
Math 60380, Assignment 4 Due: Wednesday, February 12, 2025

Note: this set might look longer than usual, but in fact I’ve taken a set of standard length
and divided it up into finer pieces to help you along the way.

(1) Let ω ∈ Ω(X) be a holomorphic 1-form on a compact Riemann surface X , and let

Λ =

{∫
γ

ω | γ ∈ π1(X)

}
⊂ C

be the group of periods of ω.
(a) Show that Λ cannot be isomorphic to Z. [Hint: supposing this were the case,

construct a nonconstant holomorphic function on X .]
(b) Show that if Λ is a lattice in C, then there exists a nonconstant holomorphic

map f from X to a Riemann surface of genus 1.

(2) (Fermat curves) Let Xd be the compact Riemann surface defined as the solution to
xd + yd = zd in CP2. Such Xd is called the degree-d Fermat curve.
(a) Let X◦

d ⊂ C2 be the portion of X lying in the affine plane C2 ⊂ CP2 defined
by z = 1. Write down an equation f(x, y) = 0 defining X◦. Use this to find
the branch locus B ⊂ X◦, with multiplicities, for the projection of X◦ onto the
x-coordinate.

(b) Repeat the above process, this time exchanging the roles of the x and z coordi-
nate.

(c) Are any of the branch points you find in (a) distinct from the branch points you
find in (b)? Combine your analysis to completely describe the branch locus of
the meromorphic function π : Xd → CP1 given by π([x : y : z]) = [x : z].

(d) Use the previous steps and Riemann-Hurwitz to show that Xd has genus
(
d−1
2

)
.

(3) Let X = X4 be the Fermat curve of degree 4; by the previous problem X4 has genus
3. In this problem you will construct a basis for Ω(X). As in the previous problem,
let X◦ be the portion of X lying in the affine plane determined by z = 1, with
equation x4 + y4 = 1.
(a) Let π : X◦ → C, (x, y) 7→ x be the projection onto the x-coordinate. Show that

π∗(dx) is holomorphic on X◦ and has a zero of order 3 at each of the branch
points of π. [Hint: recall the result we proved in the first week that a branch
cover is locally equivalent to z 7→ zdz .]

(b) Show that ω1 = π∗(dx)/y3 is holomorphic and has no zeroes on X◦.
(c) Let α : X → X be the symmetry given by [x : y : z] 7→ [ix : y : z]. Show

that α acts transitively on the points X \X◦, and that ω1 is an eigenvector for
α∗ : Ω(X◦)→ Ω(X◦).

(d) Use the previous step to argue that ω1 admits a holomorphic extension to X ,
with a simple zero at each point of X \X◦.

(e) Show that ω2 = xω1 and ω3 = yω1 in Ω(X◦) likewise extend to holomorphic
forms on X .

(f) Show that {ω1, ω2, ω3} forms a basis for Ω(X). [Hint: the functions 1, x, y are
linearly independent on X].
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(4) Let 0 → A → B → C → 0 be an exact sequence of sheaves on a topological space
X , say induced by maps of sheaves α : A → B and β : B → C. Consider the
commutative diagram below.

0 // A(X) //

��

B(X) //

��

C(X)

��
0 //

∏
Ap //

∏
Bp //

∏
Cp.

(a) Verify that the bottom row of the diagram is exact and that the vertical maps
are injective. [This is not hard.]

(b) Building off of these facts and what you know about sheaves, prove that the
top row is exact.

(5) Let φ : A → B be a morphism of sheaves.
(a) Formulate definitions of the presheaves Kerφ, Imφ, and Cokerφ.
(b) Prove that Kerφ is in fact a sheaf.
(c) By considering the morphism exp : O → O∗, show that neither Imφ nor

Cokerφ is in general a sheaf.


