Note: throughout, *X* denotes a compact Riemann surface.

- (1) (a) For which values of g does there exist a compact Riemann surface of genus g admitting a degree 5 map f : X → Ĉ with B(f) = {0,1,∞}? [Note: there may be more than one topological type of branched cover f for a given genus. I'm not asking you to enumerate them all, just to tell me about the possible genera.]
 - (b) For each g which exists, choose one of the possible topological types and give an explicit pair of elements σ₀, σ₁ ∈ S₅ describing the monodromy of X over 0 and 1. (In other words, describe the associated map ρ : π₁(Ĉ − B(f)) → S₅ by giving its values on a loop around 0 and a loop around 1).
 - (c) Enumerate all such covers that are Galois (i.e. regular in the sense of covering space theory, equivalently that the field extension $\mathcal{M}(X)/\mathbb{C}(x)$ is Galois). For bonus credit, give explicit models of each possible type.
- (2) Let $\omega \in \Omega(X)$ be a holomorphic 1-form. Prove that for any $p \in X$, there is a coordinate z on X near p in which $\omega = z^n dz$ for some $n \ge 0$.
- (3) (Harmonic functions and forms)
 - (a) Let $u : X \to \mathbb{C}$ be a smooth complex-valued function. Prove that the following conditions are equivalent; such u is called a *harmonic function*.
 - (i) $\Delta u = d^2 u/dx^2 + d^2 u/dy^2 = 0$ in local coordinates z = x + iy,
 - (ii) $\overline{\partial}\partial u = 0$,
 - (iii) ∂u is a holomorphic 1-form,
 - (iv) $\overline{\partial} u$ is an anti-holomorphic 1-form,
 - (v) Locally, $u = f + \overline{g}$ where f, g are holomorphic.
 - (b) Now let α be a 1-form on *X*. Prove that the following conditions are equivalent; such α is called a *harmonic* 1-*form*.
 - (i) Locally $\alpha = du$ with u harmonic,
 - (ii) $\partial \alpha = \overline{\partial} \alpha = 0$,
 - (iii) There exist $\omega_1, \omega_2 \in \Omega(X)$ such that $\alpha = \omega_1 + \overline{\omega_2}$.
- (4) (a) Let Λ ⊂ C be a lattice, and let X = C/Λ be the associated compact Riemann surface of genus 1. Determine dim(Ω(X)), and find an explicit basis of holomorphic differential 1-forms. [Hint: construct a Λ-invariant form on C; this is not hard.]
 - (b) For each basis element as constructed in (a), determine the image of the period mapping $\int \omega : H_1(X; \mathbb{Z}) \to \mathbb{C}$.
 - (c) Let $\Lambda_1, \Lambda_2 \subset \mathbb{C}$ be lattices. Prove that the compact Riemann surfaces $X_1 = \mathbb{C}/\Lambda_1$ and $X_2 = \mathbb{C}/\Lambda_2$ are isomorphic (as Riemann surfaces) if and only if there is $\lambda \in \mathbb{C}^*$ such that $\Lambda_2 = \lambda \Lambda_1$ as subsets of \mathbb{C} . [Hint: If $f : X_1 \to X_2$ is holomorphic, how are the periods of $\omega \in \Omega(X_2)$ and $f^*(\omega) \in \Omega(X_1)$ related?]