
Math 60380, Assignment 1, solutions Due: Wednesday, January 21, 2026

(1) Let X be the locus
X = {(z, w) ∈ C2 | z = ew}.

Show that X is a Riemann surface, either by exhibiting a collection of holomorphic
charts or else by appealing to other technology.

Solution: The fastest way to do this is to appeal to the regular value theorem (RVT). Let
F : C2 → C be the holomorphic function given by F (z, w) = z − ew. Then X is given as

X = F−1(0),

and if 0 is a regular value of F , then X will be a holomorphic submanifold of C2, i.e. a
Riemann surface.

To check that this holds, it is necessary to verify that at every point of X , at least one of
the partial derivative Fz or Fw is nonvanishing. As Fz = 1 is everywhere nonvanishing, the
claim follows.
[Note: Also Fw = ew is everywhere nonvanishing, but this is something of a red herring.
One can replace ew with any holomorphic function g(w) and the same argument shows
that the solution set z = g(w) still defines a Riemann surface. The projection onto the
w-factor is a globally well-defined holomorphic map that gives a global inverse to g(w). ]

(2) Recall that a smooth manifold M is said to be orientable if there is an atlas {Ui, ϕi}
such that each transition function ϕij has everywhere positive Jacobian determinant.
Prove that every Riemann surface is orientable.

Solution: Let X be a Riemann surface. We must verify that for the atlas of charts {Ui, ϕi}
realizing the Riemann surface structure on X , the transition functions ϕij : ϕ

−1
i (Ui∩Uj) → C

have positive Jacobian, upon identifying C with R2. This is a consequence of the Cauchy-
Riemann equations. Let f(z) be a holomorphic function, and write f(x+ iy) = u(x+ iy) +
iv(x+ iy). Then the Cauchy-Riemann equations assert that

ux = vy and uy = −vx

for all x+ iy in the domain of f . Thus, as a map from R2 to R2, the Jacobian of f is given as

Jac(f)(x+ iy) = (uxvy − uyvx)(x+ iy) = (u2
x + u2

y)(x+ iy) ≥ 0.

Moreover, the Jacobian is strictly positive whenever the complex derivative f ′(x+ iy) is
nonvanishing. Since f = ϕij is a transition function, it is everywhere invertible, so that
positivity of the Jacobian indeed holds.

(3) (Projectivization) Here is one way to define a compactification of the solution set to
y2 = p(x) in C2, where p(x) is a polynomial with distinct roots of degree three.
(a) Let F (x, y, z) be a homogeneous polynomial1 of degree d ≥ 1. Verify that the

set
V (F ) = {[x : y : z] ∈ CP2 | F (x, y, z) = 0}

is well-defined. Why is the hypothesis of homogeneity necessary?

1Recall a polynomial is homogeneous of degree d if every monomial has total degree d (counting each
variable as having degree 1)
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[Important comment: other level sets “F (x, y, z) = λ” for λ ̸= 0 are not well-
defined! That is, F is not a function on CP2!]
Solution: We must check that the condition F (x, y, z) = 0 is independent of the
choice of equivalence class representative, i.e. we must check that F (x, y, z) = 0
if and only if F (λx, λy, λz) = 0 for all λ ∈ C∗. Since F is homogeneous of de-
gree d, it follows that F (λx, λy, λz) = λdF (x, y, z), so that this is indeed the case.

(b) Let F (x, y, z) be homogeneous. Show that if at each point [x : y : z] ∈ V (F ), at
least one of the partial derivatives Fx, Fy, Fz is nonvanishing, then V (F ) is a
Riemann surface.
[Hint: you may find Euler’s identity F (x, y, z) = 1

d
(xFx + yFy + zFz) useful;

here F is a homogeneous polynomial of degree d.]
Solution: First, here’s how not to do this problem. It’s tempting to try and use
the RVT: compute the partials Fx, Fy, Fz, and then check that the only point
where all of F, Fx, Fy, Fz vanish is the “point” [0 : 0 : 0], which isn’t a point
in projective space at all, hence the solution set V (F ) is everywhere smooth.
This is not a valid argument because of the comment I made above: F does not
define a holomorphic function on CP2 at all! In fact, by the maximum principle,
since CP2 is compact, every holomorphic function on CP2 is constant.
The good news is that this idea can be repaired and made to work. Consider
the coordinate patch Ux ⊂ CP2 defined as the set where x ̸= 0, i.e. the set
Ux = {[1 : y : z] | (y, z) ∈ C2}; define Uy and Uz likewise. Then V (F ) is given as
the union of the pieces V (F )∩Ui for i = x, y, z. Identifying Ui with C2, we now
do have that F defines a holomorphic function on Ui, and V (F ) ∩ Ui is given
as the zero level set of this function. I claim that each V (F ) ∩ Ui is a Riemann
surface. For instance, let’s consider the coordinate patch Uz where z ̸= 0 (the
other coordinate patches can be treated identically). Every point in Uz can
be written uniquely as [x : y : 1] and so be identified with (x, y) ∈ C2. Here,
F specializes to an actual (holomorphic) function F z : Uz → C by sending
[x : y : 1] to F (x, y, 1). Now RVT says that V (F ) ∩ Uz is a Riemann surface
if there is no point on V (F ) ∩ Uz where both partials of F z vanish. Note
F z
x (x, y) = Fx(x, y, 1) and similarly for F z

y .
Potentially we could be in trouble: couldn’t F and Fx and Fy all vanish at some
such point but Fz ̸= 0 there? A basic theorem on homogeneous polynomials
shows that this can’t happen:

Fact (Euler). If F (x, y, z) is a homogeneous polynomial of degree d, then

F = 1
d
(xFx + yFy + zFz).

This shows that if F, Fx, Fy all vanish at a point, so too does Fz. Thus, at least
one of F z

x , F
z
y must be nonvanishing for every point of V (F ) ∩ Uz. We have

shown that V (F ) ∩ Uz is a Riemann surface; the same result holds for the
intersection of V (F ) with the other coordinate patches. The Riemann surface
structures induced on points in the overlap are compatible, since the transition
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functions between coordinate patches are holomorphic.

(c) Show that any such V (F ) is compact.
Solution: Again, there’s a fake proof of this which is very tempting but must
be avoided. The fake proof goes like this: since CP2 is compact, it suffices to
show that V (F ) is a closed subset. If V (F ) were realizable as a global level set,
it would be the inverse image of a closed set (the singleton {0} ⊂ C) under a
continuous map F , and hence be closed, QED.
But of course V (F ) is not globally a level set. Luckily there is an easy fix: we
can cover V (F ) by the three pieces V (F ) ∩ Ui as above. Each of these is a level
set for a function on Ui, and hence each V (F ) ∩ Ui is a closed subset of Ui, and
its complement is an open subset of Ui. Since each Ui is itself the complement
of a closed set (the line determined by the vanishing of one of the coordinates, a
copy of CP1), it is open in CP2 and hence the complement of V (F ) ∩ Ui is open
not just in Ui but moreover in CP2. The union of these three local complements
is the complement to V (F ) in CP2, realizing it as the union of open sets, as
desired.

(d) Let f(x, y) be a polynomial of degree d, not necessarily homogeneous. Define
the homogenization of f to be the homogeneous polynomial F (x, y, z) obtained
from f by adding in multiples of z to each term so as to make the result
homogeneous of degree d. Verify that for f(x, y) = y2 − p(x) as in the problem
statement, the resulting homogenization F satisfies the condition of (b) and
hence V (F ) is a compact Riemann surface.
Solution: Write p(x) = ax3+bx2+cx+d, where a ̸= 0. Then the homogenization
is given by

F (x, y, z) = y2z − ax3 − bx2z − cxz2 − dz3.

We compute

Fx = −3ax2 − 2bxz − cz2, Fy = 2yz, Fz = y2 − bx2 − 2cxz − 3dz2.

Note that Fx is nothing more than the homogenization of the degree-two poly-
nomial f ′(x). Thus, if z ̸= 0, then we know from the affine situation (as done in
class) that since p has simple roots, at least one of Fx and Fy is nonvanishing
at every point of V (F ) with z ̸= 0. It remains only to analyze the points with
z = 0. Looking to Fx, we see that if Fx = 0 as well, also x = 0, and then (e.g.
looking at Fz), also y = 0, so that no point in projective space satisfies all these
constraints. We conclude that V (F ) satisfies the condition of (b) and hence is a
compact Riemann surface.

(e) Describe an embedding of V (f) ⊂ C2 into V (F ) ⊂ CP2. What is V (F ) \ V (f)
(with respect to this embedding)?
Solution: Simply send (x, y) in V (f) to [x : y : 1]. This lies on V (F ), since
F (x, y, 1) = f(x, y) by construction. The complement is the set of solutions to F
with z = 0. From above, F (x, y, 0) = −ax3, so there is a unique point [0 : 1 : 0]
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of this form.

(f) What goes wrong if p is of degree greater than three?
Solution: If deg(p) > 3, then the extra point at infinity will fail to be smooth
(i.e. all partial derivatives will vanish). As an example, consider p(x) = x4 − 1
(note that this has four distinct roots, so the solutions to y2 = x4 − 1 in C2 form
a Riemann surface). The homogenized equation is

F (x, y, z) = y2z2 − x4 + z4,

with
Fx = −4x3, Fy = 2yz2, Fz = 2y2z + 4z3.

Note that [0 : 1 : 0] still lies on V (F ), but now since y2 was homogenized by
adding in z2 (since the highest degree in x is now 4), the term 2y2z in Fz au-
tomatically vanishes when z = 0, and in fact all of Fx, Fy, Fz vanish at this point.

(4) Show that for each d ≥ 1, there is a complex torus X = C/Λ and an analytic map
f : X → X of degree d. [If you get stuck, contemplate the relationship between
pieces of paper of size A4 and A5.]
Solution: To do this problem correctly, you need to clearly define (a) which torus
X = C/Λ you are using and (b) what the self-map is. For (a), define Λ ⊂ C as the
lattice generated by 1 and i

√
d. The key observation is that a rectangle of aspect

ratio 1 :
√
d decomposes into d subrectangles of the same aspect ratio (A4/A5 paper

exhibits this in the case d = 2). These subrectangles are sideways and reduced in
scale by a factor of

√
d. Thus the map f : C → C given by z 7→ i

√
dz preserves the

lattice Λ and hence descends to a map f : C/Λ → C/Λ. The induced self-map of Λ
has image of index d as a subgroup; this coincides with the degree as a (covering)
map, as was to be shown.

(5) Give an explicit example of a polynomial p(x) of degree 6 such that the compact
Riemann surface defined by the equation y2 = p(x) admits a nonconstant holomor-
phic map to a Riemann surface of genus one. Describe the branch locus, and verify
that the Riemann-Hurwitz formula is satisfied.
Solution: Let p(x) be a cubic polynomial with distinct nonzero roots. Then p(x2) is a
polynomial of degree 6, again with distinct roots (at the square roots of the roots of
p). You can see that the map π : (x, y) 7→ (x2, y) sends a point on X = V (y2 = p(x2))
to a point on Y = V (y2 = p(x)), producing the desired map.

Let’s think about Riemann-Hurwitz. First, the degree of π is 2: a general point
(x, y) ∈ Y has the two preimages (±

√
x, y) on X . Branching happens where we

have fewer preimages, i.e. where x = 0. There are two such points on X , the (two
distinct) points (0,±

√
p(0)). Now Y has genus 1. To compute χ(X), we find

χ(X) = 2(0)− 2(2− 1) = −2,

showing that g(X) = 2.
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Admittedly, this is a little fast and loose with what happens at infinity. Let’s
discuss what happens there. Remember that the curve defined by y2 = f(x) has a
single point over infinity if deg f is odd (in which case it is a ramification point with
dx = 2), and if deg f is even, then there are two points over infinity, both unramified.
Thus y2 = p(x2) has two points over infinity, call them ∞1 and ∞2, while the target
y2 = p(x) has just a single point, call it ∞. The map (x, y) 7→ (x2, y) extends over
the points at infinity by sending both ∞1,∞2 to ∞. Thus we see that the preimage
of ∞ consists of two points, so that neither point is ramified. This is consistent
with the Riemann-Hurwitz analysis we did above: if there were any extra ”hidden”
branching at infinity, it would contribute in the above formula, pushing χ(X) down
further. But χ(X) = −2 is already achieved just from the two ramification points
we already identified, so that no further ramification is possible.


