) = x \text{ for } x \in [0, \pi].
$$

Note from the graph that $|\cos^{-1}(-x) = \pi - \cos^{-1}(x)|$.

 $\cos^{-1}(\frac{1}{2})$ √ $\overline{3}/2$) = _______ and cos⁻¹(-√ $3/2) =$

You can use either chart below to find the correct angle between 0 and π .:

$$
\tan(\cos^{-1}(\sqrt{3}/2)) = __
$$

 $tan(cos^{-1}(x)) =$ Must draw a triangle with correct proportions:

$$
\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}}, \quad -1 \le x \le 1.
$$

Proof We have $\cos^{-1} x = y$ if and only if $\cos y = x$. Using implicit differentiation, we get $-\sin y \frac{dy}{dx} = 1$ or

$$
\frac{dy}{dx} = \frac{-1}{\sin y}.
$$

Now we know that $\cos^2 y + \sin^2 y = 1$, hence we have that $\sin^2 y + x^2 = 1$ and

$$
\sin y = \sqrt{1 - x^2}
$$

and

$$
\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}}
$$

.

.

Note that $\frac{d}{dx} \cos^{-1} x = -\frac{d}{dx} \sin^{-1} x$. In fact we can use this to prove that $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$ 2

If we use the chain rule in conjunction with the above derivative, we get

$$
\frac{d}{dx}\cos^{-1}(k(x)) = \frac{-k'(x)}{\sqrt{1 - (k(x))^2}}, \quad x \in \text{Dom}(k) \text{ and } -1 \le k(x) \le 1.
$$

Example Find the domain and derivative of $\cos^{-1}(x^2 - 1)$ Domain: $-1 \le x^2 - 1 \le 1$ or $0 \le x^2 \le 2$ or $-$ √ $2 \leq x \leq$ √ 2. Using the formula above with $k(x) = x^2 - 1$, we get

$$
\frac{d}{dx}\cos^{-1}(x^2 - 1) = \frac{-2x}{\sqrt{1 - (x^2 - 1)^2}}
$$

Example

$$
\int \frac{\cos^{-1} x}{\sqrt{1 - x^2}} dx
$$

Let $u = \cos^{-1} x$, $du = \frac{-1}{\sqrt{1-x^2}dx}$ or $dx = -$ √ $1-x^2du$. We get

$$
\int \frac{\cos^{-1} x}{\sqrt{1 - x^2}} dx = -\int u du = \frac{-u^2}{2} + C = \frac{-(\cos^{-1} x)^2}{2} + C
$$